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Abstract

We show that, in an inner product space H, the inequality
1
2 [‖x‖ ‖y‖ + |〈x, y〉|] ≥ |〈Px, y〉|

is true for any vectors x, y and a projection P : H → H. Applications to norm and numerical radius
inequalities of two bounded operators are given.
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1. Introduction

Let (H, 〈·, ·〉) be an inner product space over the real or complex number field K. The
following inequality is well known in the literature as the Schwarz inequality

‖x‖ ‖y‖ ≥ |〈x, y〉| for any x, y ∈ H. (1.1)

Equality holds in (1.1) if and only if there exists a constant λ ∈ K such that x = λy.
In 1985, the author [2] (see also [5, page 38]) established the following refinement

of (1.1):
‖x‖ ‖y‖ ≥ |〈x, y〉 − 〈x, e〉〈e, y〉| + |〈x, e〉〈e, y〉| ≥ |〈x, y〉| (1.2)

for any x, y, e ∈ H with ‖e‖ = 1.
Using the triangle inequality for the modulus, (1.2) yields

‖x‖ ‖y‖ ≥ |〈x, y〉 − 〈x, e〉〈e, y〉| + |〈x, e〉〈e, y〉| ≥ 2|〈x, e〉〈e, y〉| − |〈x, y〉|,

which implies the Buzano inequality [1]
1
2 [‖x‖ ‖y‖ + |〈x, y〉|] ≥ |〈x, e〉〈e, y〉|, (1.3)

which holds for any x, y, e ∈ H with ‖e‖ = 1.
For other Schwarz and Buzano related inequalities in inner product spaces, see the

monographs [3, 5, 7].
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2. Buzano’s inequality for projection

Assume that P : H → H is an orthogonal projection on H, namely, it satisfies the
condition P2 = P = P∗. We obviously have in the operator order of B(H), the Banach
algebra of all linear bounded operators on H, that 0 ≤ P ≤ 1H .

A family {e j} j∈J of vectors in H is called orthonormal if

e j ⊥ ek for any j, k ∈ J with j , k and ‖e j‖ = 1 for any j ∈ J.

If the linear span of the family {e j} j∈J is dense in H, it is an orthonormal basis in H.
For an orthonormal family E = {e j} j∈J , we define the operator PE : H → H by

PEx :=
∑
j∈J

〈x, e j〉e j, x ∈ H.

Then PE is an orthogonal projection and

〈PEx, y〉 =
∑
j∈J

〈x, e j〉〈e j, y〉, x, y ∈ H and 〈PEx, x〉 =
∑
j∈J

|〈x, e j〉|
2, x ∈ H.

The particular case when the family reduces to one vector, namely, E = {e}, ‖e‖ = 1, is
of interest since, in this case, Pex := 〈x, e〉e, x ∈ H,

〈Pex, y〉 = 〈x, e〉〈e, y〉, x, y ∈ H

and Buzano’s inequality can be written as

1
2 [‖x‖ ‖y‖ + |〈x, y〉|] ≥ |〈Pex, y〉|, x, y, e ∈ H with ‖e‖ = 1.

The following result holds.

Theorem 2.1. Let P : H→ H be an orthogonal projection on H. Then, for any x, y ∈ H,

1
2 [‖x‖ ‖y‖ + |〈x, y〉|] ≥ |〈Px, y〉|. (2.1)

Proof. From the properties of projection,

〈x − Px, y − Py〉 = 〈x, y〉 − 〈Px, y〉 − 〈x, Py〉 + 〈Px, Py〉

= 〈x, y〉 − 2〈Px, y〉 + 〈P2x, y〉 = 〈x, y〉 − 〈Px, y〉 (2.2)

for any x, y ∈ H. By the Schwarz inequality,

‖x − Px‖2 ‖y − Py‖2 ≥ |〈x − Px, y − Py〉|2 (2.3)

for any x, y ∈ H.
Since, by (2.2), ‖x − Px‖2 = ‖x‖2 − 〈Px, x〉 and ‖y − Py‖2 = ‖y‖2 − 〈Py, y〉, then, by

(2.3), for any x, y ∈ H,

(‖x‖2 − 〈Px, x〉)(‖y‖2 − 〈Py, y〉) ≥ |〈x, y〉 − 〈Px, y〉|2. (2.4)
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By the elementary inequality (ac − bd)2 ≥ (a2 − b2)(c2 − d2), which holds for any real
numbers a, b, c, d,

(‖x‖ ‖y‖ − 〈Px, x〉1/2〈Py, y〉1/2)2 ≥ (‖x‖2 − 〈Px, x〉)(‖y‖2 − 〈Py, y〉) (2.5)

for any x, y ∈ H. Since ‖x‖ ≥ 〈Px, x〉1/2 and ‖y‖ ≥ 〈Py, y〉1/2, then

‖x‖ ‖y‖ − 〈Px, x〉1/2〈Py, y〉1/2 ≥ 0,

for any x, y ∈ H. Now, by (2.4) and (2.5),

(‖x‖ ‖y‖ − 〈Px, x〉1/2〈Py, y〉1/2)2 ≥ |〈x, y〉 − 〈Px, y〉|2

for any x, y ∈ H, which, by taking the square root, is equivalent to

‖x‖ ‖y‖ ≥ 〈Px, x〉1/2〈Py, y〉1/2 + |〈x, y〉 − 〈Px, y〉| (2.6)

for any x, y ∈ H. By the Schwarz inequality for nonnegative operators,

〈Px, x〉1/2〈Py, y〉1/2 ≥ |〈Px, y〉| (2.7)

for any x, y ∈ H. On making use of (2.6), (2.7) and the triangle inequality for the
modulus,

‖x‖ ‖y‖ ≥ 〈Px, x〉1/2〈Py, y〉1/2 + |〈x, y〉 − 〈Px, y〉|
≥ |〈Px, y〉| + |〈x, y〉 − 〈Px, y〉| ≥ |〈Px, y〉| + |〈Px, y〉| − |〈x, y〉|,

which is equivalent to the desired result (2.1). �

Let E = {e j} j∈J be an orthonormal family in H. From Theorem 2.1, for any x, y ∈ H,

1
2

[‖x‖ ‖y‖ + |〈x, y〉|] ≥
∣∣∣∣∣∑

j∈J

〈x, e j〉〈e j, y〉
∣∣∣∣∣. (2.8)

The inequality (2.8) provides a generalisation of Buzano’s inequality for orthonormal
families E = {e j} j∈J .

3. Inequalities for the norm and numerical radius

Let (H; 〈·, ·〉) be a complex Hilbert space. The numerical range of an operator T is
the subset of the complex numbers C given by [8, page 1]

W(T ) = {〈T x, x〉, x ∈ H, ‖x‖ = 1}.

The numerical radius w(T ) of an operator T on H is defined by [8, page 8]

w(T ) = sup{|λ|, λ ∈ W(T )} = sup{|〈T x, x〉|, ‖x‖ = 1}.

It is well known that w(·) is a norm on the Banach algebra B(H) and therefore

w(T ) ≤ ‖T‖ ≤ 2w(T ) for any T ∈ B(H).

Utilising Buzano’s inequality (1.3), we obtained the following inequality for the
numerical radius (see [4] or [6]).
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Theorem 3.1. Let (H; 〈·, ·〉) be a Hilbert space and T : H → H a bounded linear
operator on H. Then

w2(T ) ≤ 1
2 [w

(
T 2) + ‖T‖2]. (3.1)

The constant 1
2 is the best possible in (3.1).

The following theorem gives a general result for the product of two operators
[8, page 37].

Theorem 3.2. If A, B are two bounded linear operators on the Hilbert space (H, 〈·, ·〉),
then w(AB) ≤ 4w(A)w(B). In the case in which AB = BA, then w(AB) ≤ 2w(A)w(B).
The constant two is the best possible here.

The following results are also well known [8, page 38].

Theorem 3.3. If A is a unitary operator that commutes with another operator B, then

w(AB) ≤ w(B). (3.2)

If A is an isometry and AB = BA, then (3.2) also holds true.

We say that A and B double commute if AB = BA and AB∗ = B∗A. The following
result holds [8, page 38].

Theorem 3.4. If the operators A and B double commute, then

w(AB) ≤ w(B)‖A‖.

As a consequence of the above, we have the following corollary [8, page 39].

Corollary 3.5. Let A be a normal operator commuting with B. Then

w(AB) ≤ w(A)w(B).

For other inequalities for the numerical radius, see the recent monograph [7] and
the references therein.

Theorem 3.6. Let P : H → H be an orthogonal projection on the Hilbert space
(H, 〈·, ·〉). If A, B are two bounded linear operators on H, then

|〈BPAx, x〉| ≤ 1
2 [‖Ax‖ ‖B∗x‖ + |〈BAx, x〉|] (3.3)

and
‖BPAx‖ ≤ 1

2 [‖Ax‖ ‖B‖ + ‖BAx‖] (3.4)

for any x ∈ H. Moreover,

w(BPA) ≤ 1
2 [‖A‖ ‖B‖ + w(BA)] (3.5)

and
‖BPA‖ ≤ 1

2 [‖A‖ ‖B‖ + ‖BA‖]. (3.6)
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Proof. From the inequality (2.1),

|〈PAx, B∗y〉| ≤ 1
2 [‖Ax‖ ‖B∗y‖ + |〈Ax, B∗y〉|].

This is equivalent to

|〈BPAx, y〉| ≤ 1
2 [‖Ax‖ ‖B∗y‖ + |〈BAx, y〉|] (3.7)

for any x, y ∈ H. If we take y = x in (3.7), then we get (3.3).
Taking the supremum over y ∈ H with ‖y‖ = 1 in (3.7) yields

‖BPAx‖ = sup
‖y‖=1
|〈BPAx, y〉| ≤

1
2

sup
‖y‖=1

[‖Ax‖ ‖B∗y‖ + |〈BAx, y〉|]

≤
1
2

[
‖Ax‖ sup

‖y‖=1
‖B∗y‖ + sup

‖y‖=1
|〈BAx, y〉|

]
=

1
2

[‖Ax‖ ‖B‖ + ‖BAx‖]

for any x ∈ H. The inequalities (3.5) and (3.6) follow from (3.3) and (3.4) by taking
the supremum over x ∈ H with ‖x‖ = 1. �

Corollary 3.7. Let P : H → H be an orthogonal projection on the Hilbert space
(H, 〈·, ·〉). If A, B are two bounded linear operators on H, then

|〈APAx, x〉| ≤ 1
2 [‖Ax‖ ‖A∗x‖ + |〈A2x, x〉|]

and
‖APAx‖ ≤ 1

2 [‖Ax‖ ‖A‖ + ‖A2x‖]

for any x ∈ H. Moreover,

w(APA) ≤ 1
2 [‖A‖2 + w(A2)]

and
‖APA‖ ≤ 1

2 [‖A‖2 + ‖A2‖].

Let e ∈ H with ‖e‖ = 1. If we write the inequalities (3.3) and (3.4) for the projection
Pe defined by Pex = 〈x, e〉e, x ∈ H, then

|〈Ax, e〉| |〈Be, x〉| ≤ 1
2 [‖Ax‖ ‖B∗x‖ + |〈BAx, x〉|] (3.8)

and
|〈Ax, e〉| ‖Be‖ ≤ 1

2 [‖Ax‖ ‖B‖ + ‖BAx‖] (3.9)

for any x ∈ H. Taking the supremum over x ∈ H, ‖x‖ = 1 in (3.9) yields

‖A∗e‖ ‖Be‖ ≤ 1
2 [‖A‖ ‖B‖ + ‖BA‖] (3.10)

for any e ∈ H, ‖e‖ = 1. If, in (3.10), we take B = A, then

‖A∗e‖ ‖Ae‖ ≤ 1
2 [‖A‖2 + ‖A2‖]

for any e ∈ H, ‖e‖ = 1. If, in (3.8), we take B = A, then

|〈Ax, e〉| |〈e, A∗x〉| ≤ 1
2 [‖Ax‖ ‖A∗x‖ + |〈A2x, x〉|]
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for any x ∈ H and e ∈ H with ‖e‖ = 1 and, in particular,

|〈Ae, e〉|2 ≤ 1
2 [‖Ae‖ ‖A∗e‖ + |〈A2e, e〉|] (3.11)

for any e ∈ H, ‖e‖ = 1. Taking the supremum over e ∈ H, ‖e‖ = 1 in (3.11), we
recapture the result in Theorem 3.1.

For a given operator T we consider the modulus of T defined as |T | := (T ∗T )1/2.

Corollary 3.8. Let P : H → H be an orthogonal projection on the Hilbert space
(H, 〈·, ·〉). If A, B are two bounded linear operators on H, then

w(BPA) ≤ 1
2 w(BA) + 1

4‖ |A|
2 + |B∗|2‖. (3.12)

In particular,
w(APA) ≤ 1

2 w(A2) + 1
4‖ |A|

2 + |A∗|2‖.

Proof. From the inequality (3.3),

|〈BPAx, x〉| ≤ 1
2 [‖Ax‖ ‖B∗x‖ + |〈BAx, x〉|]

≤ 1
2 |〈BAx, x〉| + 1

4 [‖Ax‖2 + ‖B∗x‖2] (3.13)

for any x ∈ H, where, for the second inequality, we used the elementary inequality

ab ≤ 1
2 (a2 + b2), a, b ∈ R.

Since

‖Ax‖2 + ‖B∗x‖2 = 〈Ax, Ax〉 + 〈B∗x, B∗x〉 = 〈A∗Ax, x〉 + 〈BB∗x, x〉

= 〈(|A|2 + |B∗|2)x, x〉

for any x ∈ H, then, from (3.13),

|〈BPAx, x〉| ≤ 1
2 |〈BAx, x〉| + 1

4 〈(|A|
2 + |B∗|2)x, x〉 (3.14)

for any x ∈ H. Taking the supremum over x ∈ H, ‖x‖ = 1 in (3.14) gives the desired
result (3.12). �

We observe, by (3.11), that

|〈Ae, e〉|2 ≤ 1
2 [‖Ae‖ ‖A∗e‖ + |〈A2e, e〉|]

≤ 1
2 |〈A

2e, e〉| + 1
4 [‖Ae‖2 + ‖A∗e‖2]

= 1
2 |〈A

2e, e〉| + 1
4 〈(|A|

2 + |A∗|2)e, e〉 (3.15)

for any e ∈ H with ‖e‖ = 1. Taking the supremum over e ∈ H, ‖e‖ = 1 in (3.15) gives

w2(A) ≤ 1
2 w(A2) + 1

4‖|A|
2 + |A∗|2‖, (3.16)

for any bounded linear operator A. Since

‖ |A|2 + |A∗|2‖ ≤ ‖ |A|2‖ + ‖ |A∗|2‖ = 2‖A‖2,

the inequality (3.16) is better than the inequality in Theorem 3.1.
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