
SYMBOLS FOR TRACE CLASS HANKEL OPERATORS WITH
GOOD ESTIMATES FOR NORMS

by F. F. BONSALL and D. WALSH

(Received 25 October, 1984)

Introduction. Peller [4,5] has proved that a Hankel operator 5 on the Hardy space
H2 is in the trace class if and only if 5 = Sj; with h analytic on the open unit disc D and
with its second derivative belonging to the Bergman space L\. This theorem does not
include an estimate for the trace class norm ||S||, of the operator in terms of the symbol
function. In fact it is clear that ||/i"||^ cannot give an estimate for ||S>;||i since the first two
terms in the coefficient sequence of the Hankel operator have been removed by
differentiation.

We give a slightly modified version of Peller's theorem which eliminates this difficulty
and leads to a satisfactory estimate for | |5| | , . The proof uses a modified version of the
Coifman-Rochberg decomposition theorem for L\, [3]. As a corollary, we obtain a
bounded projection of the trace class onto its Hankel operators, again with a good
estimate of the norm. For other bounded projections with the same domain and range,
see [4].

NOTATION. Let Lp = Lp(dD) with normalized Lebesgue measure, let Hp denote the
usual Hardy space of functions on 3D, and let Lp

a denote the Bergman space of analytic
functions on D for which

With <p 6 L2, S$ denotes the Hankel operator with symbol (j>, that is the operator
with domain and range in H2 and with matrix (ai+j), where the coefficient sequence {«„} is
given by

In particular, when (p e L°°,

S0 = PJM+ | H2,

where P is the orthogonal projection of L2 onto H2, (//)(?) =f{t,)(f e L2, £ e 3D), and
A/̂  is multiplication by (p (see Power [8]).

Several elementary functions will be needed, and it is convenient to list them here.
With weD, zeDUdD, write

fw{z) = (1 - wz)-"2, vw{z) = (1 - |w|2)1/2/(l -wz),

gw(z) = ( 1 " |w|2)/(l - wz), hw(z) = z2gw(z),

bw{z) = 2{l-\w\2)l{l-wz)\
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THEOREM 1. Let g e H2 and let h(z) = z2g(z) (z e D), where g(z) is the usual analytic
extension of g to D. Then Sg is trace class if and only if h" e L\. Also

(1)

The constant JT/8 is best possible.

Proof. Let 5g belong to the trace class. Then

with uk, vk e H2, | | u J | 2 = Ilu/tll2 = 1 f ° r a ' l k and with £ |AA.| = | |SJ | , . For w e D,
k=\

2M £3iB

and so

JTJo

= 2(sf Jf-)

Since
GC

\JgJwJw) = 2J •
k=\

' J '
k=\

h"(w) = 2 ^ ^kivk,.

Given v e # 2 , let (ru)(tv) = (w,/v)(w e D). Then

(Tv)(w) = ̂ - f v(eie)(l - we-ieym dd
2n Jn

with
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Therefore

7u | | | 2 = i [ \n\Tv{reie)\2rdddr

° JT Jo Jo

% \Pn\
2r2"+l dr = ^ - ^ 7 .

/ - 3 / 2 \ 2 /
Since a,, = I I / (n + 1) increases with n and, by Stirling's formula, converges to 41 n,

i \ n J /

' - 3 / 2 ^ 2

• = l
w e h a v e

4

° K

Since also

the Cauchy-Schwarz inequality now gives

= ^ l | 5 g | | , (2)

This proves that h" e L\ and establishes the first inequality. To complete the proof we
need two lemmas. First however we note some properties of the elementary functions gw,
hw, bw.

A routine calculation gives

and, since ||ulv||2 = 1, this shows that SSwis a rank one Hankel operator and

||SjJ|, = l (weD). (3)

Since hw(z) = z2gw(z) and ft," = bw, inequality (2) shows that

K l l ^ (weD). (4)

Let B denote the space of Bloch functions that vanish at 0, that is functions / analytic
on D with /(0) = 0 and with (1 - |z|2)/'0O bounded on D, and let

ll/IU = sup{(l - k|2) |/'(^)l:^ e Z>}.
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Given / e L\ and g e B, let

[ \
which plainly satisfies

l</,«>l*ll/ILill*IL. (5)
It is known that B represents the dual space of L\ through (, ). (See [1], where a

slightly different space is used in place of Ll
a.) In Lemma 2 we state this result with

estimates for norms.
Let cw(z) = 2(1 - wz)~3(w, z e D), and given ip e (Ll

a)*, let

gv(z)=\ rjt(cw)dw,

where the integration is along the line segment joining 0 to 2. Then gv is analytic in D and

(l-\z\2)g'xj,(z) = \p(bi) (z £ D). (6)
o

With (4), (6) shows that gv e B and | | g j | f l ^ — \\ip\\. Standard arguments now complete
the proof of the following lemma. K

LEMMA 2. The mapping i/>—»gv is a linear bijection of (L*)* onto B,

(fe LI, ye (LI)*), (7)
and

Trll&elU- IIV'II - II&JU ( ^ e (£«)*) (8)

The following lemma is a modified version of the Coifman-Rochberg decomposition
theorem [3] for L\ with estimates of norms.

LEMMA 3. L\ is the set of functions f of the form

f = l h b W k (9)

with wkeD,XkeC and £ \Xk\ < 00. Also

oc

gll/ILi^inf 2\K\^\\f\\Li, (10)

where the infimum is taken over all decompositions (9) of f.

Proof. By Lemma 2 and (6),

Using also (4), the lemma now follows at once from ([2], Theorem 1).
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Proof of Theorem 1 continued. Suppose that h" e L\ and e >0. By Lemma 3, there
cc

exist W/t e D, Xk e C with E |A*.| < ||/t"||Li + e and (since/C = b>v)>
k = \ "

This series converges uniformly on compact subsets of D since ^ ( z ) ! ^2(1 - |z|)~3, and
so integration twice gives

CO

h - 2 ^knwk>
k = \

where we have used the fact that both sides have zero constant term and first degree
OC 00 _

term. Thus g = E A*g , S§= E hSSw , and
fci * i *

It remains to prove that the constant jt/8 is best possible. Let w e D and
4>w(z) = V2 (1 - |w|2)1/2/(l - wz)m, so that bw = (fa. Then

n=0

/—3/2\2 /
with an = ( I / (n + 1) as before. Since the sequence {an} increases, Abel's theorem
gives

sup||/C||L,= sup 2(1-0 S <*Jn

weD Os(<l n = o

= 2 lim {0-0+ | ) (orB-arB_,)r"}

( °° 1
a'n + E (^ -a -n - i )

=21im tfn = 8/;r. (11)
n—>°c

Since ||5gH,||i = 1, this completes the proof of the theorem.

REMARKS. (1) We have proved that

\\S,\\^C\\h"\\Ll (h"eLl),
for some constant C 2 1, but we do not know whether 1 is the best value of C. It is easy
to prove that C > i by taking g = gQ(=l). We have | | S j | = 1 and ||/#||Li = 2.

(2) The same constants n/8 and 1 occur also in Lemmas 2 and 3 and it is natural to
ask whether they are best possible.

We have already proved in (11) that
sup ||b»,||i4

D

https://doi.org/10.1017/S0017089500006327 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006327


52 F. F. BONSALL AND D. WALSH

This shows at once that the constant xl8 is best possible in Lemma 3, for with / = bw we

have inf £ |AJ < 1. It follows that jt/8 is also best possible in Lemma 2. For suppose that
k=\

C>0 with

G i v e n / e L i , there exists V 6 (K)* with ||V>|| = 1 and W) = \\f\\o- K / = £

follows that

sup
weD

k = \

This gives C ||/ | |Li ^ inf £ \kk\, and so C ̂  JZ/8 by the result just proved for Lemma 3.
" k=l

Next we prove that if ||i/>||<C | |gJ | B for all ipe(Ll)*, then C > e / 4 . For this we

take/(z) = zn-\ g(z) = z". Then \\f\\o=2/(n + l), \\g\\B=-^-(l \-T^ so that
Jim ||g||B = 2/6, while (/, g> = l/(n + 1).

It now follows also that if inf £ \Xk\<C \\f\\o for all / e L\, then C > el A. For given
k \ °

feLl with 11/Hi.i = 1 and e > 0, we choose wk, Xk with / = £ XkbWk and £ |A*| < C + e.

Given i// e (Ll
a)*, we have

k=l

and so C^e/4 by the corresponding result for Lemma 2.

A Hankel operator valued projection on the trace class. Let %, denote the Banach
space of trace class operators on H2, 5^(1% the closed subspace of Hankel operators in
%. As a corollary of Theorem 1 we obtain a bounded projection Py on the space % with
range Sfn %x, together with a satisfactory estimate of its norm. Py is the special case
P\n,m °f a family of projections Pa p of this kind found by A. B. Aleksandrov, and it is
known that the natural averaging projection is not bounded on %, though it is bounded
on the Schatten-von Neumann spaces with Kp <oo. (See Peller [4, 6, 7]).

Given an operator A e ^ with matrix (a,,) relative to the natural basis, we define
PyA to be the Hankel operator with coefficient sequence {bn} given by

-f)(-3'2>,, (12)

https://doi.org/10.1017/S0017089500006327 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500006327


TRACE CLASS HANKEL OPERATORS 53

Comparison of the coefficient of z" in the expansions of ((1 - z)~3/2)2 and (1 - z)~3 shows
that b,, = cn if a,y = c,+y, and so Py is a projection.

COROLLARY 4. The projection Py defined by (12) is a bounded projection on % with
range % n $f, and

Proof. Let 4̂ = u <8> u with u, v e H2. The matrix (a,-,-) of A is given by a,7 = u,uy, where
u,,, i),, are the Fourier coefficients of u, v. Therefore the coefficient sequence {b,,} of the
Hankel operator PyA is given by

2 ( l ) v / - 3 /2 \ / -3 /2 \ -6 - " ? I A j ^(n+2)(»+ !),.?-„I i A ;
Let g(z)= E bnz\ h(z) = z2g(z). Then

/i=0

with "=0

v.w= s(-DM
By Theorem 1,

By a calculation in the proof of Theorem 1, ||Villi.o
2^ ( —) IMU ar |d similarly for

- Thus ' W

Given arbitrary Ae^x, we have A = E kkAk, with Ak = uk®vk, 11/4*11, = 1, and

E |A*| = H-/4H,. The series E kkPyAk converges in the Banach space %x to a Hankel

8 °° 8
operator 5 and | |5| | , <— E |AAT| = — ||-<4||i- If {b^} is the coefficient sequence of PyAk,

it *=i JZ

then the coefficient sequence of S is {bn} given by

where (a^) is the matrix of Ak. Since the matrix (a,7) of >1 is given by aiy = E kkaf\ it
follows that *=1

2(-l)" y /-3/2\/-3/2\

" (n + 2){n + l)i+%n\ i A ; / '7'

and we have proved that 5 = PyA.
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REMARK. The proof of Corollary 4 has used the inequality \\Sg\\i ^ \\h"\\Li from
Theorem 1, which we do not know to be best possible. If this can be improved to
IISgHj^c ||/i"||Li for some c < l , we obtain the improved estimate | |Py | |<c8/^ for the
norm of Py.
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