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RTJ; DOES NOT IMPLY WKL0 

JIAYI LIU 

Abstract. We prove that RCA0 + RT, -^ WKL0 by showing that for any set C not of PA-degree and 

any set A, there exists an infinite subset G of A or A, such that G © C is also not of PA-degree. 

§1. Introduction. Reverse mathematics studies the proof theoretic strength of 
various second order arithmetic statements. Several statements are so important and 
fundamental that they serve as level lines. Many mathematical theorems are found to 
be equivalent to these statements and they are unchanged under small perturbations 
of themselves. The relationships between these statements and "other" statements 
draw large attention. WKL0 is one of these statements. WKL0 states that every 
infinite binary tree admits an infinite path. It is well known that as a second order 
arithmetic statement, WKLo is equivalent to the statement that for any set C there 
exists B 3> C, where B 3> C means B is of PA-degree relative to C. A good 
survey of reverse mathematics is [8] or [3], [4]. One of the second order arithmetic 
statements close to WKLo is RT2;. 

DEFINITION 1.1. Let [X]k denote {F C X: \F\ = k}. A ^-coloring / is a 
function, [X]" -> {1 ,2 , . . . , / : } . A set H C [X]k is homogeneous for / iff 
/ is constant on [H]. A stable coloring / is a 2-coloring of [N]2 such that 
(Vn € N)(3/V)(Vw > N) f{{m,n}) = f({N,n}). For a stable coloring / , 
f\ = {« e N : (3A0(Vm> N),f{m,n) = 1}, f2 = N - f\. 
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RAMSEY'S THEOREM (Ramsey [6]). Foranynandk, everyk-coloringof'[N]" admits 
an infinite homogeneous set. 

Let RT£ denote the Ramsey's theorem for ^-coloring of [N]". And SRT^ denotes 
the Ramsey's theorem restricted to stable coloring of pair. 

Jockusch [5] showed that for n > 2 RTJJ is equivalent to ACAo, while Seetapun 
and Slaman [7] showed that RTJ; does not imply ACA(). As to WKLo, Jockusch [5] 
proved that WKLo does not imply RT,. Whether RTj implies WKLo remained open. 
A more detailed survey of Ramsey's theorem in view of reverse mathematics can be 
found in Cholak, Jockusch and Slaman [1]. Say a set S cone avoid a class Jt iff 
(VC e Jt)\C £T S]. 

The problem has been a major focus in reverse mathematics in the past twenty 
years. The first important progress was made by Seetapun and Slaman [7], where 
they showed that 

THEOREM 1.2 (Seetapun and Slaman [7]). For any countable class of sets {Cj} 
j € co, each Cj is non-computable, then any computable 2-co bring of pairs admits an 
infinite cone avoiding {for {Cj}) homogeneous set. 

Parallel this result, using Mathias Forcing in a different manner Dzhafarov and 
Jockusch [2] Lemma 3.2 proved that 

THEOREM 1.3 (Dzhafarov and Jockusch [2]). For any set A and any countable 
class M, each member of Jt is non-computable, there exists an infinite set G con­
tained in either A or its complement such that G is cone avoiding for Jl. 

The main idea is to restrict the computational complexity (computability power) 
of the homogeneous set as much as possible, with complexity measured by various 
measurements. Along this line, with simplicity measured by extent of lowness, 
Cholak, Jockusch and Slaman [1] Theorem 3.1 showed, by a fairly ingenious argu­
ment, 

THEOREM 1.4 (Cholak, Jockusch, and Slaman [1]). For any computable coloring 
of the unordered pairs of natural numbers with finitely many colors, there is an infinite 
lou>2 homogeneous set X. 

Here we adopt the same idea to prove that 

THEOREM 1.5. For any set C not of PA-degree and any set A. There exists an 
infinite subset G of A or A, such that G © C is also not of'PA-degree. 

COROLLARY 1.6. RT2 -» WKL0. 

PROOF. It suffices to construct a countable class Jt satisfying the following four 
conditions (a) C, B e JZ -> C © B e M\ (b) (C e A A B <T C) -> B e Jl\ 
(c)(VC e , # ) [ C > 0 ] ; ( d ) / h RTi Itisshownin[l]Lemma7.11thatRCA0+RT5 
is equivalent to RCA0 + SRT2 + COH. Moreover, it's easy to prove that for any 
C-uniform sequence C\, C2, • • •, C being non-PA-degree, there exists an infinite set 
G cohesive for C\, C2, • • • such that G © C is not of PA-degree. This can be proved 
using finite extension method as following. Here and below a < p means a is an 
initial part of/?; a C p means {n < \a\: a{n) = 1} C {n < \p\: p{n) = 1}. At 
stage .v, we define 

J Z j _ i n C j if Z.,_i n C.v is infinite; 

1 Zs-\ n Cs else: 
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(Z() = Co if Co is infinite Co if else), ps >- ps^\ with ps-\ <Z ps <Z Zs/ps-\. And 
whenever possible we also require (3M) [0.S ®P" (n) = 0„ (n)4-] • We argue G = U/^ is 
one of the desired sets. Clearly G is infinite since (\/s)ps-i C /?s. The cohesiveness 
of G follows from (V.y)[G C* Z,] and Z, C* Cs V Z.s C* C .̂ Furthermore, 
(VJ) [Of 'bC is not a 2-DNR]. For else, suppose contradictory Of ®G is a 2-DNR. 
Therefore (V/> h Pi-uP C Z ^ O ^ f ® " ^ ) ! A O n («) ; =• * f f f i ' M ^ 0„(«)]. 
Since O f ',G is total so (V«)(3p hps-\,P C Z, / /> ,_ i ) [of 0 / ' («) | ] . Thus we could 
compute a 2-DNR using Zv, but Zs < j C contradict the fact that C ^> 0. 

Let Z?o = 0. Let / e A2
B" be a stable coloring, by Theorem 1.5 there exists an 

infinite Go, Go C j \ V Go C f2 such that BQ © Go y£> 0, note that such Go computes 
an infinite homogeneous set o f / . Let S, = 5 0 © G0, l i = { l 6 2 I I , : I < r l?i}. 
Clearly ^#i satisfies (a)(b)(c). Let G\ be cohesive for a sequence of uniformly 
./#!-computable sets (where .#1-computable means computable in some C £ M\), 
furthermore G\ © 5, > 0. Let 5 2 = Si © Gh .#2 = {X E 2m: X <T B2}. Clearly 
Jt2 also satisfies (a) (b) (c). Iterate the above process in some way that ensures (1) for 
any uniformly ^/-computable sequence C\, C2 .. •, there exists G,_i e Mi cohesive 
for C\, C2,... and (2) for any C <G A2' ', there exists an infinite G,_i e „#,, G,_i C 
C V G,--i C C, while preserving the fact that for all resulted 5, = Bt~\ © G,_i, 

oo 
5, > 0. It follows that J? =\JJ?j\- RCA0 + SRT^ <->• RT| but clearly JK satisfies 

/=() 
(a)(b)(c). The conclusion so follows. H 

The organization of this paper is as following. In Section 2 we introduce some 
notations and the requirements we use. In Section 3 we give some intuition about 
the proof by demonstrating the construction of the first step. Section 4 defines the 
forcing conditions and shows how to use these conditions to obtain a desired set G. 
Section 6 is devoted to the most important construction, i.e., how to construct a 
successive condition to force the requirements. 

§2. Preliminaries. We say X codes an ordered fc-partition of oo iff X = X\ © 
k 

X2 © • • • © Xk and (J X-t = oo, {not necessarily with Xt n Xj = 0). A k-partition 
; = 1 

class is a non-empty collection of sets, where each set codes a ^-partition of oo. A 
tree T C 2<m is an ordered k -partition tree of oo iff every a e T codes an ordered 
/:-partition of {0,1 , \o\}. Note that the class of all ordered fc—partitions of co 
is a n " class. 

DEFINITION 2.1. For n many ordered k—partitions, X°, X"~l 

Cross{X°, X2,...,X"-1;2) = 0 Y(/-q) 

}<k.p<q<n — \ 

where Y\M) = X? n Xf, i.e., Y\p-q) is the intersection of those XP and X»'s j ' h 

part, with p =/= q. For n classes of ordered &—partitions So,Si,..., S„-\ 

CWSS(SQ, 5*i S„-1; 2) = { Y e 20J: there exists X1 £ 5/ for each i <n-\, 

Y = Cross{X0,...,X"-l:2)}. 
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Note that if each S, is a ITj class, then let Tt be computable tree with [T,] = 5,, 
operation Cross can be defined on strings of {0,1} in a nature way, therefore there 
exists a computable tree T C 2<0J such that T = Cross(TQ, T\, Tn-\\2)- So 
[T] = Cwss(S0,Su...,S„-u2) i.e., Cross{S0,SU-..,Sn-\;2) is a IT? class. 

DEFINITION 2.2. (1) A valuation is a finite partial function co -» 2. 
(2) A valuation/) is correct if p(n) ^ 0 „ ( n ) | for all n e d o m p . 
(3) Valuations p, q are incompatible if there is an n such that p(n) ^ q(n). 

We try to ensure that G satisfies the following requirements. 
To ensure that (G n A) and (G n A) are infinite, we will satisfy the requirements 

Qm:\GnA\>mA\GnA~\>m. 

To ensure that (G n A) © C does not have PA-degree, we would need to satisfy the 
requirements 

RA. Qianmc t Q t a l ^ ( 3 „ ) [ 0 ( G n ^ © c ( „ ) = O B ( « ) | ] . 

Intuitively, 7?^ is to ensure (G n /4) © C does not compute any 2-DNR via Oc. 
(Without loss of generality we assume all <i>0, <I>i,... in this paper are {0,1}-valued 
functionals.) Similarly, to ensure (G HA) © C does not compute any 2-DNR via <S>e, 
we try to make G satisfy 

Rf: 4>fn^c total => (3«)[<Dr
(Gn^®r(«) = 4 > » | ] . 

Thus we will satisfy the requirements 

ReA '• R-e V R-i • 

These requirements suffice to provide a desired G. Note that if there is some e 
that G does not satisfy Rf then G must satisfy all Rf since G satisfy /?,,.,• for all i. 
This implies G n A is not of PA-degree. See also [1], [2]. 

Before we introduce the forcing condition, to get some intuition, we firstly demon­
strate the construction of the first step. 

§3. First step. Suppose we wish to satisfy Re, that is: 

either (3«)[(<D<Gn/,)®c(«) = 0 „ ( « ) | ) v O f n ^ ) e c is not total], 

or (3«)[((D|G n^e c(n) = <bn(n)l) V <t>jGnI )ec is not total]. 

CASE i. Try to find a correct /? such that 

(\/X = X0 © Xi, X0 U Xi = co)Op3n G domp) 

[ 0 ( , n * „ ) e c W ; = 0 B ( M ) ; ^ p{n) v 0(^Jf,)ec( / j ) 4_ = 0 B ( M ) ; _, p{n)^ ( 0 

Note that substitute Ao = ^4, Xi — Ain above sentence, there is a /? G 2<(" such 

that <D!/'n'')ffiC(«)| = *« (« ) ! V *j ' n i 4 ) e c ( i i )4. = 0„(«) | . Therefore finitely extend 
initial segment requirement to p and set P\ = {co}. 7b satisfy Rej, we ensure 
Gyp. Clearly all G y p satisfy Rei. 
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CASEii. Try to find three pairwise incompatible partial functions p,•: co —> {0,1}, 
/ = 0 , 1 , 2 that ensure the following n " classes are non-empty: 

S, = {X = X0 © X\: X{) U Xx = to 

A [(VZ)(Vn G domPi) A^{
e
ZnX"]®CMi + />,-(«)) 

A.(<I»r'»ff iCW|^,(«))]}. 

Let 

Pi = Cwss(S0,Si,S2;2) 

i.e., (vr G P\) r = r0 © r, © r2 © r3 © r4 © r5 
(3Xi] G SQ 3Xl G 5*i 3X2 G S2) X'' = XQ' © JST/ for / = 0,1,2 such that 

Y0 = xg n x0>, r, = xj n xl Y2 = xi n x0°, 
r3 = î° n xl, r4 = xl n if, r5 = x\ n xf. 

Note: 

(1) 5, is a n" class of ordered 2-partitions for all / < 2; 
(2) Of(bC is not total on any G C r,, for / = 0,1,2 and Of® c is not total on any 

G C y,-, for / = 3,4, 5. To see this, suppose for some 6 C y0, <j>f ©c
 o u t puts 

on both dom/>o,dom/?i. Let po(n) =£ p\{n) then either O f e c ( « ) ^ po(n) 
or Of ®c(") ^ pi(n). (Recall that we assume that all O are {0, l}-valued.) 
Suppose it is the former case, but G C YQQXQ, XQ © X® G So, by definition 
of So Of ® c ( « ) | =» Of®c(«) = />„(«); 

(3) Pi is a ITJ class. Though seemingly not, but note that each «S, is a IT) class 
therefore there are computable trees T,, i < 2k, such that [T;] = S, for all i, 
furthermore Cross can be applied to binary strings and is computable in this 
sense, thus there exists some computable tree T[ = Cross(To, T\,Ti,2) with 

(4) IJ/=0 Yj = a). (See Lemma 6.5, this is just the pigeonhole principle. This is 
why we choose three pairwise incompatible valuations at this step.) 

To satisfy Rei, we ensure that for some path Y G Pi, Y = YQ® Y\ © • • • © Y5, 
G will be contained in some F,. By item 2 in above note, Rej is satisfied. 

We will show in Lemma 6.6 that if there is no correct valuation as in case i then 
there must exist such three incompatible valuations i.e., either case i or case ii occurs. 

Now we give the framework of our construction i.e., the forcing conditions. 

§4. Tree forcing. Let a G 2<0J and let X be either an element of 2cy or an element 
of 2<co of length at least the same as that of a. Here and below, we write X/a for 
the set obtained by replacing the first \a\ many bits of X by a. 

We will use conditions that are elaborations on Mathias forcing conditions. Here 
a Mathias condition is a pair {a,X) with a G 2<co and X G 2m. The Mathias 
condition (T, Y) extends the Mathias condition {a, X) if a •< x and Y/x C X/a. A 
set G satisfies the Mathias condition (a, X) iff a -< G and G C X/a. 

We will be interested in n " x ^-partition classes, that is, H j C classes that are also 
/c-partition classes. 
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DEFINITION 4.1. A condition is a tuple of the form (k,oo Gk-\.P), where 
k > 0, each tr, 6 2<co, and in this paper P is a non-empty n " x ^-partition class. 
We think of each XQ © • • • © Xk-\ G P as representing k many Mathias conditions 
(07, X,) for i < k. 

DEFINITION 4.2. A condition 

d = (m, To, • • •, Tm_i, 2 ) extends c = (k, o$,.... a>-i. P). 

also denoted by d < c, iff there is a function / : m —> k with the following property: 
for each F0 © • • • ffi Fm_! e Q there is an Xo © • • • © Xk_\ € P such that each 
Mathias condition (T,, F,) extends the Mathias condition (<r/•(,-),^/(/))- In this 
case, we say that / witnesses this extension, and that part i of d refines part f{i) 
of c. (Whenever we say that a condition extends another, we assume we have fixed 
a function witnessing this extension.) 

DEFINITION 4.3. A set G satisfies the condition (k, OQ o>_1, P) iff there is an 
Xo ffi • • • © Xk-i £ P such that G satisfies some Mathias condition (<T,. X,). In this 
case, we also say that G satisfies this condition on part i. 

DEFINITION4.4. (1) A condition (k,oa,... ,Gk-\*P) forces Qm on part i iff 
|CT fl /4| > m A |CT C\A\ > m. Clearly, if G satisfies such a condition on part /, 
then G satisfies requirement Qm. (Note that if c forces Qm on part /, and 
part j of d refines part / of c, then d forces Qm on part j.) 

(2) A condition forces Rei on part j iff every G satisfying this condition on part 
j also satisfies requirement Re,. A condition forces Rej iff it forces Rej on 
each of its parts. (Note that if c forces Re.j on part /, and part j of d refines 
part / of c, then d forces Rei on part j . Therefore, if c forces Rei and d 
extends c, then d forces Rej.) 

DEFINITION 4.5. For a condition c = (k, co» • • •, Qk-\, P)> w e saY that part i of c 
is acceptable if there is an Xo ffi • • • ffi Xk-\ G P such that X, n A and X, n A are 
both infinite. 

For example, in the first step, Po = {»}, ko = 1, O-Q = A, and for every F e P\ Y 
isoftheform Y = 0 ^ = o Yh Clearly F, C Xf]{i), where Z / ] ( 0 = w e A). / i ( / ) = 0 
for all / witnesses this extension relation. 

Note that it is not the case that for every X' 6 P' there exists a single X e P such 
that (Vi < A:' - 1) [K, XI) < (af{i),Xf{l))}. 

4.1. The general plan. The proof will consist of establishing the following two 
lemmas. The proof of the second lemma is the core of the argument. 

LEMMA 4.6. Every condition has an acceptable part. Therefore for every condition c 
and every m, there is a condition d extending c such that d forces Qm on each of its 
acceptable parts. 

LEMMA 4.7. For every condition c and every e and i, there is a condition d extend­
ing c that forces Rei. 

PROOF OF THEOREM 1.5. Given these lemmas, it is easy to see that we can build a 
sequence of conditions Co, c\,... with the following properties. 

(1) Each cs+\ extends cs. 
(2) If s = (e, i) then c„ forces Rei. 
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(3) Each f.v has an acceptable part. 
(4) If part / of cs is acceptable, then cs forces Qs on part /. 

Clearly, if part j of cs+\ refines part / of cs and is acceptable, then part / of cs is also 
acceptable. Thus we can think of the acceptable parts of our conditions as forming 
a tree under the refinement relation. This tree is finitely branching and infinite, so 
it has an infinite path. In other words, there are z'o, i\ such that for each s, part 
is+\ of c.v+i refines part /, of c.v, and part is of cs is acceptable, which implies that cs 

forces Qs on part is. Write cs = {ks, O Q , . . . , as
k _X,PS). Let G = [js of. Let Us be 

the class of all Y that satisfy (<r?. Xi%) for some X0 © • • • © Xks-\ £ Ps. Note that 

• U()D U} D ...\ Since G £ Us+i <=> (3X e Ps+i)[G satisfies (orft+|,A^,)] => 

(3Z G />. ) [ (<+ ' , Xis(l) < (<,Z,-.)A G satisfies (CT^.Z,,)] <̂> G+G C/,. 
• Each Ux contains an extension of CT/ i.e., Us ^ 0; 
• Each C/v is closed; 

By compactness of 2W f| Us ^ 0. But clearly (VZ e f| US)[Z >- af] for all s. 
.v=0 j=0 

oo 

Thus G is the unique element of f] Us. In other words, G satisfies each cs on 
.s-=0 

part /.,, and hence satisfies all of our requirements. 

§5. Proof of Lemma 4.6. 

PROOF OF LEMMA 4.6. It is here that we use the assumption that A ^ T C. Let 
c = (k, fT0 , <7/t_i, P) be a condition. Write Px for the set of all X e P that 
extend r. 

CLAIM. .For ead* r = To © • • • © r/t_ i, i/Pt 7̂  0 then there is an X0 © • • • © A^_ 1 € P r 

a«t/an i < k such that Xt contains elements m £ A and n G A such that m,n > \r,• |. 

Assuming the claim for now, we build a sequence of strings as follows. Let p° 
be the empty string. Given ps = ps

Q © • • • © ps
k_x such that Pp* is non-empty, let 

X = Xo © • • • © Xk-\ S Pp* and 4 < k be such that A .̂ contains elements m e A 
and n £ A with m,n > \p"u \. Then there is a ps+\ = ps

0
+l © • • • © ps

k
+_}x -< X such 

that, thinking of strings as finite sets, p*+x \ pi contains elements of both A and A. 
Now let Y = Uv ps and let i be such that i = is for infinitely many s. Then F e ? 
and Y witnesses the fact that part;' of c is acceptable. 

Fix m. To obtain the desired d < c that forces Qm on each of its acceptable 
part. It is enough to show that for the condition c = (k,oo,..., Ok-\»P), if P a r t ' 
of c is acceptable, then there is a condition do = (&, To,..., tk-i, Q) extending c 
such that do forces Qm on part /, where the extension of c by do is witnessed by the 
identity map. (Note that if part / of Jo is acceptable, then so is part i of c.) Then 
we can iterate this process, forcing Qm on each acceptable part in turn, to obtain 
the condition d in the statement of the lemma. 

So fix an acceptable part / of c. Then there is a x >- er, with |T n A\ > m and 
|T n ~A\ > m, and there is an X0 © • • • © Xk-i £ P with T -<( A /̂cr,-. Let Q = 
{A'offi---©A'yt_i e P : T -<; A^/CT,-}. Let J0 = (k.o0,...,Oi-uT;,(ri+\,...,(rk-i,Q)-
Then rf0 is an extension of c, with the identity function id: —> k witness this 
extension and it clearly forces Qm on part /. 

Thus we are left with verifying the claim. 
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PROOF OF THE CLAIM. Assume for a contradiction that there is a x = roffi- • -©T^-I 

such that PT ^ 0 and for every XQ © • • • © X*_i G PT and every i < k, either 
•̂ i t>|T,-| ^ ^ or X, |">|Ti.| C A. It is easy to see that x has an extension 
v = vo © • • • © Vfe-i such that Pv ^ 0 and for each ;'<£:, either v,(m,) = 1 for some 
mi > \XJ\ or for every Zo © • • • © Xk-i £ A . we have X-t \>\z,\ = 0. In the latter 
case, let m, be undefined. Let SA be the set of all / < k such that m, is defined and 
is in A, and let S^ be the set of all / < k such that w, is defined and is in A. If 
XQ © • • • © Zfc_i G Pv, then X,- |">|T.| C A for all i 6 S^, and Xt f>|T.| C Z for all 

We now claim we can compute A from C, contrary to hypothesis. To see that this 
is the case, let T be a C-computable tree such that Pv is the set of infinite paths of T. 
For p £ T, write Tp for the tree of all strings in T compatible with p. Suppose we 
are given n > \x\. Let j > |v| be such that for each p = p0 © • • • © pu-\ of length j , 
we have n <\pt\ for all i < k. Let LA be the set of all p £ T of length j such that 
Pi(n) = 1 for some / G SA and let L-j be the set of all p £ T of length j such that 
Pi(n) = 1 for some ;' G S^. If/? e L^ and 7^ has an infinite path then, by the 
definition of SA, we have n G A. Similarly, if p £ Lj and 7^ has an infinite path 
then n £ A. Thus, if p £ LA and /?' £ Lj, then at least one of Tp and 7,,' must 
be finite. So if we C -compute 7 and start removing form LA and L^ every p such 
that 7P is found to be finite, one of LA or L^ will eventually be empty. They cannot 
both be empty because Pv is non-empty. If LA becomes empty, then n £ A. If L-^ 
becomes empty, then n £ A. H 

H 

We now turn to the proof of Lemma 4.7. 

§6. Forcing Rei. 

DEFINITION 6.1. (1) 0£®c disagrees with a valuation /> on a set X iff there is a 
Y C X and an n G dom/?, Oe

r/',®c(n) ^ /?(«); 
(2) Let c = (&, (To, • • • ,&k-\,P) be a condition, /> be a valuation and U C 

{ 0 , 1 , . . . , k — 1}. We say that c disagrees with p on [/ if for every A"o © • • • © 
Zfc_i G P and every Z0, Z\,..., Z2/C-1 with (V/) [A7 = Z21 U Z2/+i], there is 

a F, a 7 G f/(c), and an n G dom/? such that either <be
 2' "' (n)i ^ 

/?(n)orO(. (M)I 7^/>(«)• 

The following facts illustrate the central idea of the construction. 

FACT 6.2. For two pairwise incompatible valuations p0,p\, if <Pp does not dis­
agree with both po,p\, on set X. Then for any Y C X, <£>Y/p is not total on 
dom^o U dom^i . 

FACT 6.3. If <f>p does not disagree with p on a set X then for any Y C X,(£>p does 
not disagree with p on set F. 

Therefore, 

FACT 6.4. For two incompatible valuations po, p\. If O^ does not disagree with 
po on a set X0, and does not disagree with p\ ona set X\ then for any F C I 0 n l i , 
<bYlf is not total on dom/?o U dom/?i. 
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The following lemma tells how to ensure that the tree of each condition is an 
ordered partition tree. 

LEMMA 6.5. For any n many orderedlk —partitions ofw,namely X°, X1 X"""', 
ifn > 2k then Cross{Xi], X{,.... A"'"1; 2) is a 2k (") -partition. Therefore ifS0, S2, 
.... Sn-1 are n elasses of ordered 2k-partitions ofco then Cross(So, S\,..., Sn; 2) is a 
class of 2k ("^-partition ofcu. 

PROOF. Straightforward by pigeonhole principle. It suffices to show that for any 
x G a>, there is some / < 2k - 1, some XP. Xi, p ^ q, such that XP = © ^ ' Xf', 

Xi = © " o ' X^xeXfriX?. For/ = 0 ,2 , . . . , 2k-I let Ff = {p < n-\: £ Xf}. 
Since each Xp is an ordered partition, therefore for each p there exists some i such 

2 / t - l 

t h a t p G Fj. So \J Fj = {0.1,2 « — 1}. But n > 2k thus there is some 

/ < 2k — 1 such that F, contains two elements say p, q, thus x G Xf (1 Xf. -\ 

6.1. Construction. Fix e.i and a condition c = (k,ao,...,ak-i,P). For any 
condition d. let U(d) be the set of all j such that part j of d does not force Rei 

on part y. If U{d) = 0 then there is nothing to prove, so we assume U{d) ^ 0. It 
is clearly enough to obtain a condition d extending c such that \U(d)\ < \U(c)\. 
Then one could simply iterate this process. Here and below, we write aA for the 
string of the same length as a defined by aA(n) = 1 iff a{n) = 1 l\n G A, and 
similarly foro"4. 

We will use two ways to extend conditions. 

Begin construction: 
CASE I. C disagrees with some correct valuation p on U(c). 
Let Xu © • • • © Xk_{ G P. For j = 0 , 1 . . . . , k - 1 let Z2j = Xj D A and Z2J+\ = 

XjdA. By the definition of disagreeing with a correct valuation on U(c), there exists 

aj G U{c). an « G dom/7 and a y such that either <De
 2l "•' ( n ) | = O n («) |or 

0 ; ( , , n Z 2 ' " ^ ) f " c ( „ ) 4 . = o » | . In other words, either 0<r/CT'n^)ff iC(«)| = 0„(«H 

orO, («)4. = <D„(«)4.. 
If T is a sufficiently long initial segment of Y, then for every Z extending T, we 

have either <S>iznA)'bC(n)l = 0 „ ( « ) | or <DJZn/ , )0C(«)| = <D„(w)4.. We may assume 
thatr >: Oj. Let Q be the class of all Wo®- • -® H^_i G Psuchtha t t , thoughtofas 
a finite set, is a subset of Wj/o y and let d = (k.oo,..., ffy-i, T, oy+i, . . . , crA:_1, g ) . 
Note that <2 is a non-empty n " c class since it contains Xo © • • • © A^_i. Clearly G? 
is an extension of c, with the identity function id: k —> k witnessing this extension 
relation, and clearly d forces Rei on part j , so that | U{d)\ < \ U(c)\. 

CASE II. There are pairwise incompatible valuations po,..., p2k such that c does 
not disagree with any pi on U(c). We will show in Lemma 6.6 that these are the 
only two cases that will occur. 

For each I <2k let Si be the class of all sets of the form Z0 © • • • © Z2k_\ such 
that (Z0 U Z,) © (Z2 U Z3) © • • • © (Z2k_2 U Z ^ - i ) G P and for all y G (7(c), 

every « G dom/j/, every r we have, neither <Pe (n)l f= pi\n) nor 
( rnz 2 / M ) /a ; ' f ! ) r , > , 

<£,. (n)i^pi(n). 
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Since c does not disagree with any of the pi on U(c), all Si are non-empty. It is 
then easy to see that each Si is in fact a H°{c 2£-partition class. 

Let Q = Cross(S0, ...,S2k;2) and let 

d = (iki J,o-0,... ,o-0,o"i,... ,cri, a^_i cr/t_i, Q J , 

where each at appears 2(2/c+1) many times. We show that d is a condition extend­
ing c, and d forces Rei. 

(1) Since each Si is non-empty therefore Q is non-empty. Furthermore, since 
each Sj is a Tl°{C class then Q is also a U°{C class. Because Cross, when 
applied to strings, is computable therefore by applying Cross to the 2k + 1 
computable trees Tt with |T,] = St one obtains a computable tree T with 
[T] = e. 

(2) 2 is a class of ordered 2/c(2A:
2

+1)-partitions of co. To see this, note that Sj, 
i < 2k, are 2k + 1 classes of ordered 2^-partitions of co, by Lemma 6.5 Q 
is a class of ordered 2fc(2Ar

2
+1) -partitions of co. Therefore combine with item 

1 and recall the fact that the initial segments in d are not changed, it follows 
that d is a condition. 

(3) For each new part i' of d and every W0 © W\ ffi • • • © Ww-\ G Q, where 
k' = 2k(2k2l), there exists X0 © Xx ffi • • • ffi Zfc_i € P, and / < k - 1 with 
Wj>/cjj> C Xj/oj, and <r, = ay, i.e., each new part is contained in an old 
part of some path through P. It follows that d extends c. To see this, note 
that by definition of P for each i' < k' - 1 there exist p,q < 2k, p ^ q 
and j < 2k - 1 determined by /', such that {\/W e Q){3XP e Sp 3X* G 
Sq) [Wr = Xf n X]]. Furthermore, by definition of Sp, Xf U Xf = 
Xt for some j 1 < 2k - 1, and some X = Xa ffi X\ ffi • • • ffi Xk_\ G P. 
Therefore 

wv = xf n xj c jsr/ c */ u xf = xt 

i.e., each part V of each W G Q is contained in some part i of some X & P. 
(4) d forces 7?e>(. To see this, let G satisfy d. Then there is some j < k, some 

a ^ b <2k + l, some Z0 ffi • • • ffi Z2/t-i G 5 a , and some W0®---® W2k-\ G 
5A such that G satisfies one of the Mathias conditions {OJ,Z2J n W2i) or 
{oj,Ztj+\ n W2j+\)- Then G satisfies c on part y, so if y ^ f/(c), then G 
satisfies Pve>;. So assume y G U(c). 

Let us suppose G satisfies (oy, Z2j fl W2/)> the other case being similar. 
Then (G n ^)/oy satisfies both of the Mathias conditions {o~j,Z2j) and 
(ay, PP ŷ)• Let n be such that pa{n) ^ Pb(n). By the definitions of Sa 

and Sb, we have - (0<G n" ) f f i C («) | ^ pa(n)) and -n(0<Gn/,)eC(#iH ^ />6(/i)). 
Hence we must have ®{

e
GnA](SC{n)t. Thus d forces P,,,. 

£W of construction. 

It remains to prove that 

LEMMA 6.6. For a valuation p, let Sp be the n ° c class of all Zo ffi • • • ffi Z2k- i w/f/i 
Zo U Z\ ffi • • • ffi Z2k-2 U Z2/t_i G P such that for every j E U(c), every ju G 2VJ, and 
every n G dorap, 

https://doi.org/10.2178/jsl/1333566640 Published online by Cambridge University Press

https://doi.org/10.2178/jsl/1333566640


RT; DOES NOT IMPLY WKL, 619 

• neither <ve («)[|/"|]4 T P\n)> 

• nor O, (")[M]I ^ />(«)• 
One of the following must hold. 

(1) There is a correct valuation p such that Sp is empty i.e., c disagrees with the 
correct p on U(c). 

(2) There are pairwise incompatible valuations po,...,p2k sucn that Sp is not 
empty i.e., c does not disagree with pi on U{c) for all I <2k. 

PROOF OF LEMMA 6.6. We note that item 1 and item 2 are equivalent to case i and 
case ii respectively. Furthermore Sp is a n " c class uniformly in p. Consequently 
for each j < k, the set of all valuations p such that c disagrees with p on U(c) is 
C-c.e. Let E denote this C-c.e. set of valuations. 

Assume that alternative 1 above does not hold. Since C does not have PA-degree, 
there is no C-computable function h such that if On(«)4- then h(n) ^ 0„(«). 

Let S be the collection of all finite sets F such that for each n <£ F, either <B„(K)| 

or there is a p e E such tha tF U {«} C Aomp and for every m G dom p\F U {«}, 
we have p{m) ^ O m (w) | . If F £ S, then there is at least one n <£ F for which the 
above does not hold. We say that any such n witnesses that F £ S. 

First suppose that 0 e S. Then for each n, either 0„(«)4. or there is a p € E 
such that n e domp and for every m ^ n in domp, we have p(m) ^ <bm(m)\.. 
Then we can define h < T C by waiting until either Q>n{n)\., in which case we let 
h(n) = 1 - On(«), or a p as above enters E, in which case we let h{n) = 1 — p(n). 
Since no element of E is correct, in the latter case, if 0„{n)i then p(n) = <£„(«), so 
h(n) = On(«). Since C does not have PA-degree, this case cannot occur. 

Thus 0 ^ 5 . Let «o witness this fact. Given HQ, ..., rij, if {no,...,«/} ^ S\ then 
let tij+i witness this fact. Note that if nj is defined then <DH/(«,-)!• 

Suppose that for some j , we have {«o, «/} £ 5. Then {«o, • • •, « / - i} ^ 5"> 
as otherwise « ; would not be defined. We define h < T C as follows. First, let 
M«/) = 0 for / < _/'. Given n <£ {no,... ,nj}, we wait until either <Pn(n)i, in which 
case we let h(n) = 1 - 0„(«), or a p enters £" such that {no,... ,rtj,n} C dom^ 
and for every w 6 dom/> \ { « 0 , . . . , « / , « } , we have p(m) ^ O m (w) | . If<t>„(n)t 
then the latter case must occur, since {no,..., n,-} e S. In this case, we cannot have 
p(n) ^ <t>„(n)l, as then p would be a counterexample to the fact that rtj witnesses 
that {no,..., «7_i} ^ S. Thus we can let h(n) = 1 - p{n). Again, since C does not 
have PA-degree, this case cannot occur. 

Thus {no,... ,nj} £ S for all j . There are 27+1 many valuations with domain 
{no,... ,nj}, and they are all pairwise incompatible. None of these valuations can 
be in E, as that would contradict the fact that« ; witnesses that {n0, • • •, w/-i} ^ S. 
Taking j large enough, we have 2k +1 many pairwise incompatible valuations, none 
of which are in E. H 
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