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METRIZATION OF SYMMETRIC SPACES
P. W. HARLEY, III AND G. D. FAULKNER

1. Introduction. A distance function d on a set X is a function X X X —
[0, o0 ) satisfying (1) d(x, y) = 0 if and only if x = y, and (2) d(x, y) =
d(y, x). Such a function determines a topology 7" on X by agreeing that U is
an open set if it contains an e-sphere N(p; ¢) (= {x: d(p, x) < €}) about each
of its points. Equivalently, F is closed if and only if d(x, ) > 0 for each
x € X — F. A topological space is symmetrizable via a distance function d if its
topology is determined by d as above, and semi-metrizable via d if x € A is
equivalent to d(x, A) = 0. Although neither need be IHausdorff, and sym-
metrizable spaces are not generally first countable, a space that is semi-
metrizable via d is first countable and symmetrizable via d. We also remark
that there are distance functions which are semi-metrics for no topology.
Denoting by G*S the union of all members of G that intersect the set .S, we

say the sequence Gi, Gs, ... of open covers for a space X is a development
for X if

(1) Gpy1 refines G,, m = 1,2, 3, ..., and

(2) Gi*x, Gy*x, ... form a local base at x, whereupon X is developable via
G, Gsy .
A T space, developable via G, G, . . ., is always semi-metrizable by setting

d(x,y) = 1/min {n: vy ¢ G,*x}.

F. B. Jones in [3] introduced and demonstrated the usefulness of the follow-
ing metrization theorems, one due to R. L. Noore, the other to himself.
R. E. Hodel also mentions these theorems in [2].

Tuarorem 1 (Moore). A regular, Ty space X, developable via Gy, Go, . .., is
melrizable provided that whenever F 1s closed and x € X — F, there is « positive
integer n such that G, *x M G*F = 0.

THEOREM 2 (Jones). A regular, T spuce X, developable vie Gy, Gs, ..., is
metrizable provided that whenever K and F are closed, with K compact and
KM I' = @, there is a positive integer n such that G,*K M IF = @.

Stating the hypotheses of Theorem 2 in terms of the associated semi-metric
yields d(K, F) > 0 whenever K is closed and compact, F closed, and K M [I" =
@. A. V. Arhangelskii [1] greatly strengthened Theorem 2 by showing that
a Hausdorff space, symmetrizable via d satisfying the above, is metrizable.
No assumption of first countability or regularity is made. Later H. W. Martin
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[4] was able to remove even the Hausdorff assumption to give the theorem
below.

TuEOREM 3 (Arhangelskii-Martin). 4 topological space S, symmetrizable via d
satisfying d(K, F) > 0 whenever K is compact, F closed, and K N F = @, is
metrizable.

The authors have been equally successful in stating and proving Moore’s
Theorem for symmetrizable spaces.

THEOREM 4. Let the topological space X be symmetrizable via d. Suppose that
for each closed set F and each x € X — F there exists e > 0 such that N(x, €) M
N(F, ¢) = 0. Then X s metrizable.

This theorem will be proved in § 2 and several examples will be given in § 3
to show that this is the best possible result of this type.

2. Proofs. We begin with some preliminary lemmas.

LemMA 1. Let X be symmetrizable via d and K be a compact subset of X. Then
for every sequence (x,) in K, there is a point x € X and « subsequence (x,;) of
(x,,) such that d(x,;, x) — 0.

Proof. Otherwise, consider Fi = {x1, x5, .. .}. [f x € X — F, we must have
d(x, F) > 0, so that F; is closed. Similarly, F, = {x,, %,41, . . .} is closed and
X — F, X — F,, ...cover K with no finite subcover.

LemMmA 2. Let X be symmetrizable via d satisfying the condition that whenever
x # vy, there exists € > 0 such that N(x, €) M\ N(y, ¢) = @. Then compact sub-
sets of X are closed.

Proof. Assume that K is compact, but not closed. Then there is a point
x € X — K with d(x, K) = 0. Choose a sequence (x,) in K for which d(x,, x)
— 0and put F = {x;,%s,...} U {«}. If Fisnot closed, thereisa pointy € X —
F such that d(y, F) = 0. We may assume d(x,, y) — 0. But this contradicts
our hypothesis, since d(x,, x) — 0, also. Now proceed as in Lemma 1.

LEmMA 3. Let X be compact and satisfy the hypothesis of 1Theorem 4. Then
x lies in the interior of N(x, €), for e > 0.

Proof. Put S = X — N(x, ¢) and L = {x: d(x, S) = 0}. If L is closed, we
are through. Otherwise, there is a point x” € X — L such that d(«x’, L) = 0.
Hence there are one-to-one sequences (x,) in L — S and (y,) in .S such that
(1) d(x,, x’) — 0, and (2) d(x,, y,) — 0. Since X is compact, by Lemma 1
we may assume that there is a point ¥ € {x1, %2, ...} U {x’} for which
d(y,, ¥) = 0. Put F = {x1, x5, ...} U {«'}. Then F is compact (d(x,, x) — 0
implies x, — 1), thus closed by Lemma 2. Hence there does not exist ¢ > 0 for
which N(F, €) and N(y, ) are disjoint, which is a contradiction.
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Proof of Theorem 4. Let K be compact, Fclosed, and K M F = §. By Lemma
2, K is closed. Although symmetrizability is not in general hereditary, since K
is closed, d|K X K will induce the relative topology on K. \loreover, the
hypothesis on points and closed sets is inherited by K. Thus by Lemma 3,
for x € K, x belongs to the interior of N(x, ¢) M\ K, where the interior is
taken relative to K. Hence, for each x € K, choose ¢, > 0 such that N(x, e,) M
N(F,e) = 0. It follows that there are points x1,%2,...,%, € K such that
N(x1,€), .y N(x,, €,) cover K. Putting ¢ = min {e,, ..., €,} we have
d(K, F) =2 ¢ > 0. Thus X is metrizable by Theorem 3.

3. Examples and other conditions on d. Let R denote the set of real
numbers and Z the integers.

Example 1. Let X = R and d be defined below. d(x, y) = |x — v/, if neither
xnoryis0;d(0,x) =d(x,0) =1, ifx € X —Z;d0, n) = d(=%£n, 0) =
1/n, it w € Z, n > 0. Then d is a distance function, thereby determining a
topology on X. To describe the topology more fully, let F be closed and 0 ¢ F.
Then d(0, I7) > 0, so there exists a positive integer N such that for n = N
and n € Z, +£n € X — F. Thus for n = N, there exists ¢, > 0 such that the
intervals (£n — ¢,, =n + ¢,) do not meet F. Denote by U the union of these
intervals together with 0. Then U is open and it follows that all sets of this
form constitute a local base at 0. At x # 0, a local base consists of open
intervals (chosen sufficiently small, depending on x).

From this description one can easily see that X is Hausdorff, regular, and
Lindelof, thus paracompact. IHowever, X is not first countable (To see this
easily, show that for Hausdorff symmetrizable spaces x, — x implies d(x,, x) —
0. Then observe that 0 € X — Z, whereas d(0, X — Z) = 1 so that no se-
quence in X — Z converges to 0) or even Fréchet hut every point is a Gs.
Also, X is not locally compact.

Let K be a compact subset of X. Then K — Z is bounded. Otherwise, there
would be an open neighborhood U of Z for which K — U is unbounded,
implying that U together with the open intervals (z, z + 1), = ¢ Z, cover K
with no finite subcover. Hence, if K and L are disjoint compact subsets of X
with 0 € K, then L is compact in the usual topology for the reals and K is
contained in a set of the form K; \U {0, &= (n), &= (n + 1), ...} which does not
intersect L, where K is compact in the usual topology for the reals. From this,
it follows that any two disjoint compact subsets of X have disjoint e-spheres,
but X is not metrizable.

Next after several lemmas, we give an example of a compact, non-Ilausdorff
symmetrizable space wherein distinct points have disjoint e-spheres.

LeEMMA 4. Let X denote the space of Example 4. Then there is « positive valiued
function f on X satisfying

1) inf f(K) > 0, when K is compact, und

(2) wnf f(F) = 0, when F is closed but not compact.
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Proof. Put f(x) =1, if x € Z; f(x) = x|, if =1 <x <1, x#0; f(x) =
1/|x|, if |x| > 1 but x € X — Z. Let K be compact. Then, as scen before,
K — Z is bounded. But K — Z must also be bounded away from 0, so that
inf f(K) > 0. Suppose that F is closed but not compact. Then there is an
infinite set (X is paracompact, F Closed) {x1, xs, . . .} in IF with no limit point.
We may assume x, € X — Z. If {x1, 2, ...} is unbounded, we are through.
Otherwise, it clusters with the usual topology at some point x. But x must be 0
or {x1, X2, . . .} would cluster at x with the given topology. Hence, inf f(I7) = 0.

A set is sequentially closed if it contains the limits of its convergent sequences.
A space is sequential if sequentially closed sets are closed.

LEMMA 5. Let X* denote the one point compactification of X, obtuined by
adjoining oo . Then X* is sequential.

Proof. Let F be sequentially closed in X*. Assume co € F. If 0 € I, I' is
closed, X* being first countable at all points outside /. 1f 0 € X — [, since
I is sequentially closed there exists a positive integer N with & n € X — F,
whenever # = N. Hence there is a basic neighborhood of 0 which does not
meet I, so that Fis closed. If 00 € X* — F, Fis a sequentially closed subset of
X, thus closed (All symmetrizable spaces are sequential). If /" is not compact,
it is not countably compact, being closed in paracompact X. Hence, there is
an infinite set {x1, X2, . . .} in F with no limit point. Clearly x;, &2, x3, . . . — 00,
since no compact subset of X contains more than finitely many of the terms.
Thus, F is not sequentially closed.

LEMMA 6. X* 15 symmetrizable by extending d us follows: d(cv, x) = d(x,00) =
f(x), where [ is defined in Lemma 4.

Proof. Let I' be d-closed. If oo € X* — F, Fis d-closed in X, thus closed in X.
If 7 is not compact, we have d(c0, F) = inf (/) = 0, which is a contradic-
tion. If 00 € F and £ is not closed, it is not sequentially closed, by Lemma 5.
Hence, there is a sequence (x,) in F converging to x ¢ X* — F, x real. But this
implies that d(x,, x) — 0, which is a contradiction, establishing that all
d-closed sets are closed. Now suppose F is closed. If oo € X* — [ then Fis
closed and compact in X. Thus d(c0, F) > 0, since F is compact. If oo € [,
FM X is closed in X, thus d-closed in X, from which it follows that F is
d-closed in X*.

Example 2. X* is a compact, non-Hausdorff, symimetrizable space in which
distinct points have disjoint e-spheres. To see this, note that N(0, 1/2) and

N(o0, 1/2) are disjoint.
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