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ABSTRACT. The metamorphism of snow in the absence of a significant
temperature gradient was investigated. The first part of the study involved analytical
modeling of the exchange of mass between grains of differing surface curvature and the
process of intergranular sintering. Physical models were developed to evaluate these
two processes. For the first process, it was assumed that mass exchange took place
primarily by vapor transport between neighboring grains. The principles of mass
balance, momentum balance and energy balance were utilized to evaluate time and
spatial variations in temperature, vapor velocity, vapor pressure and mass exchange
between the two grains. For the second process, mass exchange was also assumed to be
dominated by vapor flow from the grain surface to the neck surface. The same
variables were solved for in this second process. Results obtained show that, as
expected, the exchange rates between grains of different surface curvature depend
upon the radii of curvature, pore size and temperature. The rate of sintering, as
determined by the rate of vapor deposition on the neck is determined by temperature,
grain curvature, and neck curvature. In addition to the physical modeling, an
experimental program was undertaken to measure rates of metamorphism in specially
prepared snow consisting of fine-grained spherical particles. This snow was made using
specialized instrumentation developed in Japan. The mean grain size was 20 um,
which, while very small, allowed the observation of measurable changes in snow
microstructure over short time spans. Test results showed that the grain size increased
markedly with time and that the small grains were sacrificed as the large grains

acquired mass from the smaller grains.

INTRODUCTION

The metamorphism of snow is a thermo-mechanical
process which occurs continuously once snow has been
deposited on the ground. A large number of studies have
been done on the various forms of snow metamorphism,
including the significant works of de Quervain (1945,
1963), Giddings and LaChapelle (1962), Yosida (1963),
Hobbs and Mason (1964), Hobbs and Radke (1967),
Wakahama (1968), Colbeck (1973, 1979), Perla (1978),
Adams and Brown (1983, 1989, 1990), and Adams and
Sato (1993).

One of the remaining questions has to do with our
ability to predict the rates of change of the snow
microstructure under any given set of conditions. Some
of the work by previous investigators has attempted to do
just this with varying degrees of success. Colbeck (1980)
and Maeno and Ebinuma (1983) have considered the
rate of change of either grain-size or intergranular
bonding. One of the difficulties in assessing the accuracy
of any model is the difficulty associated with measuring
the material microstructure. Snow usually has a very
complicated microstructure with a wide variety of grain
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shapes and grain-sizes as well as a potentially high degree
of anisotropy. With the advent of image analysis systems
and new techniques of quantitative stereology (Brown
and Edens, 1991; Edens and Brown, 1991, personal
communication), this problem has to some extent been
resolved.

The purpose of this study is the theoretical analysis of
the rates at which radius-of-curvature metamorphism
proceeds in dry snow. The results presented here, from a
combined theoretical and laboratory experimental pro-
gram, are preliminary, and work continues in an attempt
more precisely to describe the thermo-mechanical pro-
cesses responsible for radius-of-curvature metamorphism.
Work is continuing also in measuring how the micro-
structure of snow is altered during equitemperature
conditions and to compare the measured changes with
those that are predicted by the modeling. For this work
we use ‘‘standard snow” (see Experimental Study)
consisting of spherical particles with grain-sizes on the
order of 20 to 200 um.

Finally, we are also considering the application of
mixture theory to this problem to determine if such an
approach can be of use. The work described here will
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provide a means of assessing the utility of mixture theory
for this type of metamorphism.
yP I

ANALYSIS OF RADIUS-OF-CURVATURE
METAMORPHISM

In this section we consider the interchange of mass
hetween two neighboring ice grains that are assumed to
be spherical but have different radii of curvature. In such
a situation, the equilibrium vapor pressures over the two
surfaces will be different, therefore resulting in a vapor
pressure gradient between the two ice grains. This in turn
produces a flux of mass from the small grain to the larger
one. Over a sufficient period of time this can result in a
measurable alteration of mean grain-size and the
statistical distribution of grain-sizes making up the
material. Calculations here will provide information on
just how quickly this process takes place.

Colbeck (1980) indicated that a small relative change
in temperature 6 produces proportionately larger relative
changes in vapor pressure P, and vapor density py.
Therefore the assumption of a constant temperature
across a vapor space between two neighboring ice surfaces
might impose too strong a restriction and produce
potentially unrealistic estimates of vapor flux. As a
consequence we make no assumptions concerning
constant temperature. The governing balance equations
are solved to obtain estimates of such variables as
temperature, vapor pressure, vapor density, and vapor
flux. The balance equations used are those of mass,
momentum, and energy. These are used in conjunction
with constitutive relations governing the hehavior of the
vapor phase.

Consider two neighboring ice surfaces separated by a
small space containing an air/vapor mixture which under
normal conditions is vapor saturated (Fig. 1). We assume
one surface has a prescribed temperature and that
initially both surfaces have given radii of curvature.
The intent of this analysis is to determine the exchange of
mass between the two surfaces when no macroscopic
temperature gradient is imposed.
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Fig. 1. Schematic of two grains exchanging mass in the
absence of an imposed temperalure gradient.
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In what follows the subscripts “a’” and “b” refer to the
two ice surfaces, where the surface “‘a’ is the one with the
prescribed temperature. The subscripts “s™ and “v”" will
refer to the solid and vapor phases respectively.

The well known Clausius- Clapeyron equation and the
Kelvin relation may be used to develop a single expression
for the equilibrium vapor pressure in terms of both
temperature and surface curvature. The Clausius—
Clapeyron equation gives the vapor pressure as a
function of temperature:

P(9) = Prelt/m01/0-1/00)] (1)

where P is the equilibrium vapor pressure, R is the gas
constant, and L is the latent heat of sublimation. g is a
reference temperature, and Pr a reference pressure for
vapor over a surface at the reference temperature. The
vapor pressurc in terms of the mean radius of curvature,
r, is given by the Kelvin equation:

P(r) = P(,e[‘“/(‘ﬂﬁf’ﬂ‘"ﬂ (2)

Py is the saturation vapor pressure at the reference
temperature . The surface energy is denoted by o.

Assuming the reference temperature in the two
equations are the same, the above two equations can be
combined to yield:

P,=F-: el . 51/60-1/8) 3)

where a and 8 have the values of 20/ (psRbp) and Ly/R,
respectively. It is usual to choose either the triple point or
the melting point as the reference temperature. The
radius of curvature of an ice surface, r, is determined by
the two values 71 and 72 which are the radii of curvature
of the surface in two orthogonal directions (Hobbs, 1974).
It is given by the relation:

e )
-

Finally the mass and heat balance equations are given by:

= _p.A%
ao
Q= ~kid= (6)

In the above ¢ is the mass flux, and @ is the heat flux, and
py is the vapor mass density. The terms D and A
represent the binary diffusion coefficient and the cross-
sectional area over which the transfers are taking place. k
is the thermal conductivity. It is assumed that the areas
for the mass and heat flux are the same. We assume the
heat flux is approximated by:

Q=1L:q (7)
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i.e. the heat transfer is predominantly due to the transport
of the latent heat of sublimation Lgs. Equations (5)(7)
can be combined to yield:

dp. k 0f

ar il oz (8)

k and D are both weak functions of temperature and are
determined by the relations:

i 91.5

D= (512 x107")—
(512x107) —
dFPy 1

+ Ka (9)

In Equation (9) P is the total air and vapor pressure, and
k, is the air conductivity and has the constant value of
0.024Wm 'K''). Since variations in temperature are
expected to be very small, D) and & will be treated as
constants. Then the integration of Equation (8) yields:

k
DL,

Pvb — Pva = — (Hh = Ha) . (10)

Substituting the ideal gas law, we obtain:

P\:IJ Pvaz k
— o B — 6,) .- 11
R, RO, DLH( b= 0a) W)
Rearranging gives:
Py, = 78y, + 66} (12)
where:
L Pva + kRa
% ' DL,
kR
§ =
DL (13)

At point b (see Fig. 1), Equation (3) can be written as:

Pa, = Ae /% (14)

where

J/l.‘“

A= Pe [20/!)51'?-90?":;} e

= (15)

We can combine Equations (12) and (14) to obtain a
relation for 6, that can be solved by an iterative
procedure:
_ 3

In(A) — In(v6, + 66,7)

61) (16)

Once f, is found, the vapor pressure at point a and b
can be found with Equation (3), after which the vapor
densities pyy and py, can be found with the ideal gas law.

Once the pressures, temperatures and densities are
found at points a and b, the mass flux g across the vapor
space from surface a to surface b can be found with the
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use of Equation (5). The area A is taken to be the
projected cross sectional area of grain a, A = 7r,”%, where
the grain a is assumed to be the smaller of the two grains.
Assuming a separation distance Ay, the mass flux can be
approximated with the use of Equation (5) by letting:

% — Pvb — Pva

17
dx A[_ ( )
The rate of change of grain-size is then:
PN A
* pic:<!47rT1)2
e —— (18)
PicedTry,

where pie is the density of ice. Deposition on grain b and
sublimation off grain a will not be uniformly distributed
over the respective grain surfaces, so these calculations
give rates of change of effective grain-sizes. However,
these measurements are essentially what is measured by
most image analysis systems, i.e. the equivalent spherical
grain-size is determined.

ANALYSIS OF THERMODYNAMIC SINTERING

In the previous section we studied the processes which
determine how ice grains of different radii of curvature
exchange mass when temperature gradients are neglig-
ible. An additional process, which we refer to as
thermodynamic sintering, also can take place at the
same time. This involves the exchange of mass between
the ice grains and the bonds or necks connecting the ice
grains. The necks usually have radii of curvature
substantially different from ice grains, so that the
equilibrium vapor pressure over the neck surfaces will
differ from that over the grain surfaces. This consequently
produces a flux of vapor [rom the grain surface along the
surface to the neck, where it is subsequently deposited on
the neck surface, As a result the necks slowly grow with a
resulting increase in the material strength and rigidity. In
this section we attempt to calculate the rates at which this
process proceeds and to determine if the deposition of
mass is uniformly distributed on the neck surface.

We do not consider here mechanical sintering due to
applied pressures or other loads to the snow, Rather we

Fig. 2. Schematic of neck[grain geomelry for calculating
Sux of vapor mass from grain surface to neck surface. The
relative sizes of grain and neck are nol drawn to scale.
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Fig. 3. Schematics of control volume used for balance of
momentum and mass _for thermodynamic sinlering.

are interested in the growth of intergranular necks and
bonds due to transfer of mass from grain surfaces to the
bonds connecting the grains. Figure 2 illustrates the
geometry of a grain connected to a neck. From this two-
dimensional perspective, the radius of curvature changes
from a positive value on the body of the ice grain to a
negative value on the ice neck. In reality the neck radius
of curvature may not be negative, since, as indicated in
Equation (4), the value of r used in the following analysis
must reflect the radii of curvature on two perpendicular
directions. The curvature of the neck will however be
lower than on the surface of the grain, and as a
consequence the equilibrium vapor pressure over the
neck surface will be lower than over the grain surface, and
the vapor will move from the grain toward the neck. Here
we develop the governing relations for this process by
requiring that the principles of balance of mass,
momentum and energy be satisfied. We assume the
radius of curvature is a function of the distance x along
the grain surface shown in Figure 2. Also shown in that
figure is a small cell which we utilize to characterize the
balance relations. These are shown in more detail in
Figure 3.

The thickness, &, of the cells is taken to be large
enough so that the flux of mass across the top of the cell is
small compared to {luxes across the two sides of the cell.
There is some subjectivity to a proper choice of 8, but a
choice of one-hall the pore thickness would certainly
represent an upper limit on acceptable values for é.

First consider balance of mass, which is depicted in
Figure 3a. This gives the following balance relation if we
assume steady state:

BPV a v

o= 8 B ey

In the above, v is the vapor velocity, and C\ is the mass
supply, which represents the rate at which vapor is being
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formed by sublimation off the ice surface of the grain or
neck. Balance of momentum using Figure 3(b) yields:

=

8PV+ ,u+ +C v
oz " \2e2 """ oz

-0 (20

In the above the resisting shear stress in the fluid has been
assumed to be Newtonian and has been approximated by
the term 7 = (u/2)0v/dy = pu(v/26). The term, p, is the
fluid viscosity, and the velocity gradient is approximated
by a linear distribution across the boundary layer in
which the vapor flow is taking place. The thickness & of
the boundary layer will be taken to be one-fourth of the
mean pore size. Also in the above equation 7 is the drag
coefficient for water vapor in air. This is closely related to
the binary diffusion coefficient, D, used in the previous
section. The binary diffusion coeflicient is used in the
application of Fick’s law as used in the previous section
(Equation (5)). However, here we are using the
momentum balance equation rather than a direct
application of Fick’s law. In the momentum balance
equation, the momentum interaction between the vapor
and air in the pores is given by a drag coeflicient, 1, which
when multiplied by the vapor velocity, gives a term with
the same dimensions as the stress gradient, and the
product n-v represents the resistance of the air to the
motion of the vapor.

Balance of energy can be readily found by considering
the exchange of energy in each cell. We assume that
energy transfer takes place by both conduction of heat
and transfer of latent heat. We neglect the dissipation of
energy due to the stress, since this is a second order term
in the velocity gradients and is insignificant relative to the
heat transfer. Balance of energy along the ice surface
gives:

9% Ok 00 & L L o(pwv)
"o~ Bzbw | dz

(21)

In the above & is the conductivity of the air/vapor phase.
The unknown in this problem is the set (v, 8, Cy, py, Py).
The equations for balance of mass, momentum and
energy provide three relations, and Equation (3) and the
ideal gas law allow us to close the problem, with the
specification of the appropriate boundary conditions.
These equations are coupled and nonlinear,
numerical method will be used.

Substitution of the ideal gas law and Equation (3) into
Equation (21) gives:

SO a

329+a ( )@ el
B oz 8r Kb
o ; v
= | g s Bl 6e—1ay “ | —
+73w e e 7 0 (22)
where:
L.P,
== (23)

The solution will involve the following iterative proc-
edure. Since Equation (22) contains only the c temperature
6, velocity v and the mass exchange rate, CV, it will be
initially solved by assuming Cy =v = 0 and then solving
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for the temperature distribution. An iterative procedure
can be used by first making an initial guess of the
temperature distribution along the ice surface and then
solving Equation (22) for an updated approximation.
This updated temperature distribution is used as the next
guess, and the procedure is solved again and this is
continued until convergence is reached. This then gives a
solution for the temperature distribution but with no
diffusion velocity or sublimation.

With this solution Equations (3), (19), (20) and the
ideal gas law are used to obtain solutions for v. s o
and C,. In order to do this Equations (21) and (20) can
be combined by first pre-multiplying Equation (19) by
the velocity v and then using Equation (20) to eliminate
the term v - Gv/Oz. This results with the equation:

1 oP,
vdp, |0z — 20, — 1y — pu/(26%)| Oz

I =

(24)

With the temperature distribution, the pressure profile
AdP,/0z can be found from Equation (3) and then used in
Equation (24) to find the velocity profile of the vapor
along the ice surface on the neck and grain. Once this is
done, Equationﬁ(?ﬂj can be used to call\culate the mass
exchange rate C. These solutions for C\, p,, P, and v
are then used as second estimates in Equations (22) to
find a second approximation for the temperature
distribution 0, and the entire process is again repeated
until convergence is reached. This iterative solution
technique was found to be stable for this particular
problem.

RESULTS OF THEORETICAL ANALYSIS

In the following we consider the effect of a number of
parameters on the rate of mass exchange between two
grains, one small and the other large. We denote the small
grain as grain a and the large as grain b. Figure 1
illustrates the geometry of the two grains.

Temperature would be expected to have a very
significant effect on the rate at which the two grains
would exchange mass. As the temperature is decreased,
the saturation vapor pressure and vapor density also
decrease, thereby affecting the rate at which mass can be
transferred from one grain to the other. To demonstrate

2 o8
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E 0.5 ‘.\q\
E 0.4 %
= 0.3

0.2 [ initial radius = 0.01mm | \6

0.1 : g

0 1 1
0 5 10 15 20 25

Fig. 4. Effect of temperature on rate of change of grain
radius. Grain a initial radius 0.00 mm, grain b 1.0 mm.
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Fig. 5. Variation of grain-size as affected by size of grain
a. Grain b has a radius of 1.0 mm.
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Fig. 7. Effect of separation distance Ay, on the rate of
mass transfer between ice grains.

this, two temperatures were used in solving the equations
developed in the previous section. These are shown in
Figure 4. Since the experiments involved snow particles
with diameters of approximately 0.020 mm, the initial size
of grain a was also taken to be this size. Grain b had a size
100 times larger than grain a and therefore appears for all
practical purposes to be a flat surface. This will be
discussed shortly in more detail. As can be seen in Figure
4, approximately 1000d are required for the small grain
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Fig. 8. Vapor deposition rates along a grain surface due to
mavement of vapor from the grain surface loward the neck.
The coordinate position x = 16 um marks the change in
surface curvature as the grain surface is left and the neck
surface is entered. Case A is when there is a sharp change
in curvature. For Case B the radius changes gradually from
10 pm to 20 pm over a distance of 10 pm.
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Fig. 9 Distribution of vapor velocily along grain surface
and neck surface for lwo cases. For Case A the radius of
curvature jumps from 10 pm to 20 pm al the point x =
16um in the figure. For Case B the radius changes

gradually from 10mm to 20 mm over a distance of 10 mm.

to be reduced to 10% of its original diameter at the lower
temperature, while about 650d are required at 268 K.
One can readily see that this form of metamorphism is a
very slow process.

Grain-size also has an effect on the rate of meta-
morphism. The equilibrium vapor pressure is increased at
an ice/vapor surface as the radius of curvature is
decreased. Figure 5 illustrates the effect of grain a radius
on the rate of mass transfer. By the time the grain a has
been increased to a value of 0.1 mm it requires on the
order of 150 years to be reduced to 10% of its original
radius. This is due to the vapor pressure being reduced by
increasing curvature and to the increased mass involved
as the radius is increased. In fact, this latter effect is
probably the dominant effect in this case, since the mass
increases with the cube of the grain radius.

The relative size of the two grains will also have a
significant effect on the rates involved. In this case we
keep the grain a radius r, constant at a value of 0.01 mm
and vary the grain b radius r, between 0.0l mm and
10 mm, so that the ratio /T varies between | and 1000.
Figure 6 shows the time required for the small grain to be
reduced to 10% of its initial value. As expected, as the
ratio 7,/ra approaches unity, the time required to
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accomplish this reduction goes to infinity. However the
time required also approaches a constant value by the
time the radius ratio reaches a value of r,/ry= 10. After
that, the grain b appears much like a flat surface.

Finally, Figure 7 demonstrates that the separation
distance between particles also has a definite effect on the
rate of transfer of mass between particles. In this case g,
is varied from a value of 0.0l mm to 0.05mm. As the
distance is shortened, the rate of transfer increases
markedly as the vapor pressure gradient increases.

Figures 8 and 9 demonstrate the solutions to the
equations describing the sintering process discussed
earlier. Results are not shown for the temperature
profile, since temperature variations using Equation
(22) were very small. These last two figures show results
of calculations for two different cases. Case A describes the
situation where a sharp jump in surface curvature occurs,
whereas Case B is for the gradual transition from one
radius of curvature to a larger curvature in the necked
region. The reason for considering these two cases rests
with what will actually occur when snow is first formed,
cither by snow deposition during snowfall or by the
formation of snow with a processing technique.

When two ice grains first come into contact with each
other, the region of contact will be a surface with a sharp
change in surface curvature. This very localized region
should experience a fairly rapid exchange of mass
between the surfaces on opposite sides of the contact
point. However as time passes, the sublimation and
deposition of mass taking place during this exchange of
mass will result in a region of surface with a gradually
changing surface curvature, and hence the details of the
mass exchange between the surfaces on cither side of the
original contact point should gradually change. These
two cases were evaluated to determine the nature of the
transport of mass from the ice grain to the neck, first when
the transition is sharp and second for the situation after
the surface has been smoothed. Work is continuing to
calculate the temporal change in the shape and curvature
of the necked region between the two grains, and what is
reported here represents our first attempt at studying this
problem.

As can be seen in Figure 8, for the case with a sharp

jump in curvature between the grain body and neck, most

of the mass exchange takes place right at the transition.
For the second case, the mass transfer is spread out over
the region of the transition. Figure 9 shows the
corresponding vapor diffusion velocities, where similar
results are obtained. One can see that the spatial
distribution of both the vapor velocity and the vapor
deposition is not symmetrically distributed as one
progresses along the ice surface from the grain on to the
neck. Rather, at a sharp transition in curvature, the
sublimation/deposition process is very local, and as the ice
surface shape gradually changes, this process slowly
becomes more uniformly distributed. However, the flow
velocity and sublimation/deposition is not symmetrically
distributed along the surface. Since the surface geometry
is not symmetrical, this should not be surprising.

The results of this last set of calculations demonstrates
that the sublimation/deposition and vapor flow is strongly
affected by the surface geometry. As a consequence, the
neck cannot be expected to develop uniformly across its
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full length, although as time passes it appears that the
process tends to smooth out.

EXPERIMENTAL STUDY

In order to make the experimental investigation as casy as
possible, we use “standard snow™ consisting of spherical
particles, rather than the complicated grain shapes
usually found in natural snow. This snow is made by a
new instrument recently developed in Japan under the
sponsorship of the Japan Science and Technology
Agency; the machine produces spherical snow particles
in considerable quantity, so that large samples can be
studied more than were available
investigators (Hobbs and Radke, 1967).
Standard snow can be made with mean grain sizes
from 20 to 200u in diameter. This study considers
standard snow with initial grain size about 20 g, chosen
because the metamorphism proceeds much more quickly
in fine-grained snow than in coarser snow. Radius of

Lo previous

curvature effects become very significant at these small
grain-sizes, and the process can be observed more quickly.

A nozzle forces water droplets of a diameter about
20 p into a tube with walls of dry ice. The droplets quickly
freeze on their outer surfaces. and are deposited in small
containers measuring approximately 20 mm x 20mm x
10mm. As the aging process starts immediately, one
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(a) Time = 0 hrs.

(b) Time = 3 days

Fig. 10. Digitized surface sections of model snow samples
showing the evolution of grain-size and intergranular
bonding with time under equilibrium conditions.
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Fig. 11. Distribution of grain-size areas in surface sections
Jor the four times shown. This figure shows the fraction of
grains having a given cross-sectional area in the surface
section plane.

sample was filled with aniline solution and frozen at
—20°C, representing time t = 0. Other samples, stored at
-5°C in a scaled container packed with snow (to
guarantee a vapor-saturated environment) were re-
moved and filled with aniline solution at times of
30min, 1h, 2h, 6h, 12h, 1d, 3d, 1wk, 2wk, 1 mnth
and 2 mnth, and frozen at —20°C to stop metamorphism.
The samples were then used to make surface sections to
analyze the microstructure.

Surface sections were made by using water blue
powder to stain the ice particles that were exposed on the
section surface. Figure 10 shows two typical surface
sections. As can be seen, the particles have a predomi-
nantly spherical shape, and the existence of bonds with
adjoining necks can clearly be seen. The simple geometry
of the spherical particles makes it easier to identify the
necks and their dimensions. A stereological method used
to determine the microstructure was essentially that of
Edens and Brown (personal communication).

One of the purposes of this study was to determine
how grains grew with time. Figure 10, showing surface
sections for times of t = 0 and 72 h, indicates an increase
in mean grain-size, and bonding between the grains has
also developed.

Figure 11 illustrates the distribution of grain-sizes for
times of 0 and 72 h. It shows the surface area of the grains
exposed in the surface section plane, but not the
distribution of grain-size volumes. It does not translate
directly into grain-volume distributions, but shows that
the microstructure is acquiring a more uniform grain-size
distribution with time.

CONCLUSIONS

This study was undertaken to determine details of radius-
of-curvature metamorphism. Physical models were
formulated to calculate the movement of vapor and
mass between ice grains and from ice-grain surfaces to the
bonds connecting the grains. Results show that the
microstructure of the material changes slowly with time.,
Small grains slowly lose mass to larger grains, at rates that
are affected by pore size, relative size of ice grains and
temperature. It is also possible that statistical distribution
of the grain-sizes also has an effect, but this study was not
able to verify this possibility. Calculations showed that
the process of sintering takes place at a slow rate. The
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movements of vapor along the grain surface to the neck
surface is not a uniformly distributed process. Rather it is
determined by the details of the surface curvature of the
grain and neck. More work needs to be done to determine
the temporal evolution of the grain/neck geometry during
the sintering process. This process is assumed to be due
primarily to the sublimation of vapor off the ice-grain
surface, diffusive transportation along the grain surface to
the neck and subsequent deposition onto the neck. The
rate of this process will change markedly as the surface
geometry is modified over time.
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