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ALGEBRAIC CYCLES IN FAMILIES 
OF ABELIAN VARIETIES 

SALMAN ABDULALI 

ABSTRACT. If the Hodge *-operator on the L2-cohomology of Kuga fiber varieties 
is algebraic, then the Hodge conjecture is true for all abelian varieties. 

1. Introduction. The Hodge conjecture predicts that the Q-linear span of the 
classes of algebraic subvarieties in the cohomology of a smooth complex projective va­
riety X is given by the Hodge ring 

Hdg(X) := ®H2p(X, Q) HH^(X, C), 
p 

the elements of this ring being called Hodge cycles. (We abuse notation and use the same 
symbol to denote a complex algebraic variety and its associated complex analytic space.) 
For elements of H2(X, Q) this is a result of Lefschetz. It follows that if the Hodge ring of 
X is generated by its elements of degree 2, then the Hodge conjecture is true for X, and 
all algebraic classes represent intersections of divisors. There are many abelian varieties 
whose Hodge ring is not generated in degree 2; some examples given by Weil [W] are 
widely believed to be likely counterexamples to the Hodge conjecture. The only abelian 
varieties, whose Hodge rings are not generated in degree 2, but for which the Hodge 
conjecture is known, are due to Shioda [So] and Schoen [Scl, Sc2]. 

Grothendieck's Standard Conjecture A [Gk2, p. 196] states that for a smooth, pro­
jective variety X over C, the operator A of Hodge theory takes algebraic cycles to alge­
braic cycles. Equivalently, the space of algebraic cycles is invariant under the Hodge 
*-operator, or, numerical and homological equivalence are the same [L, Theorem 1, 
pp. 367-368]. In contrast to the Hodge conjecture, this conjecture is known for many 
classes of varieties including all abelian varieties [L, Theorem 3, p. 372]. 

In this paper we show that the Hodge conjecture is true for all abelian varieties if the 
analog of Standard Conjecture A is true for the L2-cohomology of Kuga fiber varieties. 
By this we mean that the Hodge *-operator on the L2-cohomology takes algebraic cycles 
to algebraic cycles. (We actually need only a weaker statement which we formulate later 
as Conjecture 5.3.) The link between the Hodge conjecture and the standard conjectures 
is the following conjecture of Grothendieck [Gkl, footnote 13, p. 103], which we shall 
refer to as the invariant cycles conjecture. 
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CONJECTURE 1.1. Let f:A —• V be a smooth and proper morphism of smooth 
quasiprojective varieties over C. Let P E V, and T := 7Ti(V,P). The space of all 
s e H°(V,Rbf*Q) ^ Hb(AP,Qf, which represent algebraic cycles in Hb(AP,Q)r is 
independent of P. 

This conjecture was the principal motivation for much of Griffiths' work on variation 
of Hodge structures [Gf, Remark, p. 146]. He proved the analogous statement for Hodge 
cycles, assuming V to be compact [Gf, Corollary 7.3, p. 146]. The compactness assump­
tion was removed by Deligne ("Théorème de la partie fixe" [Dl, Corollaire 4.1.2, p. 42]). 
Thus the Hodge conjecture implies the invariant cycles conjecture. 

In §6 we show that the invariant cycles conjecture for Kuga fiber varieties of Hodge 
type implies the Hodge conjecture for all abelian varieties. (The definition of Kuga fiber 
varieties is reviewed in §2.) The proof is similar to Deligne's proof of his absolute Hodge 
cycles theorem, where "Principle B" [D2, Theorem 2.12, p. 37] plays the role of the 
invariant cycles conjecture. 

In §4 and §5 we show that the invariant cycles conjecture is true for Kuga fiber va­
rieties if the Hodge *-operator on the L2-cohomology is algebraic. In order to explain 
the idea of the proof, let us assume for the time being that A is compact. Then the Leray 
spectral sequence for A —• V degenerates and we have 

Hr(A,C)= 0 H^b\A,C\ 
a+b=r 

where H^b\A, C) ^ Ha(V,R%C). For P e V, let > be the inclusion of the fiber AP 

into A. Then the pullbackjp induces an isomorphism of H^lb\A, C) with H2b(AP, C) r . 
Since the pullback of an algebraic cycle is algebraic, we have 

(1.2) dimAH2b(AP, C) r > dimAH{02b)(A, C), 

where AH denotes the subspace spanned by algebraic classes. 
Next we consider the Gysin homomorphism 

jp. : H2m-2h(AP, C) — • H2m-2b+2d(A, C), 

where m is the dimension of a fiber, and d is the dimension of V. It induces an isomor­
phism 

H2m~2b(AP, C) r —• H{2dM-2b\A, C). 

Since jp* takes algebraic cycles to algebraic cycles, we have 

dimA#2m-2/7(Ap,C)r < dimA//^'2m-2/7>(A,C) 

for any point P. Since Grothendieck's standard conjectures are known for abelian 
varieties [L] we also have dimA#2/?(AP,C)r = dimA//2m~2/?(AP, C) r . The spaces 
7/(°'2^(A,C) and 7/<2J'2m-2^(A,C) are dual under the Hodge *-operator. Assume now 
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that Grothendieck's standard conjectures are true for A. Then dim AH^2d,2m~2b^(A, C) = 
dim A//<°'2/?>(A, C). Combining all of this, we have 

(1.3) dim AH2b(AP, C) r < dim AH^2b\A, C). 

(1.2) and (1.3) together imply that dimAH2b(AP,C)r = dimA//(°'2/?>(A,C) is inde­
pendent of P. Thus every T-invariant algebraic cycle on a fiber Ap is the pullback by fP 

of an algebraic cycle in A//(°'*'(A, C). This completes the proof (in outline) for compact 
A. If A is not compact, then we modify the above argument by using L2-cohomology. 

Though we have assumed that A —• V is a Kuga fiber variety, the argument is valid 
in far greater generality. We will not pursue this here; see however [An2], part of which 
was motivated by an earlier version of this paper. 

I would like to thank the University of Toronto, and especially Professor Kumar 
Murty, for inviting me to Toronto for an extended visit, and providing an atmosphere 
which made this paper possible. 

2. Kuga fiber varieties. In this section we recall Kuga's construction of families 
of abelian varieties [Kl]. Details may also be found in [Sa2]; [K3] is a brief, but useful, 
survey. 

Let G be a connected, semisimple, linear algebraic group over Q of hermitian type 
with no nontrivial normal Q-subgroup H such that H(R) is compact. ThenX := G(R)°/K 
is a bounded symmetric domain, where AT is a maximal compact subgroup of G(R)°. Let 
g := Lie G(R), ï := Lie K, and let g = Ï 0 p be the corresponding Cartan decomposition. 
Let x be the unique fixed point of K in X. Differentiating the natural map G(R)° —> X 
gives an isomorphism of p with TX(X), the tangent space of X at x, and there exists a 
unique //o E Z(ï), called the H-element at x, such that ad//o|p is the complex structure 
on TX(X). Since g is semisimple, the Killing form is a nondegenerate bilinear form; its 
restriction to p is symmetric and positive definite. There is a unique G(R)°-invariant 
Riemannian metric on X, which agrees with the Killing form on p = TX(X). Call this 
metric ds^. 

Let r be a torsion-free arithmetic subgroup of G. Then V := r \ X is a smooth 
quasiprojective algebraic variety. The metric ds\ induces a metric on V, which we again 
denote by ds\. With this metric, V is a complete Kâhler manifold. 

Let j5 be a nondegenerate alternating form on a finite-dimensional rational vector 
space F. The symplectic group Sp(F, /3) is a Q-algebraic group of hermitian type; the 
associated symmetric domain is the Siegel space 

6(F,/3) := [J e GL(F(R)) | J2 = —/ and /?(*, Jy) is symmetric, positive definite}. 

Sp(F, f)) acts on 6(F, f3) by conjugation. The //-element at a point J e S(F, /3) is 7/2. 
Let p:G —> Sp(F, f3) be a representation defined over Q, and r: X —> 6(F, /?) a holo-

morphic map such that r(g • x) = p(g) • r(x) for all g G G(R)°, x G l Let H0 be the 
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//-element at a base point x EX, and H'0 the //-element at r(x). We say that the pair (p, r) 
satisfies the H\ -condition, or is strongly equivariant if 

[dp(H0) - H'0, dp(g)] = 0 for all g G g, 

and we say that the H^-condition is satisfied if 

dp(H0) = Hf
0. 

These conditions are independent of the choice of the base point x. 
Assume that the H\ -condition is satisfied. Let L be a lattice in F such that p(T)L = L. 

The quotient 
A : = ( T K p L ) \ ( X x F ( R ) ) 

is a torus bundle over V = T \ X. Kuga showed that there is a complex structure on 
A such that the fiber Ap over any point P E V is an abelian variety isomorphic to the 
torus F(R)/L with the complex structure r(x), where x is a point in X lying over P [Kl, 
Theorem II-6-3, p. 114]. A has a structure of quasiprojective algebraic variety such that 
the projection/: A —-• V is a morphism of algebraic varieties [D2, p. 74]. This fiber variety 
is called a Kuga fiber variety. 

The tangent space at a point (JC, U) e X x F(R) is TX(X) x F(R). The form 

(2.1) Sx(W,v):=/?(W,r(;c)v) 

is symmetric and positive definite on F(R). We can therefore define a Riemannian metric 
ds2 on X x F(R) such that ds2 agrees with ds$ on the first factor, and equals Sx on {x} x 
F(R). Then ds2 is T xp L-invariant. Therefore it induces a metric on A, which we again 
denote by ds2. With this metric, A is a complete Kàhler manifold. 

We have a vector bundle X x F(R) —• X, with a metric given by (2.1). This extends 
to a hermitian metric on the complex vector bundle E := X x F(C) —• X. Taking the 
quotient by T gives a hermitian vector bundle over V, which we again denote by E. 

Of special interest are Kuga fiber varieties of Hodge type. These are constructed using 
the inclusion of the Hodge group of a complex abelian variety into the symplectic group 
of a Riemann form; see [Mml] or [Mm2] for details. 

PROPOSITION 2.2. A Kuga fiber variety A —-* V constructed from a symplectic repre­
sentation p. G —• Sp(F, (3) satisfying the H^-condition is of Hodge type, the Hodge group 
of every fiber is contained in p(G), and the Hodge group of a general fiber equals p(G). 

PROOF. Any //2-homomorphism is rigid in the sense that the equivariant holomor-
phic map r is uniquely determined by p (see [Sa2, p. 183]). Therefore, Theorem 3.4 of 
[Ab3] implies that A —» V is of Hodge type. The definition of a Hodge family shows 
that p(G) is the semisimple part of the Hodge group of a general fiber. But, according to 
[Ab2, Proposition 1.3, p. 335], p(G) contains the Hodge group of every fiber. Therefore 
p(G) must be the Hodge group of a general fiber. • 

https://doi.org/10.4153/CJM-1994-063-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-063-0


ALGEBRAIC CYCLES IN FAMILIES OF ABELIAN VARIETIES 1125 

3. L2-cohomology. In this section we review the definition and summarize the basic 
properties of L2-cohomology. [CGM] is an excellent survey article. [BC], [Ca], [Zl], and 
[Z2] are primarily concerned with arithmetic varieties; for other papers see the list of 
references in [Z2]. 

Let M be a complete Riemannian manifold, and E a hermitian vector bundle on M 
defined by a finite dimensional unitary representation of the fundamental group of M. We 
denote by Qr(M, E) the space of E-valued C°° r-forms on M. A form u E £lr(M, E) is said 
to be square integrable if JM u A *ô> is finite. Let £1{2)(M, E) be the set of a; € £2r(M, E) 
such that u and du are both square integrable. An inner product on Q.r^(M, E) is given 
by 

(u,r)) :=y^o;A*r/. 

The L2-cohomology of M, denoted H'2)(M,E), is the cohomology of the complex 

Alternatively, the L2-cohomology may be defined as the cohomology of the complex 
L*2)(M, E), consisting of measurable E-valued differential forms a; on M such that u and 
du are square integrable. Cheeger [Ch, p. 94] has shown that the inclusion of Q*2)(M, E) 
into L*2)(M, E) induces an isomorphism on cohomology, so the two definitions are equiv­
alent. 

The reduced L2-cohomology, denoted //[2)(M, E), is defined to be the quotient of the 
closed forms in L[2)(M, E) by the closure of the exact forms. There is a natural surjection 
of H[2)(M9 E) onto H[2)(M, E). 

Let S be the formal adjoint of d. A differential form u is called harmonic if du = 
Su = 0. Denote by H^2)(M, E) the space of L2 harmonic r-forms. Since M is complete, the 
natural map of ^ 2 ) (M, E) into H[2)(M, E) is injective {cf. [CGM, p. 317]), and the natural 
map of ^ } ( M , E) into H[2)(M, E) is an isomorphism (cf. [CGM, p. 318]). If H[2)(M, E) is 
finite dimensional, then H[2)(M, E) = H[2){M, E) ^ ^ } ( M , E) (cf. [Zl, Proposition 1.11, 
p. 174]). 

Assume now that M and E are as above, and //(
#

2)(M,£) is finite dimensional. Then 
Poincaré duality is satisfied, i.e., H[2)(M,E) and HS

(2)(M,E) are dual if r + s = dim M; 
the duality is induced by the Hodge *-operator (cf [Ca, pp. 72-74]). In the infinite di­
mensional case, the reduced L2-cohomology satisfies Poincaré duality, as long as M is a 
complete Kâhler manifold (cf. [CGM, p. 318]). 

A complete manifold has negligible boundary in the sense that JM du = 0 for all 
u E ft(2)(M, E) [Ga, Theorem, p. 141]. Hence JM u is well-defined for u E H*2)(M, E). 

4. L2 -cohomology of Kuga fiber varieties. The cohomology of compact Kuga 
fiber varieties was described by Kuga in [Kl, pp. 71-95]; a summary appears in [K3, 
pp. 340-342]. In this section, we generalize some of these results to the L2-cohomology 
of noncompact families of abelian varieties. The principal difference in approach is that 
group cohomology can no longer be used. Unfortunately, I do not know how to show 
that the L2-cohomology of a Kuga fiber variety is finite dimensional, so I work with the 
reduced /^-cohomology instead. 
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4.1 Differential forms. Let/: A —• V be a Kuga fiber variety, V = F\X,d := dim V = 
dim X, m the dimension of a fiber. 

Since X is a bounded symmetric domain, there is a global real coordinate system 
{JC1 , . . . ,x2^} on X. Let {ul,..., u2m} be coordinate functions on F, with respect to some 
basis, i.e., a basis of F*. Then {JC1, . . . ,x^ , w1,..., w2m} is a global coordinate system on 
X x F(R). Such a coordinate system will be called admissible. 

We identify a differential form on V with a T-invariant form on X. We also identify a 
differential form on A with a TKpL-invariant form on X x F(R). Note that any T-invariant 
form is G-invariant because T is 2'ariski-dense in G [B, Theorem 1, p. 78], and p is an 
algebraic representation of G. 

Let Q^ (X x F(R), C) be the space of complex valued differential forms of the form 

y^ (PC,D(X> U) dx A du . 
\C\=a 
\D\=b 

An element of this space will be said to be of type (a, b). The type does not depend on 
the choice of admissible coordinate system. Then 

Qr(X x F(R),C) = 0 QM(X x F(R),C). 
a+b=r 

Furthermore, as in [Kl, pp. 81-82], we have an orthogonal direct sum 

% ) ( A , C ) = 0 a$\A,C), 
a+b=r 

where 
dg}(A, C) := Q^\X x F(R), C ) r * ' L H Qgj*(A, C). 

Now let u; 6 &a'b) (X x F(R), C). We can write 

cj= J2 dxcAr]c, 
\C\=a 

where 
7]c(x,u):= J2 Vc,D(x,u)duD. 

\D\=b 

For each x £ X, rjcQc, u) is a fe-form on F(R). Denote by J the exterior derivative on 
X x F(R), by d\ the exterior derivative on F(R), and by dy the exterior derivative on X. 
Then 

(4.1.1) du = dvuj+ J2 dxc Ad\r]c-
\C\=a 

Thus da; = 0 if and only if dyuj = 0 and d\r\c — 0 for each C [Kl, Corollary II-3-3, 
p. 86]. 

Next we shall examine the action of the Hodge *-operator on u. Let *o denote the 
Hodge *-operator on Qr(X, C) with respect to the metric ds^, * the Hodge *-operator 
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on Q.r(X x F(R), C) with respect to the metric ds2, and ** the Hodge *-operator on 

Qr(F(R), C) with respect to the metric Sx. Then [Kl, Proposition II-3-1, p. 85] 

(4.1.2) *o; = ( -1 )ab £ (*o dxc) A (*xr)C) € Qi2d~a^-b) (x x F(R), C). 
\C\=a 

42 Harmonic forms. We will now concentrate on those differential forms on A which 
can be interpreted as automorphic forms on V. Let $C(X x F(R), C) be the space of 
differential forms of the form 

OJ = Yl <PC,D(X) dxc A duD, 
C,D 

so that each ipc,D is a function of x alone. Then 

0C(X x F(R), C) = 0 fl^X x F(R), C), 

where 

X{a,b) (X x F(R), C) := Xr(X x F(R), C) H Q<fl'^(X x F(R), C). 

Next, let 

7([2)(A9 C) := 2£r{X x F(R), cf*'L H %}(A, C), 

^ f (A, C) := 3fo(A, C) H %+*(A, C), 

and 

^ > ( A , C) := ^ ( A , C) H ftgf >(A, C). 

Then we have 

(4.2.1) 3Qr
2)(A, C) = © Xffî\A, C). 

We can identify 9CM (x x F(R), C) with the space of differential forms Q,a(X, KbE% 
where E is the vector bundle constructed in §2 [Kl, Proposition II-3-6, p. 89]. With this 
identification we have 

(4.2.2) XffiiA, C) * OfaÇV, hbE*). 

LEMMA 4.2.3 ([Kl, Lemma II-3-5, p. 87], in compact case). 

^ ( A , C ) C % ( A , C ) 

and 
< ' J ) ( / l , C ) C ^ » ( A , C ) . 

PROOF. The r Kp L-invariant of u implies the L-invariance of rjc- Hence we may 
consider r]c as a form on the torus T = F(R)/L. We have seen that it is a closed form. 
Let 8 = *d* be the adjoint of d. 8UJ = 0 implies, by (4.1.1) and (4.1.2), that èxr)c = 0 for 
every x, where 8X is the adjoint of the exterior derivative on T with respect to the metric 
Sx. Thus rjc is a harmonic form on T for each x. But any harmonic form on a torus has 
constant coefficients. Therefore each (fc,D is a function of x alone. • 

https://doi.org/10.4153/CJM-1994-063-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-063-0


1128 SALMAN ABDULALI 

LEMMA 4.2.4 ([Kl, Theorem II-3-12, p. 94], in compact case). 

flg)(A,C)= 0 ^g'Vc). 
a+b=r 

PROOF. Let u e M{2)(A, C). Use (4.2.1) and Lemma 4.2.3 to write u = £ uM^ with 

JaÏÏ G %$b)(A, C). Since dJa^ E !K^+hb)(A, C), du = 0 implies that rf<>*> = 0 for 

all a, b. Similarly, since &>*> E 3$~U > (A, C), 5a; = 0 implies that &>*> = 0 for all 

a, b. Thus each a/a'^ is a harmonic form. • 

LEMMA 4.2.5. j^2)(^> C) is finite dimensional. 

PROOF. The isomorphism (4.2.2) induces an isomorphism 

^ > ( A , C ) ^ ^ ) ( V , A ^ * ) . 

The L2-cohomology groups of arithmetic varieties are finite dimensional ([BC, The­
orem A, p. 625]; see also [Z2, (1.6), p. 380]); hence the previous lemma shows that 
JifoiA, C) is finite dimensional. • 

4.3 Restriction to a fiber. Denote by jp the inclusion of a fiber Ap into A. 

LEMMA 4.3.1 ([K4, 1-3 [D], p. 17], in compact case). The restriction of j*P to 
9~C\/'{A, C) induces an isomomorphism 

^r){AX)-^Hr(APX)T. 

PROOF. Let u G 9fyr'{A, C). Lemma 4.2.3 implies that we can write u in the form 

u = X! VD(x)duD. 
\D\=r 

Then 
fPu= Y^ VD(P)duD. 

\D\=r 

Since a; is a closed form, each ipo is a constant function. The T ixp L-invariance of a; then 
implies the T-invariance of fpu). 

Conversely, we will show that any T-invariant u of this form, with constant coeffi­
cients, is an L2-form on A. Let x G X, g G G(R)°, and y = gx. Then 

Sx(u,v) = P(U,T(X)V) = P(u,p(g)~lr(y)p(g)v) = Sy(p(g)u, p(g)v) 

since p(g) belongs to the symplectic group of ft. It follows that *xu independent of x. 
Therefore the L2-norm of u is given by ||c<̂ ||§ = (vol V)|[/p(a;)||2. Since V has finite 
volume, the norm is finite. • 
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LEMMA 4.3.2. Ifujp E H2r(Ap, C) is T-invariant, then so is *ojp. 

PROOF. Lemma 4.3.1 shows that UJP = fpu for a unique u E ^ , 2 r > ( A , C). (4.1.2) 

shows that *u; = *0(1) A *xo; 6 ^2 J , 2 m _ 2 r >(A, C). In particular, *0(1) A *xu is a T txp L-
invariant form, which implies that *a>/> is T-invariant. • 

4.4 The Gysin map. Let jP*:H2r(AP, C) —• 9{$+2r(A, C) be the Gysin map, i.e„ the 
Poincaré dual offP: #gf-2 r(A, C) - • H2m~2r{Ap, C). We may describe > on harmonic 
forms as follows :jp* (UJ) is the unique element of 9£^+2r(A9 C) such that 

fAJp.u> A C = JAp u Ajpt for all ( E ^ ^ ( A , C). 

LEMMA 4.4.1 ([AM, Lemma 3.3.2, p. 45], in compact case). Let£lv '•= *0) be the 
volume form on V. Then 

jP*fp(uj) = vol(V)-1/*(Qv) A a; /or a// a; 6 flg,2r>(A, C). 

77ze image ofjp* is contained in 94\\ ' 0̂ > C). 

PROOF. Observe that/*(Qy) A w € ^ 2 J ' 2 r ) (A, C). 
We have to show that 

(4.4.2) j £ / * («v ) A u A C = vol(V) Jjpu Afe for all C E ^ " 2 r ( A , C). 

Because of Lemma 4.2.4 it is enough to prove this for £ E ^ ) (̂ > ̂ ) w*m a + b = 
2m — 2r. Then both sides of (4.4.2) are zero unless a = 0 and b = 2m — 2r, which we 
assume. Let Dr be a fundamental domain for the action of T on X, and Di a fundamental 
domain for the lattice L. Then 

f f(Slv) A (j AC = / n / * ( O v ) A a M C 
J A JDrxDL 

= vol(V)/ 7 > A J X -

5. Algebraic cycles. Let X be a smooth algebraic variety with a complete Kàhler 
metric. Then we have seen that the harmonic forms on X satisfy Poincaré duality. Let Z be 
an algebraic cycle of codimension r on X. The class of Zis an element c(Z) E ?Q)(X, C) 
such that 

f u= f C(Z)ALJ for all u E ^ ( X , C). 

Because of Poincaré duality, the class of Z is unique whenever it exists. We denote by 
Ati(2)(X, C) the subspace of H^iX, C) spanned by the classes of algebraic cycles, and 
by A/7̂ 2) (A, C) the subspace of ^Çf) (̂ > C) spanned by algebraic cycles. 

We have seen (Lemma 4.3.1) that 

jP:ti$2r)(AX)^H2r(APX)r 
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is an isomorphism. Sincejp takes algebraic cycles to algebraic cycles, we have an injec-
tive homomorphism 

ipp\ A//^2r)(A, C) — • AH2r(AP, C) r . 

Lemma 4.4.1 shows that 

jp.:H\AP,QT—* ^2r)(A,C) 

is an isomorphism. Since jp* takes algebraic classes to algebraic classes (the class of Z 
in Ap goes to the class of Z in A), we have an injective homomorphism 

^P:AH2r(AP, C) r — • AH{2f 2r>(A, C). 

The Hodge *-operator gives an isomorphism 

Lemma 4.4.1 shows that 

(5.1) *u; = *0(1) A *Po; = vol(V)>* (*/>;>) for u e 9<^lr)(A, C). 

Since the Hodge *-operator on abelian varieties is algebraic [L, Theorem 3, p. 372, and 
Theorem 1, p. 367], we have an injective linear map 

(5.2) *: A//gf r>(A, C) —> AZ/gf 2m"2r>(A, C). 

CONJECTURE 5.3. The map (5.2) is an isomorphism. 

REMARK 5.4. As remarked in the introduction, for compact A, Conjecture 5.3 is a 
special case of Grothendieck's standard conjectures. In the noncompactcase, it may still 
be true that Conjecture 5.3 follows from the standard conjecture for a smooth compacti-
ficationof A. 

THEOREM 5.5. If Conjee tu re 5.3 is true then 

(fP: AH$fr)(A, C) — • AH2r(AP, C) r 

is an isomorphism for every P E V. In particular, the space of V-invariant algebraic 
cycles on Ap is independent ofP, and the invariant cycles conjecture (Conjecture I.I) is 
true. 

PROOF. Let UJP e AH2r(AP, C) r . Then LJP = J*P(UJ) for a unique u e ^ ' 2 r ) ( A , C) 
(Lemma 4.3.1). (5.1) shows that *UJ = vo\(V)jp*(*u>p) is algebraic. Conjecture 5.3 im­
plies that UJ is algebraic, so UJ E AHfo (A, C), and ipp(u) = up. Thus ipp is surjective, 
and the proof is complete. • 

REMARK 5.6. Suppose P is a generic point of V in the sense of Weil (over some field 
of definition). Then Kuga has shown (without assuming the standard conjectures) that 
every algebraic cycle on Ap is T-invariant [K2, Theorem, p. 76], and tpp is an isomor­
phism [K4, 1.4.8, p. 18] (see also [K2, p. 77], [HK, p. 5], [T, p. 108]). His proofs assume 
that A is compact, but we can remove this assumption by using L2-cohomology. 
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6. The Hodge conjecture. 

MAIN THEOREM 6.1. (a) If the invariant cycles conjecture (Conjecture 1.1) is true 
for all Kugafibervarieties of Hodge type, then the Hodge conjecture is true for all abelian 
varieties. 

(b) If Conjecture 5.3 is true for all Kugafibervarieties of Hodge type, then the Hodge 
conjecture is true for all abelian varieties. 

The proof of Theorem 6.1 appears at the end of this section. 

LEMMA 6.2. If Conjecture 1.1 is true for all Kuga fiber varieties of Hodge type, then 
the Hodge conjecture for abelian varieties ofCM-type implies the Hodge conjecture for 
all abelian varieties. 

PROOF. The proof is similar to the proof of the corresponding fact for absolute 
Hodge cycles [D2, p. 71]. Let Ao be an abelian variety. The inclusion of the Hodge group 
of AQ into the symplectic group defines a Hodge family, A —•* V, which has a fiber A \ 
of CM-type [Mm2, p. 348]. The fundamental group, T, of V is contained in the Hodge 
group of Ao; hence any Hodge cycle UQ on AQ is T-invariant. Then, the Theorem of the 
Fixed Part [Dl, Corollaire 4.1.2, p. 42] implies that UJQ determines a Hodge cycle uj\ on 
A\, which is algebraic by hypothesis. Thus Conjecture 1.1 implies that uo is an algebraic 
cycle. • 

6.3 Weil cycles. Let £ be a CM-field, k the totally real subfield of E, and T a skew-
hermitian form on F := E2p. We assume that T is split, i.e., there exists a totally isotropic 
subspace of F of dimension p. Let G be the restriction from k to Q of the special unitary 
group of T; then 

G(Q) = {ae SL2p(E) \ T(ax, ay) = T(x,y)}. 

G is a semisimple group of hermitian type; our assumption on T implies that G(R) = 
SXJ(p,p)8, where 2g = [E : Q] [D2, Corollary 4.2, p. 51]. The associated symmetric 
domain is given by 

(6.3.1) . X:={zEMp(C)\I-ez>Oy. 

Let /3 := trE/Q T. There is a unique holomorphic map r: X —• S(F, /3) which is strongly 
equivariant with the inclusion p: G —• Sp(F,/3) [Sal, §1.5, pp. 432-433]. Furthermore, 
the pair (p,r) satisfies the //2-condition (see [Sa2, pp. 182-183, especially (4.10) and 
(4.14)]). Therefore, choosing a torsion-free arithmetic subgroup T of G, and a T-lattice 
L in F, we have a Kuga fiber variety A —• V. If T is a principal congruence subgroup of 
G, then A is a PEL-family as defined by Shimura [Sm]. 

Since the //2-condition is satisfied by this family of abelian varieties, every G-invariant 
cycle in the cohomology of a fiber AP is a Hodge cycle (Proposition 2.2). The subspace 
A2

E
PF* of AjF* = H2P(AP,Q) is a 1-dimensional vector space over E, generated by 
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the determinant; hence it consists of Hodge cycles. These cycles are called Weil cycles. 
Weil [W] considered them for E an imaginary quadratic field. 

PROPOSITION 6.4 (ANDRÉ [AN!]) . If all Weil cycles are algebraic, then the Hodge 
conjecture is true for all abelian varieties ofCM-type. m 

PROOF OF THEOREM 6.1. Note that (b) follows from (a) and Theorem 5.5. 
Lemma 6.2 and Proposition 6.4 show that the Hodge conjecture for all abelian vari­
eties is a consequence of the algebraicity of Weil cycles, assuming Conjecture 1.1. To 
prove that a Weil cycle on a fiber Ap is algebraic (modulo Conjecture 1.1 ) it suffices to 
show that it is algebraic on any one member of the family. In the special case where E is 
imaginary quadratic, Weil pointed out [W, p. 425] that these cycles do become algebraic 
in special fibers. In fact, this observation of Weil motivated this entire paper. 

Let Fo := Q2/?, so that F = Fo ® E, and let /3o be any nondegenerate alternating form 
on Fo. Define a skew-hermitian form T' on F by 

T'(ax, by) := ab/3o(x,y), for x,y € Fo, a,b E E. 

Let /o be a maximal totally isotropic subspace for /?o on Fo; its dimension is p. Then 
/ := h ® E is a /^-dimensional totally isotropic subspace for V on F, so T' is split, and 
(F, T') *é (F, T) [D2, Corollary 4.2, p. 51]. We identify them for simplicity. The Siegel 
space 6(Fo, /3o) may be identified (cf. [Sa2, Theorem 7.5, p. 81]), via the Harish-Chandra 
embedding, with the bounded domain 

X0 := {z E MP{C) \t
z = zJ~ztz> 0}. 

There is therefore a map To of Xo into the symmetric domain X (6.3.1), whose projection 
to each factor is the identity. This is strongly equivariant with the inclusion Sp(Fo, /3o) C 
G; in fact the //2-condition is satisfied. We thus get a subfamily of A —• V, whose general 
member has Hodge group Sp(Fo,/?o) by Proposition 2.2. The invariant theory of the 
symplectic group shows that the Hodge ring of such an abelian variety is generated in 
degree 2. (This is stated in [K2, Proposition, p. 80]; a complete proof may be found in 
[R, pp. 528-530]). Thus all Weil cycles become algebraic in this subfamily. • 
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