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Abstract. We show that if A is a compact C∗-algebra without identity that has
a faithful ∗-representation in the C∗-algebra of all compact operators on a separable
Hilbert space and its multiplier algebra admits a minimal central projection p such
that pA is infinite-dimensional, then there exists a Hilbert A1-module admitting no
frames, where A1 is the unitization of A. In particular, there exists a frame-less Hilbert
C∗-module over the C∗-algebra K(�2) � �I�2 .

2010 Mathematics Subject Classification. Primary 46L08, Secondary 42C15,
46L05.

1. Introduction. The classical frame theory for Hilbert spaces has been
generalized to the setting of Hilbert C∗-modules by M. Frank and D. R. Larson
[8]. For A being a C∗-algebra and being a Hilbert C∗-module a set {xi}i∈I of elements
of X , where I is an a priori arbitrary index set, is said to be a standard frame for X if
the inequality

C · 〈x, x〉 ≤
∑
i∈I

〈x, xi〉〈xi, x〉 ≤ D · 〈x, x〉 (1)

holds for any x ∈ X and two fixed positive numbers C, D, where the sum in the middle is
supposed to converge w.r.t. the C∗-norm of A taking the supremum over the respective
sums over all finite subsets of I . They concluded from Kasparov’s stabilization theorem
that every finitely and every countably generated Hilbert C∗-module over a unital C∗-
algebra has a standard frame. They asked in [8, Problem 8.1], for which C∗-algebra A,
every Hilbert A-module X has a frame? In 2002, D. Bakić and B. Guljaš proved in [4]
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a first affirmative answer: For A being a compact C∗-algebra (i.e. admitting a faithful
∗-representation in a C∗-algebra of all compact operators K(H) on some Hilbert space
H), then every Hilbert A-module X admits a special standard frame {xi}i∈I such that
(i) 〈xi, xi〉 = pi = p2

i for atomic projections pi ∈ A, (ii) 〈xi, xj〉 = 0 for any i �= j. They
called such frames orthonormal bases. Lj. Arambašić proved in 2008 that every full
(countably generated) Hilbert A-module X possesses an orthonormal basis if and only
if A is ∗-isomorphic to a C∗-algebra of compact operators [1, Corollaries 6 and 7]. In
2010, Hanfeng Li solved this problem in the commutative unital case to the negative
characterizing the unital commutative C∗-algebras A such that every Hilbert A-module
admits a frame as the finite-dimensional ones [9].

The last two results together give the following fact:

COROLLARY 1.1 (cf. [2, Theorem 1.4]). Let I be an infinite set with discrete topology.
Then the C∗-algebra A = c0(I) of all converging to zero sequences indexed by I is a
compact C∗-algebra, and so every Hilbert A-module X admits a standard frame. However,
for the unitization B = A � �1B, there exists a Hilbert B-module admitting no standard
frame.

M. Amini, M. B. Asadi, G. A. Elliott and F. Khosravi showed in [2, Corollary
2.6] in 2017, that every infinite-dimensional nuclear von Neumann algebra A posesses
a Hilbert A-module with no standard frame. Moreover, if two C∗-algebras A and B
are Morita equivalent and A is σ -unital, then the property of A that every Hilbert
A-module admits a standard frame inherits to B, cf. [2, Theorem 2.4]. Note that the
set of compact C∗-algebras is closed under Morita equivalence.

In general case, the conjecture is as follows:

CONJECTURE 1.2 (cf. [2, Question 1.5]). Every Hilbert C∗-module over a C∗-
algebra A admits a frame if and only if A is a compact C∗-algebra.

In the commutative case, Hanfeng Li applied the Serre–Swan theorem. This
theorem states that there is a one-to-one correspondence between finitely generated
projective modules over a unital commutative C∗-algebra C(�) and complex vector
bundles over � [10].

In [7], G. A. Elliott and K. Kawamura showed that the vector space of bounded
uniformly continuous holomorphic sections of every uniform holomorphic Hilbert
bundle of dual Hopf type over pure states of a C∗-algebra A admits a unique structure
of a right Hilbert A-module.

In this paper, we study Hilbert C∗-modules over a C∗-algebra A = K(H) � �IH ,
where K(H) is the C∗-algebra of compact operators on a separable infinite-dimensional
Hilbert space H, and we give a partial affirmative response to the above conjecture.
Indeed, we have applied the Elliott–Kawamura approach and concluded the following
result:

THEOREM 1.3. If A = K(�2) � �I�2 , then there exists a Hilbert A-module that possess
no frames.

2. Holomorphic Hilbert bundle. Let A be a C∗-algebra, Â the spectrum of A and
P(A) be the set of pure states of A. In general, P(A) is not compact, in this case, we
consider P0(A) = P(A) ∪ {0}. However, we set P0(A) = P(A), when P(A) is compact.
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We use the notations π = [f ] and f = (π, e), whenever π : A −→ B(Hπ ) is a
member of Â and e = h ⊗ h for some unit vector h ∈ Hπ and f is the pure state
f (·) = 〈π (·)h, h〉.

In this case, the unitary equivalence class of f (as a set) is equal to

R1(Hπ ) := {e ∈ B(Hπ ) : e is a rank one projection}.
The set R1(Hπ ) has a natural holomorphic manifold structure that is independent of
the chosen representative element in each equivalence class in P(A) [7]. Therefore, we
can identify P(A) as the disjoint union of projective spaces, i.e.

P(A) =
⋃
π∈Â

{π} × R1(Hπ ).

Then, P0(A) has a natural holomorphic manifold structure and it has a natural uniform
structure determined by the semi-norms arising from evaluation at the elements of A.

In [7], G. A. Elliott and K. Kawamura introduced the notion of (locally trivial)
holomorphic Hilbert bundle over pure states of a C∗-algebra. They also introduced
the notion of (not necessarily locally trivial) uniform holomorphic Hilbert bundle of
dual Hopf type as a direct sum of holomorphic Hilbert bundles which are dual Hopf
bundles (cf. [7, p. 4850]). In fact, we set

H = {B(Hπ , Kπ )e}(π∈Â∪{0},e∈R1(Hπ )),

where Kπ is a Hilbert space, for all π ∈ Â. If X(H), the vector space of bounded
uniformly continuous holomorphic sections of H, exhausting fibres, then the pair
(H, X(H)) is a uniformly continuous holomorphic Hilbert bundle of dual Hopf type.
In this case, for any S ∈ X(H) and any π ∈ Â, there exists an operator Sπ ∈ B(Hπ , Kπ )
such that

S((π, e)) = Sπe (e ∈ R1(Hπ )).

As shown in [7], X(H) is a Hilbert A-module. In fact, for any S, T ∈ X(H), the A-valued
inner product is defined by S∗T , where

S∗(π, e) = eS∗
π ∈ eB(Kπ , Hπ ), for all (π, e) ∈ P0(A).

Since (S∗
πTπ )π∈Â ∈ ∏

π∈Â(B(Hπ )) is uniformly continuous, we can consider S∗T
belongs to A, by a result by L. G. Brown [5].

3. Frame existence problem. THEOREM 3.1. Suppose that A is a C∗-algebra, f0 ∈
P(A), π0 = [f0], Hπ0 is a separable Hilbert space and W is a countable subset of P(A)
such that f0 ∈ W \ W. If there exists a uniform holomorphic Hilbert bundle of dual Hopf
type H = (B(Hπ , Kπ )eπ )(π,eπ )∈P0(A) such that for any π ∈ [W ], Kπ is separable and Kπ0

is non-separable, then the Hilbert A-module X(H) possess no frames.

Proof. Assume that {Sj}j∈J is a frame for X(H). Hence, there exist positive numbers
C, D such that for any section S ∈ X(H), the following inequality holds

CS∗S ≤
∑
j∈J

S∗SjS∗
j S ≤ DS∗S.
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Hence, for every π ∈ Â, eπ ∈ R1(Hπ ) and S ∈ X(H), we have

CS∗S((π, eπ )) ≤
∑
j∈J

S∗SjS∗
j S(π, eπ )) ≤ DS∗S((π, eπ )),

so

CeπS∗
πSπeπ ≤

∑
j∈J

eπS∗
πSjπeπS∗

jπSπeπ ≤ DeπS∗
πSπeπ .

In particular, for any non-zero element xπ ∈ Hπ , we have

C‖Sπ (xπ )‖2 ≤
∑
j∈J

| 〈Sπ (xπ ), Sjπ (xπ )〉 |2≤ D‖Sπ (xπ )‖2.

Since bounded holomorphic sections exhaust fibres, so for any yπ ∈ Kπ , there exists a
section S ∈ X(H) such that Sπ (xπ ) = yπ . Thus,

C‖yπ‖2 ≤
∑
j∈J

| 〈yπ , Sjπ (xπ ) |2≤ D‖yπ‖2. (2)

According to Inequality 2, for all π ∈ Â, 0 �= xπ ∈ Hπ and 0 �= yπ ∈ Kπ , the following
set has to be countable:

Fxπ ,yπ
:= {j ∈ J : 〈yπ , Sjπ (xπ )〉 �= 0}.

In particular, if π ∈ [W ], then Kπ is separable and so it has a countable
orthonormal basis as Eπ . Hence, for each π ∈ [W ], the following set has to be countable

Fπ,xπ
:= {j ∈ J : Sjπ (xπ ) �= 0} =

⋃
yπ ∈Eπ

{j ∈ J : 〈yπ , Sjπ (xπ )〉 �= 0}.

Consequently, if we write W = {(πn, en) : n ∈ �}, then F = ⋃
n∈� Fπn,xn is a countable

set, where for any n ∈ �, xn ∈ Hπn and en = xn ⊗ xn. Also, we use the notation f0 =
(π0, e0), where e0 = x0 ⊗ x0 for some unit vector x0 ∈ Hπ0 .

For each j ∈ F , Im(Sjπ0 ) is a separable space, since Hπ0 is separable. Then, K0 =
〈⋃j∈F Im(Sjπ0 )〉 is a separable subspace of the non-separable Hilbert space Kπ0 ; hence,
there exists a unit element yπ0 ∈ Kπ0 that is orthogonal to K0. Then for any j ∈ F ,
S∗

jπ0
(yπ0 ) = 0.

On the other hand, for any j ∈ J \ F , we have Sjπ0 (x0) = 0, since (π0, e0) ∈ W
and Sj is continuous. Thus, for any j ∈ J, we have 〈yπ0 , Sjπ0 (x0)〉 = 0. By (2), yπ0 is
equal to zero, that is a contradiction. Therefore, the Hilbert A-module X(H) admits no
frames. �

4. K(�2) � �I�2 . In the following, we consider A = K(H) � �IH , where H is a
separable infinite-dimensional Hilbert space. Also, let {hn}n∈� be an orthonormal basis
for H and en = hn ⊗ hn, for all n ∈ �.

We recall that Â = {π0, π1}, where π1 = id and π0(T + λIH) = λ, for every T ∈
K(H) and λ ∈ �. Thus, we can consider

P(A) = ({π1} × R1(H)) ∪ {(π0, 1)}.
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Note that in this case, P(A) is a compact Hausdorff space and also (π0, 1) ∈ W \ W ,
where W = {(π1, en) : n ∈ �}.

THEOREM 4.1. There exists a uniform holomorphic vector bundle of dual Hopf type
over P(A) satisfying the conditions of Theorem 3.1.

Proof. Hanfeng Li showed in [9, Lemma 2.1], that there exists an uncountable set
F of injective maps from � to � such that for any distinct f, g ∈ F , f (n) �= g(n) for all
but finitely many n ∈ N, and f (n) �= g(m) for all n �= m.

Let Kπ1 = �2 with the standard basis {zn}n∈� and Kπ0 be a non-separable Hilbert
space with an orthonormal basis {hf }f ∈F indexed by F . For each f ∈ F , consider
the isometry uf : H −→ �2, given by uf (hn) = zf (n) for all n ∈ �. Also, we consider
vf : � −→ Kπ0 by vf (λ) = λhf .

Now, we can define Sf : P(A) −→ (
⋃

e∈R1(H) B(H, �2)e) ∪ (B(�, Kπ0 )1) by

Sf ((π, e)) = { uf e π = π1

vf 1 π = π0

Set V = {∑n
i=1 λiSfi : n ∈ �, λi ∈ �, fi ∈ F}. We claim that the function (π, e) →

‖S(π, e)‖ is continuous on P(A) for every S ∈ V .
For this, we note that if S = ∑m

i=1 λiSfi ∈ V , then there is a finite subset J of �

such that fi(n) �= fj(n), for all n ∈ Jc and i �= j. Hence, if e = x ⊗ x, for some unit vector
x ∈ H, then we have

‖S(π1, e)‖2 = ‖
m∑

i=1

λiufi (x)‖2 = ‖
m∑

i=1

λi

( ∞∑
n=1

〈x, hn〉zfi(n)

)
‖2

= ‖
m∑

i=1

∑
n∈J

λi〈x, hn〉zfi(n)‖2 +
m∑

i=1

‖
∑
n∈Jc

λi〈x, hn〉zfi(n)‖2

= ‖
m∑

i=1

∑
n∈J

λi〈x, hn〉zfi(n)‖2 +
m∑

i=1

|λi|2
(

1 − ‖
∑
n∈J

〈x, hn〉zfi(n)‖2

)
.

Now, if a net {(π1, eα)}α∈I is convergent to (π1, e) (or (π0, 1)) and for every α ∈ I ,
eα = xα ⊗ xα for some unit vector xα ∈ H, then |〈xα, y〉| → |〈x, y〉| (or |〈xα, y〉| → 0),
for all y ∈ H. Consequently, for every f ∈ S and y1, · · ·, yN ∈ H, we have

‖
N∑

n=1

〈xα, yn〉zf (n)‖(=
(

N∑
n=1

|〈xα, yn〉|2
) 1

2

) → ‖
N∑

n=1

〈x, yn〉zf (n)‖

(
or ‖

N∑
n=1

〈xα, yn〉zf (n)‖ → 0

)
.

Thus, ‖S(π1, eα)‖ → ‖S(π1, e)‖ (or ‖S(π1, eα)‖ → ‖S(π0, 1)‖). This proves the claim.
Therefore, V is a linear space of bounded holomorphic sections with uniformly

continuous norm and it exhausts each fibre. Now, as mentioned in [7], by Zorn’s lemma,
we can extend it to a linear space X(H) of the bounded holomorphic sections with
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uniformly continuous norm, maximal with this property, and exhausting each fibre.
Clearly, X(H) satisfies the conditions of Theorem 3.1. �

The following results can be obtained from Theorems 3.1 and 4.1.

COROLLARY 4.2. The C∗-algebra K(�2) � �I�2 has a frame-less Hilbert module.

COROLLARY 4.3. Let A be a compact C∗-algebra without identity that has a faithful
∗-representation in the C∗-algebra of all compact operators on a separable Hilbert space.
Suppose, the multiplier algebra of A has a minimal central projection p such that pA
is infinite-dimensional. Denote the C∗-algebra A � �1A by A1, i.e. the unitization of A.
Then, for A1, there exists a Hilbert A1-module admitting no frames.

Proof. Any compact C∗-algebra A has the form A = c0 − ∑
α ⊕K(Hα), where the

symbol K(Hα) denotes the C∗-algebra of all compact operators on some Hilbert space
Hα, and the c0-sum is either a finite block-diagonal sum or a block-diagonal sum with
a c0-convergence condition on the C∗-algebra components K(Hα). The c0-sum may
possess arbitrary cardinality. This kind of C∗-algebras has been precisely characterized
by W. Arveson in [3, Section I.4, Theorem I.4.5]. The sort of compact C∗-algebras A
in the supposition forces all Hilbert spaces Hα to be separable or finite-dimensional,
and at least one of the Hilbert spaces Hα has to be infinite-dimensional, say Hβ .

Suppose, the minimal central projection p ⊂ Z(M(A)) maps A to one of its infinite
block-diagonal direct summands K(Hβ), i.e. pA = K(Hβ). The same projection p
applied to the C∗-algebra A1 yields pA1 = pA � �p1pA1 . By the above corollary, there
exists a Hilbert pA1-module X that admits no frames. Since p is central, X is a Hilbert
A1-module, too. The property of X not to admit any frame does not change. �

REMARK 4.4. The complementary case of compact C∗-algebras to that one treated
in the corollary is the one of non-unitary compact C∗-algebras for which any of the
infinitely many direct summands are finite-dimensional (but, may be, of arbitrary
large dimension). It remains open. In the same manner, the analogous assertion can be
proved for more general compact C∗-algebras A provided Theorem 4.1 can be reproved
for non-separable Hilbert spaces H.
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