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Abstract 

Wild oat is a long-standing weed problem in Australian grain cropping systems, 

potentially reducing the yield and quality of winter grain crops significantly. The effective 

management of wild oat requires an integrated approach of diverse control techniques that 

suit specific crops and cropping situations. This research aimed to construct and validate a 

bioeconomic model that enables the simulation and integration of weed control technologies 

for wild oat in grain production systems. The Avena spp. integrated management (AIM) 

model was developed with a simple interface to provide outputs of biological and economic 

data (crop yields, weed control costs, emerged weeds, weed seedbank, gross margins) on wild 

oat management data in a cropping rotation. Uniquely, the AIM was validated against real-

world data on wild oat management in a wheat and sorghum cropping rotation, where the 

model was able to reproduce the patterns of wild oat population changes as influenced by 

weed control and agronomic practices. Correlation coefficients for 12 comparison scenarios 

ranged between 0.55 and 0.96. With accurate parameterization, AIM is thus able to make 

useful predictions on the effectiveness of individual and integrated weed management tactics 

for wild oat control in grain cropping systems. 
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Introduction 

The multiple Avena genotypes that occur as weeds of Australian cropping systems are 

collectively referred to as wild oat. The most prevalent species, A. fatua L. and A. sterilis ssp 

ludoviciana (Durieu) Gillet and Magne, are found throughout Australian grain production 

regions (Thurston and Phillipson 1976). There are differences in regional distributions, with 

A. sterilis ssp ludoviciana the dominant species in northern New South Wales and southern 

Queensland and A. fatua dominant across south-eastern and western Australian grains regions 

(Broster et al. 2022; Paterson 1976; Whalley and Burfitt 1972). These species, due to their 

morphological and biological similarities, are treated similarly in terms of predicted 

competition effects on crop yield and control methods (Bajwa et al. 2017; Mahajan and 

Chauhan 2021). 

Locally adapted wild oat populations are found throughout Australian grain 

production systems, where they persist to interfere with planted crops annually. Endemic wild 

oat populations have similar life cycles and growth patterns to grain crops, particularly 

cereals, which ensures a high capacity for crop interference (Gunton et al. 2011). When 

established alongside crop plants, wild oat are highly competitive and, in the absence of 

effective control methods, can cause substantial yield reductions (Mahajan and Chauhan 

2021; Martin et al. 1987).  Wild oat seed is also a common contaminant in harvested grain, 

leading to potential downgrading and dockage at receiving points (Cousens and Mortimer 

1995; Medd 1996b).   

The challenge of managing wild oat populations in grain (cereal focussed) cropping 

systems is exacerbated by the lack of effective in-crop herbicides and compounded by the 

widespread occurrence of resistance to these herbicides. Over the last 20 years, the frequency 

of herbicide resistance in wild oat populations in Australian grain production systems has 

risen markedly (Broster et al. 2013; Owen and Powles 2016). Wild oat biotypes have been 

confirmed resistant to many of the herbicides registered for control of this weed, particularly 

the acetyl-coenzyme A carboxylase and acetolactate synthase inhibitors as well as flamprop-

methyl (Ahmad-Hamdani et al. 2012). There has also been a recently confirmed case of 

glyphosate resistance in a wild oat population collected from a cropping field in SE 

Queensland (Chauhan 2022). The widespread evolution of resistance to these key herbicides 

has restricted the ability of growers to control this weed. With the low likelihood of new 

herbicide options, (Duke 2012; Peters and Strek 2018) the remaining effective herbicides 
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must be carefully managed as part of a management program that includes a range of control 

tactics. 

   Integrated weed management (IWM) is the use of diverse weed control tactics that 

target multiple parts of weed life cycles and is not limited to recurrent use of a single 

technique (Zimdahl 2018). The need for IWM of wild oat has increased with the widespread 

occurrence of herbicide resistance (Broster et al. 2011), but the first calls for integrative 

approaches towards wild oat management in Australian cereal cropping pre-date the 

discovery of herbicide resistance in local biotypes and even the widespread use of herbicides 

(Paterson 1969; Selleck 1961). The focus on IMW then, as it is now, was on deposits to and 

outputs from the weed seedbank, and crop competitiveness. Integrating seed-specific tactics 

and other potential lifecycle interventions into a system of weed management requires skilled 

and knowledgeable decision-makers and the capacity to analyze which interventions are most 

useful and when they are best used in cropping rotations. Land managers seeking to integrate 

different herbicide and non-herbicide tactics need information, in biological and economic 

terms, that covers this broad range of choices effectively (Swanton et al. 2008). 

With multiple control options and agronomic decisions, and complex interactions 

between all choices, there are numerous ways in which the crop-weed agroecological system 

can respond. Static, pre-determined rotations of tactics may not be sufficiently adjustable or 

applicable in such a complex system, regardless of how well-researched the individual tactics 

or rotations might be. Instead, growers and weed researchers have increasingly turned to 

computer-based decision support tools to assess specific scenarios through models that 

include and can reproduce some of the real system's complexity (González-Andújar 2020; 

Martin et al. 1997), i.e. IWM requires 'predictive' tools (Swanton et al. 2008). Early 

computational approaches were limited to attempts to model the economics of weed control 

either very generally, or in specific situations with little flexibility to predict effects in 

different situations (Cousens 1985; Pannell and Gill 1994).  

Later computational models were designed to be more adjustable; to apply generic 

rules to a problem space of an increasing number of possible permutations and scenarios. 

Efforts are often also made to include more approachable user interfaces. Complex, highly 

adaptable models of crop and weed growth are now available—notably, the Agricultural 

Production Systems Simulator (APSIM) and the Weed Seed Wizard. However, these highly 

adaptable models are also complicated to use accurately and generally are restricted to 
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biological predictions such as seed bank density or standing weed population size (Holzworth 

et al. 2014; Pannell et al. 2004; Peltzer et al. 2012). The Ryegrass Integrated Management 

(RIM) tool is a long-standing and successful model for both the biological and economic 

management of a single dominant weed problem: annual ryegrass (Lolium rigidum) in 

Australian grain cropping (Lacoste and Powles 2015). Arguably, one of the reasons RIM is 

successful is that although it relies on generic ecological functions, scenario modeling is 

restricted to a single cropping system and a single weed problem. It models a wide range of 

possible scenarios within Australian winter cereal crops with an annual ryegrass weed 

problem. To adapt its successful approach, teams of weed researchers have used RIM as a 

basis for the construction of new models (with varying levels of alteration) that deal with 

other weeds, different crops, and in alternate environments (Lindsay et al. 2017; Torra and 

Monjardino 2020). Rather than seeking to add interface complexity to the original RIM, these 

new versions retain the strength inherent in restricting the modeled problem to a manageable 

size while dealing with different problem spaces. The programming burden through RIM's 

Excel- and VBA-based construction is relatively low, and the established interface requires 

(depending on the cropping system and the approach taken) modest adjustment from RIM to 

other versions. Additionally, commonly available field data focus on single weed species in 

specific systems. Models (such as AIM and others derived from RIM) built for a specific 

problem space can readily use this focussed field trial data for verification and validation. 

Therefore, the aims of this study were I) development of a bioeconomic model for the IWM 

of wild oat in grain production systems and 2) validation of the developed model against a 

wild oat management dataset collected from a long-term rotation field trial. 

Materials and Methods 

Model Description and Specifications 

 To provide the capacity to test and model IWM strategies for wild oat, the 

bioeconomic model Avena Integrated Management (AIM) was developed and validated 

against a previously published dataset. Using the framework of RIM (Lacoste and Powles 

2014, 2015), AIM was developed based on published data on the biological attributes 

(parameters) of wild oats as occurring in cropping systems. The developed model contains 

the capacity for simple simulations of wild oat populations and production economics for 

individual crop and pasture phases, as well as the more detailed in-crop weed management 

scenarios in 10-year rotations.  A diagrammatic view of information types and flows inside 
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AIM shows user-defined and fixed parameters for the farming environment, contributing to 

the development of a scenario (Figure 1).  

 

The AIM model allows the creation of a crop production scenario with user-defined 

yields, prices, and weed control efficacies. The interface allows the user a high level of 

freedom in defining which tactics are available and what they cost but restricts how often and 

when these tactics can be applied in ways that fit with wild oat biology and cropping system 

parameters. AIM can be used to test the effects of changes in crop prices or input costs, the 

introduction of new herbicides or other tactics, crop rotation adjustments, planting timing, 

and density, or combinations of these factors. It is also particularly suited to testing the 

biological and economic results of changes in herbicide (or other tactic) efficacy and, in this 

way, can be used to develop and test strategies for dealing with the onset of herbicide 

resistance at some point in the simulation. However, there is no mechanism in AIM for 

tracking the evolution of herbicide resistance. Rather, resistant populations can be simulated 

by changing from a standard efficacy version to a low efficacy version of the same herbicide, 

at some point in the simulation.  

Having defined the cropping system, the user can then develop one or more scenarios, 

in which decisions are made about which crops appear when in the rotation (of up to ten 

years), and which control tactics appear in each growing season. As users make changes to 

the active scenario, biological and economic outcomes are estimated in real time and 

displayed in numerical and graphical formats. More detailed outputs and comparisons 

between pairs of scenarios can then be viewed as a third step in the simulation process. 

 

The developed AIM model has predictive capability according to a predefined scenario 

context:  

1. Available crops are wheat, chickpea, canola, faba bean, another legume, sorghum, 

winter fallow, and pasture (sheep grazing). Each year, the simulated field must be 

either in crop, fallow, or pasture. 

2. Environmental parameters fit an average-to-good year in the northern Australian grain 

region, with fixed weed-free maximum yield potentials for each crop. 
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3. The model produces predictions for 10 years, although a simulation may be shorter if 

desired. 

4. Weed control treatments are applied in cohorts (weed control timings, see Table 1). 

The numbers of different types of control tactics in each cohort are fixed due to the 

interface layout, though the names, efficacies, and costs of each entry in the list are 

user-defined. 

5. Up to one application of each timing per year is available, except for postemergence 

(POST) applications, of which there can be up to three. 

 

The user assigns each weed control tactic an efficacy from 0 to 1, where 0 = no effect 

and 1 = complete weed population control, with separate values allowed in each crop type, 

fallow, or pasture. Accordingly, weed seedling reduction in each period is a cumulative factor 

of all weed control efficacies applied in that period. Efficacy due to planting machinery and 

harvest methods are defined on the ‘More Options’ page. Allowing user-defined efficacies 

ensures accurate model inputs for specific weed populations based on past experience or 

specific information.   

The user interface allows up to four different environments to be saved, plus a 

conserved default (at the DEFINE step) and up to six different strategies based on any saved 

environments (at the BUILD step). Two different scenarios at a time can be compared 

graphically and as numerical outputs (Figure 2). 

 

Wild oat lifecycle 

AIM’s functioning as a predictive decision-support tool relies on concurrent 

simulation of the weed lifecycle and a yield effect competition model. The lifecycle of wild 

oat is modeled as a set of equations converted into Excel IF statements. Excel’s automatic 

user interface behavior causes every change of parameter values or other choices to be 

reflected immediately in all other cells in the model. 

The annual lifecycle of wild oat is separated into seven periods of unequal length. The 

length of each period is determined agronomically—i.e., a new period begins when a new 

type or phase of weed management is available or appropriate. The model may test 

https://doi.org/10.1017/wet.2024.35 Published online by Cambridge University Press

https://doi.org/10.1017/wet.2024.35


 

 

germination, or seedling survival or both in each period except for the summer period, 

depending on the parameters entered. 

The periods are: 

1. End of summer (i.e., prior to growing season) 

2. First chance for planting (beginning of growing season) 

3. 10 days after beginning of growing season (early seasonal rains) 

4. 20 days after beginning of growing season 

5. Post-emergence in-crop spraying opportunity 

6. Onset of spring (pre-harvest)  

7. Over summer 

By default, germination of cohorts occurs in the first four periods, but this can be adjusted 

for specific use cases. While effects on seedbank input at harvest (harvest weed seed control) 

are available, this is treated as a discrete event rather than a seasonal period and does not 

affect germination or existing plants. 

Germination is calculated as: 

                   

      

where Gi is the size of the germinating cohort in period I, p is the total effect of pre-emergent 

herbicides applied in period I (0≤p≤1), ri is a germination factor for period I, and Si-1 is the 

seedbank density at the end of the previous period. (The derivation of parameters in 

Equations 1-6 is described in various references in Table 1.)  

Total herbicide effects h on the population of plants Ti are calculated together: 

                   

      

where hi1,2...n are individual knockdown herbicide effects (with user-defined values for each 

herbicide) applied to seedlings during period i. 

Accordingly, cohorts of plants T at the end of each period are calculated as: 
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Wild oat seed set is calculated in a single event in spring.  

   
     

          
 
   

 
     

      

where SS is the number of seeds produced m
-2

, SSmax is the estimated maximum seed 

production m
-2

 in a pure stand of wild oat, cw and cc are intra- and inter-specific competition 

factors, D is the number of crop plants m
-2

, s is a discounting factor for seed reduction due to 

non-lethal but damaging herbicide applications, and E represents healthy weed equivalents, 

wherein seed production of each cohort is affected by emergence timing of the cohort relative 

to the crop. E is calculated dynamically in the model per cohort, and can be generalised as: 

  
 

 
     

 

   

 

where the discounting factor k for each cohort is returned from a set of simple tables, with 

values ranging from 0 (early emerging weeds) to 98% (weeds emerging after POST herbicide 

timing in early-sown crops).  

At maturity, seeds enter the seedbank, reduced by any harvest weed seed control 

factors (HW) chosen by the user, and the total seedbank is then reduced by a factor for 

mortality over summer (MS): 

                        (5) 

AIM alters germination percentages early in the season when pre-planting preparation 

includes tillage (either full or shallow disturbance). The effect of deep burial of weed seeds 

by cultivation (e.g. plowing) is modeled simply by killing a proportion of the current 

seedbank, with the proportion dependent on the number of years since burial. The proportion 

can be altered in the underlying code if specific situations (such as net exhumation of buried 

seeds) need to be simulated.  
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Yield calculation 

Wild oat effect on crop yield is determined with a rectangular hyperbolic function 

adjusted from the standard model described by Cousens (1985) and used in many weed-crop 

interaction models since. Variables in Equation 6 are as described by Pannell et al. (2004), 

with parameters either unchanged (for crops described by Pannell et al. (2004)) or estimated 

(for other crops that appear in AIM).  Adjustments by Pannell et al. (2004) allow for the 

relationship between the actual crop density and a standard crop density (for which 

competition factors are valid): 

         

      
     

  
   

 

        
                      

        

where YL is percent yield reduction, YLmax is an estimated maximum percentage yield loss 

from wild oat in the given environment, cb is a background intraspecific competition factor, 

Ds is a standard crop density, and other factors are as described above. 

Economic estimates for net present value in each year are determined from the post-

weed yield multiplied by the crop value per tonne, minus all cost factors included in the 

model: weed control treatment and application costs are treated individually, and the model 

responds according to the decisions included in each scenario. Conversely, fertilizer and other 

input costs are generalized as simple estimates for each crop type. Each of these economic 

variables is user-defined and is static throughout the simulation. 

Biological parameter values 

Key wild oat biological parameters are included in the model (Table 2) and these can 

be changed by the user, but only by going beyond the user interface into the underlying 

model spreadsheets. The model’s Start page briefly describes the effects and risks of 

unlocking the user interface to edit biological parameters. 

There are over 700 individual parameters included in AIM, relating to effects and 

characteristics such as crop stand densities, seed weights, and establishment rates; small yield 

benefits and penalties from various actions; germination differences in crop vs pasture; and 

progeny reductions for late emergence. As wild oats are a very widespread weed in 
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Australian cropping, they are subject to substantial variation in growing conditions and 

intrinsic biotype variations. A high degree of parameterization allows AIM to respond to this 

variability in detailed ways, provided data are available to guide the process. Interested users 

can access a set of standard parameters on the model’s Profile, Strategy, Prices, and Options 

pages. The large number of hidden parameters can be viewed and adjusted by unlocking the 

user interface and viewing the 15 tables of related parameter sets on the Calcs page and the 

right-hand side of the Options page. 

Validation and testing 

To test AIM's capacity to produce relevant outputs from region-specific farming 

system inputs, we reproduced a range of scenarios from a published study (Martin and Felton 

1993). This study assessed wild oat infestation dynamics over four years (1983-1986) in 

continuous wheat and wheat-sorghum rotations with reduced tillage operations in summer 

fallows and optional use of in-crop selective wild oat herbicides, either PRE (triallate) or 

POST, applied at tillering (flamprop-methyl). There is sufficient published detail on the 

timing of operations to reconstruct each experimental treatment (with some assumptions, 

adjustments, and additions) in AIM (Table 3). 

A full set of permutations of the experimental parameters (Table 3) by Martin and 

Felton (1993) were reproduced in AIM. Thus, ‘WW CF Nil H’ refers to plots (in the 

experiment) or a scenario (in AIM) with wheat each winter and no summer cropping, 

cultivation for weed management in summer fallows, and no in-crop herbicides. Each 

scenario runs for four years, as was the case for the field evaluation. Continuous wheat 

scenarios allow harvesting of four crops. The wheat-sorghum rotation allows harvesting of 

three crops: two wheat crops in years one and four, and one sorghum crop that is grown in the 

summer between winter fallows in years two and three, reported in the year three column. 

The experimental data were produced under field conditions, and there were several 

events and anomalies that reportedly impacted the field experiments. Summer of the third 

year was unusually dry, resulting in the failure of sorghum crops in that year and presumably 

also affected wild oat germination, growth, and seed production. Dry conditions during 

winter in the third and fourth years resulted in reduced efficacy of in-crop herbicides. Martin 

and Felton (1993) noted that there was zero seed production of wild oat in winter fallows in 

the WS rotation, due to a briefly outlined glyphosate-centric winter fallow weed management 

strategy. Wheat planting was exceptionally late in the second year (24 August, 79 days later 
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than the average wheat planting date in the other three years), potentially affecting weed 

management.  

No weed control efficacy estimates were given for either the herbicide or soil 

disturbance tactics, so estimates were made in the process of setting up the scenario 

environment. A screenshot of the DEFINE stage illustrates the environment (Figure 3. Note, 

however, that many of the tactics and crops referenced in the DEFINE screen were not used 

in the scenarios detailed here).  

Scenarios were built in AIM’s BUILD page. Each consisted of a four-year rotation of 

either continuous wheat, or wheat-winter fallow-sorghum-winter fallow-wheat (Figure 4). 

The scenarios were as close as possible to the operations described in Martin and Felton 

(1993). 

 

Based on the weed control treatments used in Martin and Felton (1993) 12 scenarios 

were constructed in AIM’s BUILD user interface, using consistent entries for each of the 

three variable factors – crop rotation, fallow type, and in-crop herbicide (Table 3). 

 

Data analysis 

To validate AIM effectively, a robust quantitative comparison between predicted and 

observed data is required. As the model results from AIM are non-linear and highly 

multivariate, a distance correlation method was used to compare AIM outputs and Martin and 

Felton (1993) observations, within each scenario. The distance correlation (dCor) metric was 

developed (Székely et al. 2007) to solve the problem of comparing between observations and 

predictions for non-linear models—since familiar R
2
 methods based on Pearson’s coefficient 

of correlation account only for linear comparisons (Kvalseth 1985). 

The implementation of Székely’s dCor in the R package energy was used in the 

present work. In energy, dCor is defined as:  
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where (X,Y) denotes the scalar product of the values in X and Y, and X and Y are two 

vectors being compared; that is, a set of observed values and a corresponding set of predicted 

values from a model. V (the distance covariance) is defined as: 

          
 

  
       

 

     
      

         

where     and Bkl are functions summing distances between values in the vectors X and Y:  

                             

     is similarly defined for values in  . Here,  

         
    

       

            

that is, a function describing the distances between the values in the vector X, and     is 

similarly defined for Y-vector values. 

The resulting value for dCor lies between 0 and 1, where dCor=0 indicates complete 

independence between X and Y. 

 

Results and Discussion 

Validation – weed density 

AIM was largely able to reproduce the annual wild oat population patterns as 

influenced by various crop production conditions, including different rotations (continuous 

wheat and wheat-sorghum) and herbicide strategies. Across all crop rotations AIM outputs of 

wild oat population densities at maturity (seed production) were consistent with the results 

from the comparative field study of Martin and Felton (1993) (Figure 5). In most cases, there 

were high (> 0.8) distance correlation values (dCor) for weed count comparisons between the 

field collected data and AIM's predictions. Qualitative patterns of change in weed numbers 

were similar between the field, and the model-predicted data and the greater efficacy of both 

in-crop herbicide treatments compared to nil herbicide were also reproduced. 
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Some scenarios were less closely reproduced than others; in particular, plant density 

values were most widely divergent between the model and the field data for some cultivated 

fallow/continuous wheat scenarios (Figure 5). AIM overestimated the combined effectiveness 

of in-crop herbicide and fallow cultivation in those scenarios, particularly in the final year, 

compared to the results of Martin and Felton (1993). In other cases where the model less 

closely reproduced year 4 results, such as WW NT Tri and WW NT NilH, variation between 

treatments in the Martin and Felton (1993) data for that year is substantial, and they refer to 

reduced or poor weed control in both unseasonably dry years 3 and 4. Apart from these 

variable years, population trends and general annual population sizes were well reproduced.  

 

Long-term field studies typically do not collect or publish sufficiently detailed and 

comprehensive data to enable the complete validation of all control strategies included in a 

weed population dynamics model. With no specific weed emergence data collected through 

the growing season by Martin and Felton (1993) it is possible that the AIM predicted effects 

of tillage on both weed emergence and direct weed control at either end of the summer fallow 

period may have differed from the real situation in any given year. Also, tactic timings 

described in the paper were, in some cases, difficult to reproduce exactly in AIM, especially 

in the third year of continuous wheat, where planting was 80 days later than usual. The 

relative timings of crop emergence, weed cohort emergence, and weed control application are 

critically important in AIM's end-of-season results (as in real situations). Without estimates 

of cohort emergence timings and sizes in the real data, some years may be poorly matched 

between the model and the experiment. Fitting exercises with efficacy values and/or tactic 

timings could be undertaken to simulate this situation better. Low- and high-efficacy versions 

of the same herbicide tactics could be developed to attempt to fit the effects of poor years, 

which could be manipulated to more closely match years 3 and 4 of the triallate and 

flamprop-methyl data in Martin and Felton (1993). This approach has been used in attempts 

to model herbicide resistance evolution in a similar bioeconomic model (Thornby and Werth 

2015). 

Many of the most important biological parameters of a weed population dynamics 

model are also quite mutable in real situations, depending on environmental factors and 

differences in crop and weed biotypes from the default assumptions (Lacoste and Powles 
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2015). Maximum crop yield reductions due to wild oat competition, for example, vary 

substantially between studies (Cudney et al. 1991; Mahajan and Chauhan 2021). Similarly, 

maximum wild oat seed production estimates vary from 10,000 to almost 30,000 m
-2 

(Medd 

1996a; Xue and Stougaard 2002). These differences presumably stem from differences in 

biotype crop parameters and environmental factors, as well as artifacts of measurement. 

Consequently, AIM and similar bioeconomic models (Lacoste and Powles 2014, 2015) 

develop parameter estimates based on data from published and unpublished sources, which 

can then be weighted according to local data and expert advice for specific location scenarios. 

As a result, some variation between AIM’s predictions and the real results of Martin and 

Felton (1993) or any other dataset is to be expected. 

Despite variations in the level of correlation between AIM and the data of Martin and 

Felton (1993), there are good reasons to accept AIM's outputs as valid even where they differ 

in magnitude from variable real data. AIM is a deterministic model, so a single set of input 

values will always return the same output. In scenario terms, the background biotic and 

abiotic conditions for plant growth (weather, pest, disease pressure, etc.) are identical. As 

demonstrated in our validation exercise, real-world data often does not agree precisely with 

model outputs due to the inherent variability of real agronomic situations, increasing the 

challenge of demonstrating model veracity. The data of Martin and Felton (1993), for 

example, included a loss of herbicide efficacy (and possibly other, more random effects) that 

may help explain increases in weed counts in that year (Figure 5), but AIM applies the same 

weed tactic efficacies each time a tactic is used. Accordingly, the model provides a stable 

estimate of the ongoing effect of those tactics, which is not entirely analogous to the real 

situation but is nevertheless useful. In particular, for use in learning to control wild oats in 

northern Australia (or similar locations), generalized, deterministic outcomes such as AIMs 

are arguably more useful than more variable and stochastic ones. 

Model outputs – weed seedbank dynamics 

Estimates of the weed seedbank at the beginning, during, and end of the wild oat 

growing season allow AIM users to track the influences of cropping systems and weed 

management practices on seedbank dynamics within and across seasons. The importance of 

the soil seedbank in the persistence and problematic nature of annual weed populations 

infesting cropping systems is well-known (Buhler et al. 1997; Forcella 1984; Warr et al. 

1993). Thus, the size of a viable weed seedbank is a predictor of potential in-crop weed 
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infestations; however, accurate seedbank measurement is difficult and time-consuming.  A 

substantial amount of research has explored wild oat seedbanks (Banting 1962; Hsiao and 

Quick 1983; Medd 1996), providing ample data supporting robust predictions of seedbank 

responses. Weed managers will highly value the ability to accurately simulate the impact of 

individual weed control treatments and weed management programs on the wild oat 

seedbank.  

Poor seedbank control is seen in all scenarios where no in-crop herbicide is used in 

wheat years (Figure 6: Nil H curves, years 1 and 4 in WS CF and WS NT, and all years in 

WW CF and WW NT). Notably, the reversion to wheat after two years of sorghum led to 

immediate increases in seedbank density in nil-herbicide treatments (Fig 6: Nil H curves, WS 

CF and WS NT, year 4). The magnitude of change in the post-sorghum year was much 

greater under no-till fallow conditions, but even a moderate, consistent increase in seedbank 

density is of concern for long-term cropping sustainability. Where in-crop herbicides and 

summer cultivations were included (leading to a level of seed burial below germination 

depth), there was a decline in seedbank size over the four years of the simulation (Figure 6, 

all remaining curves). In some scenarios, however, seedbanks in years 3-4 were still large 

enough to lead to rapid loss of control of the population if the strategy or effectiveness of a 

tactic were to change: in continuous wheat with cultivated fallows and triallate in-crop (Fig 6: 

WW CF, triallate curve), for example, there were 25 seeds m
-2

 remaining after three years. In 

wheat-sorghum with triallate used in wheat and no cultivation in summer (Fig 6: WS NT, 

triallate curve), seedbank density was 28 seed m
-2

 in year 4. In continuous wheat without 

summer cultivation, seedbank density never dropped below 40 seed m
-2

 with the best-

performing in-crop herbicide (Fig 6: WW NT, flamprop-methyl). In the same rotation with 

triallate, seedbanks were around 200-300 seed m
-2

 in years 3-4. These figures are large 

enough to lead to rapid increases in weed population in the absence of continued good control 

of emerged weeds—for comparison, the seedbank density before weed emergence in year 1 

was 97 seed m
-2

 in all scenarios. These predictions warn users that although weed seedbank 

densities remained manageable with consistently targeted herbicide strategies (Figure 6, 

triallate and flamprop-methyl curves), future success could be jeopardised quickly by 

reductions in in-crop weed control.  
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Model outputs - gross margins 

One of the key intentions behind AIM is to supply users with economic return data 

along with biological predictions. It does this in the form of gross receipts, weed control and 

other costs, and gross margins. As costs are merely a report of the cumulative value of the 

user’s own inputs, gross margins are the most appropriate measure for comparing economic 

performance between scenarios.  In the continuous wheat scenarios (Figure 7, WW-CF, WW-

NT, bottom row), the no-till fallow gross margins were reduced in each successive year, most 

notably in the nil herbicide treatment. The triallate treatment's gross margin is predicted to 

reduce most slowly. Where cultivation was used in summer fallows, AIM predicts a stable 

gross margin after the first year, with differences in final value attributable to differences in 

weed management cost and phytotoxicity-associated yield penalties. 

In the wheat-sorghum scenarios, the high-value sorghum crop is largely unaffected by 

herbicide tactics, although there is a notable ($72 ha
-1

) difference between the economic loss 

incurred in cultivation versus herbicide-centric summer fallows due to estimated 

environmental costs of cultivation and additional machinery costs. Wheat gross margins in 

the final year of the wheat-sorghum rotation were higher in 1986 than in 1983, at over $400
 

ha
-1

, in contrast to the consistent reduction in wheat values from 1983 to 1986 in the 

continuous wheat scenarios, which in 1986 varied from less than $100 ha
-1

 to around $350
 
ha

-

1
. 

Gross margin estimates are useful for growers and advisers to see directly the 

accumulated effect of the trade-off between weed pressure and control tactic costs, plus other 

minor cost effects. While weed seed bank density and emerging plant numbers are important 

outputs and are the key drivers of long-term sustainability, economic margins provide another 

dimension of decision support. In the case of the scenarios reproduced from Martin and 

Felton (1993), gross margins varied relatively little between treatments where weed control 

was robust, and decisions could then be made effectively on differences in herbicide input 

costs. Where weed control was inadequate, such as in the no-till, nil herbicide treatment, the 

declining gross margin value year-on-year underscores the need to seek a different strategy, 

especially when extrapolating beyond these short four-year simulations. The economic 

estimates in this paper were based on 2019 costs and prices. Gross margin values reflect and 

respond to changes in both cropping and economic conditions, and in years where input costs 
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and crop prices vary disproportionately, the cost and value of killing each weed may produce 

qualitatively different results from the ones shown here (Figure 7).  

Practical Implications 

AIM has been developed as a decision support tool to assist in the development of 

weed management programs for wild oats in grain production systems. It is a user-friendly 

decision support tool capable of predicting with reasonable accuracy the biological and 

economic effects of implementing weed control strategies on wild oat populations in grains 

cropping-based rotations. AIM has the potential to provide useful biological and economic 

feedback to growers, agronomists, and the weed control industry wanting to test potential 

control strategies for long term effects on wild oat populations in prescribed cropping 

systems. Users gain substantial benefit from being able to simultaneously compare 

differences in biological and economic model feedback on specific or combined strategies, 

and with a wide degree of choice over simulation parameters such as tactic efficacy, crop 

frequency, and input costs. 

The validation process undertaken here demonstrates the practical applicability of 

models to weed management questions. It also illustrates the challenges of performing 

accurate validations using previously published datasets, which often do not consider all the 

key variables of a specific model. One alternative is to collect new datasets specifically for 

validation, which requires a certain amount of resourcing and planning, but is a potentially 

valuable approach for future model development efforts. 

AIM has been developed using parameter data from Australian cropping systems; 

however, the opportunity to use similar data from other systems ensures that this model can 

be relevant in all cropping systems where wild oats are problematic. The use of AIM in other 

regions/production areas may require collecting relevant data through specific research 

activities. This highlights an additional role of AIM in identifying research needs that lead to 

the effective management of wild oat populations in diverse production systems. Conversion 

to suit other weeds and/or production systems is feasible but would be a larger task requiring 

substantial reprogramming and parameterization. 
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Table 1. Types and frequencies of weed control tactics available for use in an AIM-

developed scenario for the management of wild oat in an Australian cropping scenario. 

Weed control tactic type Tactic choices Max applications per year 

Pre-planting knockdown 2 1 

Pre-planting double knock† 1 1 

Pre-emergence herbicide 5 1 

Post-emergence 5 3 

Pre-harvest crop-topping* 2 1 

Harvest weed seed control 2 1 

†The double knock is a common Australian weed management tactic in which two different 

knockdown/burndown herbicides are used approximately 3-10 days apart on the same cohort 

of weeds, to reduce resistance evolution and increase efficacy. Planting operations (pre-

planting soil preparation and planting method) may also have seedling kill effects occurring 

between double knock and PRE applications, if seedlings are present. These cannot be 

modified in the user interface, but can be changed in the model’s back end 

*Several default harvest alternative operations with effects on weed numbers are also 

predefined and available pre-harvest, such as green/brown manuring, hay, and silage. 
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Table 2. Biological parameters for wild oat populations, default values, and reference sources used in AIM model development. 

Parameter Crop/Period Value Origin of estimate 

Maximum seed production (SSmax) All 20,000 seeds m-2 (Medd, 1996a; Xue and Stougaard, 2002); unpublished data 

Seed mortality mid-season All 20% Adjusted from RIM 
Seed mortality between seasons All 50% (Banting, 1962; Hsiao and Quick, 1983; Mickelson and Grey, 2006) 

 

Maximum yield penalty Wheat 70%  (Cudney et al., 1991; Felton et al., 2004; Mahajan and Chauhan, 2021; O’Donovan et 

al., 1985) 
 Fabas 70% (Felton et al., 2004)  

 Canola 80% (Felton et al., 2004; Zand and Beckie, 2002)  

 Chickpeas 80% (Whish et al., 2002)  
 Other legume 95% (Manuchehri et al., 2020)  

 

Wild oat competitiveness vs crop (cc) Wheat 0.38 (Cousens et al., 1991; O’Donovan et al., 1985)  
Fabas 0.40 Adjusted estimate from RIM 

Canola 0.33 (Daugovish et al., 2003)  

Chickpeas 0.40 Adjusted estimate from RIM 
Other legume 0.40 Adjusted estimate from RIM 

 

Crop competitiveness vs wild oat (cw) 

(Adapted from Pannell et al. 2004) 

Wheat 25 Adjusted estimate from RIM; (O’Donovan et al., 1985)  

Fabas 20 Adjusted from RIM 

Canola 23 (Daugovish et al., 2003; Zand and Beckie, 2002)  

Chickpeas 19 Adjusted estimate from RIM 

Other legume 19 Adjusted estimate from RIM 
 

In-crop emergence (r)* First chance for planting 3% (Banting, 1962; Mickelson and Grey, 2006)  

 10 days after beginning of season 30%  
 20 days after beginning of season 23%  

 Prior to in-crop spraying 18%  

 After in-crop spray opportunities 6%  
Estimated maximum germination All 60% (Cousens et al., 1991)  

*Sample values for minimum-tillage planting, representing percent of current seedbank at beginning of each period. Other versions for various 

levels of cultivation are present in the model, but not shown. 

https://doi.org/10.1017/wet.2024.35 Published online by Cambridge University Press

https://doi.org/10.1017/wet.2024.35


 

 

Table 3. Twelve wild oat management scenarios comprising crop rotation, fallow treatments, 

and in-crop herbicides used in the field trial conducted at Tamworth New South Wales (1983 

to 1986) by Martin and Felton (1993). Wild oat data from this study was used for AIM 

validation analysis.   

Rotation Treatment 

name 

Pre-plant weed 

control  

Fallow weed 

control 

treatments 

In-crop 

herbicides 

in wheat 

 Conventional: 

continuous wheat
1
 

WW CF 

Flam 

Tillage Tillage + 

glyphosate 

Flamprop-

methyl 

POST 

“ WW CF 

Tri 

“ “ Triallate 

PRE 

“ WW CF 

Nil 

“ “ Nil 

No-till: continuous 

wheat 

WW NT 

Flam 

Glyphosate Glyphosate 

 

Flamprop-

methyl 

POST 

“ WW NT 

Tri 

“ “ Triallate 

PRE 

“ WW NT 

Nil 

“ “ Nil 

Conventional: 

Wheat, Winter 

fallow
2
, 

Sorghum
3
, Winter 

fallow
4
, wheat 

WS CF 

Flam 

Tillage Tillage + 

glyphosate 

 

Flamprop-

methyl 

POST 

“ WS CF 

Tri 

“ “ Triallate 

PRE 

“ WS CF 

Nil 

“ “ Nil 

No-till: Wheat, 

Winter fallow, 

Sorghum, Winter 

fallow, wheat 

WS NT 

Flam 

Glyphosate Glyphosate 

 

Flamprop-

methyl 

POST 

“ WS NT 

Tri 

“ “ Triallate 

PRE 

“ WS NT 

Nil 

“ “ Nil 

Typical crop and winter fallow phase timings and durations in Martin and Felton (1993) 
1 

Wheat: May to December; 
2 

Winter fallow: after wheat, January to October; 
3
Sorghum: 

November to May; 
4 

Winter fallow after sorghum, June to April. 
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Figure 1. AIM model structure with red boxes representing data values (parameters or levels) 

and blue boxes identifying arithmetic models receiving inputs and delivering predicted 

outputs. Arrows represent information flows between model compartments. 
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Figure 2. The DEFINE (top panel) BUILD (middle panel) COMPARE (bottom panel) 

structure for the user interface of the AIM bioeconomic model developed for the evaluation 

of wild oat control strategies in grain production systems.    
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Figure 3. Agroeconomic environment for continuous wheat and wheat-sorghum rotations 

from Martin and Felton (1993), as replicated in AIM 
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Figure 4. Example scenario settings for (A, top) continuous wheat/cultivated fallow/nil 

herbicide (designated WW-CF NilH hereunder) and (B, bottom) wheat-sorghum/no-till 

fallow/triallate (designated WS-NT Tri hereunder), for simulating wild oat management 

treatments (Martin and Felton 1993) 
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 Figure 5. Comparisons between AIM model predictions and experiment data from Martin 

and Felton (1993) for wild oat plant density at maturity. Scenarios were wheat-sorghum 

rotations (labelled WS, top two rows) or continuous wheat (WW, bottom two rows), with 

either cultivation in summer fallows (CF, rows 1 and 3) or no-till summer fallows (NT, rows 

2 and 4) and three different in-crop herbicide choices (flamprop-methyl/Flam; no 

herbicide/NilH; triallate/Tri, left to right). 
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 Figure 6. Wild oat seedbank density prior to first seasonal emergence in wheat-sorghum 

(labelled WS, top panels) or continuous wheat (WW, bottom panels), with cultivated summer 

fallows (CF, left panels) or no-till fallows (NT, right panels), responding to the use of three 

in-crop weed control options. 
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Figure 7. Gross margin outputs from AIM for wheat-sorghum (WS, top row) and continuous 

wheat rotations (WW, bottom row), with cultivated summer fallows (CF, left) or no-till 

fallows (NT, right) and a range of in-crop herbicide tactics (see legend) 
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