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Abstract

In this paper, we deal with the multiplicity of solutions for a fourth-order impulsive differential equation
with a parameter. Using variational methods and a ‘three critical points’ theorem, we give some new
criteria to guarantee that the impulsive problem has at least three classical solutions. An example is also
given in order to illustrate the main results.
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1. Introduction

In this paper, we consider the fourth-order boundary value problem with impulses

u(4)(t)= λ f (t, u(t)) a.e. t ∈ [0, 1],

1(u′′(t j ))= I j (u′(t j )) j = 1, 2, . . . , l,

1(u′′′(t j ))= N j (u(t j )) j = 1, 2, . . . , l,

u(0)= u′(0)= u′′(1−)= 0

u′′′(1−)= g(u(1))

(1.1)

where λ is a positive parameter, f ∈ C([0, 1] × R, R), g, I j , N j ∈ C(R, R) for
1≤ j ≤ l, 0= t0 < t1 < t2 < · · ·< tl < tl+1 = 1,

1(u′′(t j ))= u′′(t+j )− u′′(t−j )= lim
t→t+j

u′′(t)− lim
t→t−j

u′′(t),

1(u′′′(t j ))= u′′′(t+j )− u′′′(t−j )= lim
t→t+j

u′′′(t)− lim
t→t−j

u′′′(t),

and where u′′(1−) and u′′′(1−) denote the left limits of u′′(t) and u′′′(t) at 1.
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This kind of problem without impulses arises in the study of deflections of elastic
beams on nonlinear elastic foundations. The problem has the following physical
description: a thin flexible elastic beam of length 1 is clamped at its left end t = 0 and
rests on an elastic device at its right end t = 1, which is given by g. Then, the problem
models the static equilibrium of the beam under a load, along its length, characterized
by f . The derivation of the model can be deduced from [26].

In recent years, a great deal of work has been done in the study of the existence of
solutions for impulsive boundary value problems (IBVPs), which describe a number of
chemotherapy, population dynamics, optimal control, ecology, industrial robotics and
physical phenomena. For general aspects of impulsive differential equations, we refer
the reader to the classical monograph [13]. For some general and recent works on the
theory of impulsive differential equations, we refer the reader to [1, 2, 11, 14, 18, 21].
Some classical tools have been used to study such problems in the literature. These
classical techniques and tools include the coincidence degree theory of Mawhin [19],
the method of upper and lower solutions with the monotone iterative technique [7], and
some fixed point theorems in cones [8, 9, 12]. More precisely, in [12], Karaca studied
the existence of positive solutions of the fourth-order impulsive differential equation

y(4) − q(t)y′′ = f (t, y(t)), t ∈ [a, c) ∪ (c, b],

α1 y(a)− β1 y′(a)= 0, γ1 y(b)+ δ1 y′(b)= 0,

y′′(c − 0)= d1 y′′(c + 0), y′′′(c − 0)= d2 y′′′(c + 0),

α2 y′′(a)− β2 y′′′(a)= 0, γ2 y′′(b)+ δ2 y′′′(b)= 0,

(1.2)

and the eigenvalue problem y(4) − q(t)y′′ = λ f (t, y(t)) with the same boundary
conditions where λ > 0. Using the Krasnosel’skiı̆ fixed point theorem, the author
obtained the existence and multiplicity of positive solutions for the IBVP (1.2) and
proved that the IBVP (1.2) with parameter λ has at least one positive solution when λ
lies in some positive interval.

On the other hand, in the last few years, many researchers have used variational
methods to study the existence and multiplicity of solutions for boundary value
problems without impulsive effects [3–6, 10, 15, 25]. For related basic information,
we refer the reader to [16, 20, 22].

Recently, some researchers have begun to study the existence of solutions for
IBVPs using variational methods. However, to the best of our knowledge with the
exception of [17, 23, 24, 28, 29], the study of solutions (in particular, the multiplicity
of solutions) for IBVPs using variational methods has received considerably less
attention. It may become a new powerful tool to deal with nonlinear problems with
some types of discontinuity such as impulses.

In [17], using variational methods and critical point theory, Nieto and O’Regan
studied the existence of solutions of the equation

−u′′(t)+ λu(t)= f (t, u(t)) a.e. t ∈ [0, T ],

1(u′(t j ))= I j (u(t j )) j = 1, 2, . . . , l,

u(0)= u(T )= 0,

(1.3)
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where f : [0, T ] × R→ R is continuous, and I j : R→ R, j = 1, 2, . . . , l, are
continuous. They proved that IBVP (1.3) has at least one solution when λ≥−π2/T 2.

In [28], Zhang and Ge studied the multiplicity of solutions of the equation
(8p(u′(t)))′ = (a(t)8p(u)+ λ f (t, u)+ µh(u))g(u′) a.e. t ∈ [0, 1],

1G(u′(ti ))= Ii (u(ti )) i = 1, 2, . . . , k,

α1u(0)− α2u′(0)= 0

β1u(1)+ β2u′(1)= 0

(1.4)

where p > 1, 8p(u)= |u|p−2u, λ, µ are positive parameters, and

G(u)=
∫ u

0

(p − 1)|s|p−2

g(s)
ds.

They proved that IBVP (1.4) has at least three solutions by using a three critical points
theorem.

Motivated by the above facts, in this paper, our aim is to study the multiplicity of
solutions for IBVP (1.1). To the best of our knowledge, there has so far no paper
concerning fourth-order impulsive differential equations using variational methods.
In addition, this paper is a generalization of [15], in which impulsive effects are not
involved.

This paper is organized as follows. In Section 2 we present some preliminaries.
In Section 3 we discuss the existence of three classical solutions to IBVP (1.1), and
present an example to illustrate our main results.

2. Preliminaries

Our main tool is the following three critical points theorem obtained in [5] (see
also [6, Theorem 2.1]).

THEOREM 2.1. Let X be a reflexive real Banach space, let 8 : X→ R be
a sequentially weakly lower semicontinuous, coercive and continuously Gâteau
differentiable functional whose Gâteau derivative admits a continuous inverse on X∗,
and let 9 : X→ R be a sequentially weakly upper semicontinuous and continuously
Gâteau differentiable functional whose Gâteau derivative is compact. Assume that
there exist r ∈ R and x0, x̄ ∈ X, with 8(x0) < r <8(x̄) and 9(x0)= 0 such that:

(A1) sup
8(x)≤r

9(x) < (r −8(x0))
9(x̄)

8(x̄)−8(x0)
;

(A2) for each

λ ∈3r :=

[
8(x̄)−8(x0)

9(x̄)
,

r −8(x0)

sup8(x)≤r 9(x)

]
,

the functional 8− λ9 is coercive.

Then for each λ ∈3r , the functional 8− λ9 has at least three distinct critical points
in X.
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Let us recall some basic knowledge. Denote the Hilbert space X by

X = {u ∈ H2([0, 1]) : u(0)= u′(0)= 0}

with the inner product

(u, v)=
∫ 1

0
u′′(t)v′′(t) dt, ∀u, v ∈ X,

which induces the norm

‖u‖X =

[∫ 1

0
|u′′(t)|2 dt

]1/2

,

where H2([0, 1]) is the Sobolev space of all functions u : [0, 1] → R such that u and
its distributional derivative u′ are absolutely continuous and u′′ belongs to L2([0, 1]).

We define the norm in C1([0, 1]) and L2([0, 1]) as ‖u‖ =max{‖u‖∞, ‖u′‖∞} and
‖u‖2 = [

∫ 1
0 |u|

2 dt]1/2, respectively.
For any u ∈ X , u and u′ are absolutely continuous and u′′ ∈ L2([0, 1]). In this

case, the one-side derivatives u′′(t+j ), u′′(t−j ), u′′′(t+j ) and u′′′(t−j ) may not exist.
As a consequence, we need to introduce a concept of solution. Suppose that u ∈
C1([0, 1]) with u(0)= u′(0)= 0. Moreover, assume that for every j = 0, 1, . . . , l,
u j = u|(t j ,t j+1) is such that u j ∈ C4(t j , t j+1). We say that u is a classical solution
of IBVP (1.1) if it satisfies the equation in IBVP (1.1) a.e. on [0, 1], the limits
u′′(t+j ), u′′(t−j ), u′′′(t+j ) and u′′′(t−j ), j = 1, 2, . . . , l, exist, u′′(1−), u′′′(1−) exist and
u′′(1−)= u′′′(1−)− g(u(1))= 0, and two kinds of impulsive conditions in IBVP (1.1)
hold.

For each u ∈ X , put

8(u) :=
1
2
‖u‖2X +

l∑
j=1

∫ u′(t j )

0
I j (s) ds −

l∑
j=1

∫ u(t j )

0
N j (s) ds +

∫ u(1)

0
g(s) ds,

(2.1)

9(u) :=
∫ 1

0
F(t, u) dt, (2.2)

where F(t, u)=
∫ u

0 f (t, s) ds.
Clearly,8 is a Gâteau differentiable functional whose Gâteau derivative at the point

u ∈ X is the functional 8′(u) ∈ X∗ given by

8′(u)(v)=
∫ 1

0
u′′v′′ dt +

l∑
j=1

I j (u
′(t j ))v

′(t j )−

l∑
j=1

N j (u(t j ))v(t j )+ g(u(1))v(1)

(2.3)
for any v ∈ X , and 8′ : X→ X∗ is continuous.
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It is also easy to see that 9 : X→ R is a Gâteau differentiable functional whose
Gâteau derivative at the point u ∈ X is the functional 9 ′(u) ∈ X∗ given by

9 ′(u)(v)=
∫ 1

0
f (t, u(t))v(t) dt (2.4)

for any v ∈ X .

LEMMA 2.2. If u ∈ X is a critical point of 8− λ9, then u is a classical solution of
IBVP (1.1).

PROOF. Obviously, u(0)= u′(0)= 0 for u ∈ X . Since u ∈ X is a critical point of
8− λ9, ∫ 1

0
u′′v′′ dt +

l∑
j=1

I j (u
′(t j ))v

′(t j )−

l∑
j=1

N j (u(t j ))v(t j )

+ g(u(1))v(1)− λ
∫ 1

0
f (t, u(t))v(t) dt = 0

(2.5)

for any v ∈ X . For j ∈ {0, 1, 2, . . . , l}, choose any v ∈ X such that v(t)≡ 0 for
t ∈ [0, t j ] ∪ [t j+1, 1]. Then v′(t j )= 0. Equation (2.5) implies that∫ t j+1

t j

u′′v′′ dt = λ
∫ t j+1

t j

f (t, u(t))v(t) dt.

This means, for any w ∈ X j := H2(t j , t j+1) ∩ H1
0 (t j , t j+1), that∫ t j+1

t j

u′′jw
′′ dt = λ

∫ t j+1

t j

f (t, u j (t))w(t) dt,

where u j = u|(t j ,t j+1). Thus u j is a weak solution of the equation

u(iv) = λ f (t, u), t ∈ (t j , t j+1), (2.6)

and u j ∈ X j ⊂ C1([t j , t j+1]). Let v1 := u′′ and q(t) := λ f (t, u). Then (2.6) has the
form

v′′1 (t)= q(t) on (t j , t j+1). (2.7)

Then the solution of (2.7) can be written as

v1(t)= C1 + C2t +
∫ t

t j

∫ s

t j

q(r) dr ds, t ∈ (t j , t j+1),

where C1 and C2 are two constants. Then u′′j ∈ C(t j , t j+1) and u(iv)j ∈ C(t j , t j+1).

Therefore, u j ∈ C4(t j , t j+1) and u satisfies the equation in IBVP (1.1) a.e. on [0, 1].
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By the previous equation, we find that the limits u′′(t+j ), u′′(t−j ), u′′′(t+j ), u′′′(t−j ),
j = 1, 2, . . . , l, u′′(1−) and u′′′(1−) exist. Integrating (2.5) leads to∫ 1

0
u′′v′′ dt +

l∑
j=1

I j (u
′(t j ))v

′(t j )−

l∑
j=1

N j (u(t j ))v(t j )

+ g(u(1))v(1)− λ
∫ 1

0
f (t, u)v dt

=

∫ 1

0
(u(iv) − λ f (t, u))v dt +

l∑
j=1

(I j (u
′(t j ))−1(u

′′(t j )))v
′(t j )

−

l∑
j=1

(N j (u(t j ))−1(u
′′′(t j )))v(t j )+ u′′(1−)v′(1)

+ (g(u(1))− u′′′(1−))v(1)

= 0,

(2.8)

and combining with (2.6) gives

l∑
j=1

(I j (u
′(t j ))−1(u

′′(t j )))v
′(t j )−

l∑
j=1

(N j (u(t j ))−1(u
′′′(t j )))v(t j )

+ u′′(1−)v′(1)+ (g(u(1))− u′′′(1−))v(1)= 0.

(2.9)

Next we show that u satisfies the second kind of impulsive conditions in IBVP (1.1).
If not, without loss of generality, we assume that there exists i ∈ {1, 2, . . . , l} such that

Ni (u(ti ))−1(u
′′′(ti )) 6= 0. (2.10)

Let

v(t)= (t2
− 2ti t)

l+1∏
j=0, j 6=i

(
1
3

t3
−

1
2
(ti + t j )t

2
+ ti t j t +

1
6

t3
j −

1
2

ti t
2
j

)
.

Then

v′(t) = 2(t − ti )
l+1∏

j=0, j 6=i

(
1
3

t3
−

1
2
(ti + t j )t

2
+ ti t j t +

1
6

t3
j −

1
2

ti t
2
j

)

+ (t2
− 2ti t)

l+1∑
k=0,k 6=i

{
(t2
− (tk + ti )t + tk ti )

×

l+1∏
j=0, j 6=i,k

(
1
3

t3
−

1
2
(ti + t j )t

2
+ ti t j t +

1
6

t3
j −

1
2

ti t
2
j

)}
.
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Obviously, v ∈ X . By simple calculations, we obtain v(t j )= 0, j = 1, 2, . . . ,
i − 1, i + 1, . . . , l, l + 1, v(ti ) 6= 0 and v′(t j )= 0, j = 1, 2, . . . , l, l + 1. Thus,
substituting these into (2.9) leads to

l∑
j=1

(I j (u
′(t j ))−1(u

′′(t j )))v
′(t j )−

l∑
j=1

(N j (u(t j ))−1(u
′′′(t j )))v(t j )

+ u′′(1−)v′(1)+ (g(u(1))− u′′′(1−))v(1)

= (Ni (u(ti ))−1(u
′′′(ti )))v(ti )

=
t2
i

6
(Ni (u(ti ))−1(u

′′′(ti )))
l+1∏

j=0, j 6=i

(ti − t j )
3
= 0,

which contradicts (2.10). So u satisfies the second kind of impulsive conditions
in IBVP (1.1). Similarly, we can prove that u satisfies the first kind of impulsive
conditions in IBVP (1.1). Then by (2.9), we find that

u′′(1−)v′(1)+ (g(u(1))− u′′′(1−))v(1)= 0

holds for all v ∈ X . Since v(1), v′(1) are arbitrary, it follows from the last
equality that u′′(1−)= u′′′(1−)− g(u(1))= 0. Therefore u is a classical solution of
IBVP (1.1). 2

LEMMA 2.3. If u ∈ X, then ‖u‖ ≤ ‖u‖X .

PROOF. For any u ∈ X ,

|u′(t)| =

∣∣∣∣∫ t

0
u′′(s) ds

∣∣∣∣≤ ∫ 1

0
|u′′(s)| ds ≤

(∫ 1

0
|u′′(s)|2 ds

)1/2

= ‖u‖X . (2.11)

Similarly, by (2.11),

|u(t)| =

∣∣∣∣∫ t

0
u′(s) ds

∣∣∣∣≤ ∫ 1

0
|u′(s)| ds ≤

∫ 1

0
‖u‖X ds = ‖u‖X .

Therefore, we obtain ‖u‖ ≤ ‖u‖X for any u ∈ X . 2

LEMMA 2.4. Assume that the following condition holds:

(H1) g(u) and I j (u) are nondecreasing, N j (u) are nonincreasing and g(u)u ≥ 0,
I j (u)u ≥ 0, and N j (u)u ≤ 0 for any u ∈ R.

Then 8 defined by (2.1) is sequentially weakly lower semicontinuous, coercive and its
derivative admits a continuous inverse on X∗.
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PROOF. Let {un} ⊂ X, un ⇀ u in X . Then {un} converges to u on C1([0, 1]) and
lim infn→∞ ‖un‖X ≥ ‖u‖X . Thus

lim inf
n→∞

8(un) = lim inf
n→∞

(
1
2
‖un‖

2
X +

l∑
j=1

∫ u′n(t j )

0
I j (s) ds

−

l∑
j=1

∫ un(t j )

0
N j (s) ds +

∫ un(1)

0
g(s) ds

)

≥
1
2
‖u‖2X +

l∑
j=1

∫ u′(t j )

0
I j (s) ds −

l∑
j=1

∫ u(t j )

0
N j (s) ds

+

∫ u(1)

0
g(s) ds =8(u).

Therefore, 8 is sequentially weakly lower semicontinuous. Moreover, by (2.1)
and (H1),

8(u) =
1
2
‖u‖2X +

l∑
j=1

∫ u′(t j )

0
I j (s) ds −

l∑
j=1

∫ u(t j )

0
N j (s) ds +

∫ u(1)

0
g(s) ds

≥
1
2
‖u‖2X .

Hence 8 is coercive.
Next, we show that 8′ admits a continuous inverse on X∗. For any u ∈ X \ {0}, it

follows from (2.3) that

〈8′(u), u〉 =
∫ 1

0
|u′′|2 dt +

l∑
j=1

I j (u
′(t j ))u

′(t j )−

l∑
j=1

N j (u(t j ))u(t j )+ g(u(1))u(1)

≥ ‖u‖2X .

So lim‖u‖X→+∞〈8
′(u), u〉/‖u‖X =+∞, that is, 8′ is coercive.

For any u, v ∈ X ,

〈8′(u)−8′(v), u − v〉 =
∫ 1

0
(u′′(t)− v′′(t))(u′′(t)− v′′(t)) dt

+

l∑
j=1

(I j (u
′(t j ))− I j (v

′(t j )))(u
′(t j )− v

′(t j ))

−

l∑
j=1

(N j (u(t j ))− N j (v(t j )))(u(t j )− v(t j ))

+ (g(u(1))− g(v(1)))(u(1)− v(1))

≥ ‖u − v‖2X ,
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so 8′ is uniformly monotone. By [27, Theorem 26.A(d)], (8′)−1 exists and is
continuous on X∗. 2

REMARK 2.5. We can obtain the same conclusion if condition (H1) is replaced by the
following condition:

(H1)′ g(u), I j (u) are odd and nondecreasing, and N j (u) are odd and nonincreasing.

LEMMA 2.6. 9 defined by (2.2) is sequentially weakly upper semicontinuous and its
derivative is compact.

PROOF. It is easily verified that 9 is weakly continuous. Therefore, 9 is sequentially
weakly upper semicontinuous.

Next we will show that 9 ′ is strongly continuous on X . For this, let un ⇀ u
as n→∞ on X . Then un→ u in C1([0, 1]). Since f (t, u) is continuous on u,
then f (t, un)→ f (t, u) as n→∞. So 9 ′(un)→9 ′(u) as n→∞. That is, 9 ′

is strongly continuous on X , which implies that 9 ′ is a compact operator by [27,
Proposition 26.2]. Moreover, 9 ′ is continuous since it is strongly continuous. 2

3. Main results

In this section we state and prove our main results.

THEOREM 3.1. Suppose that (H1) or (H1)′ holds and there exist four positive
constants a, b, c and p with p < 1 such that:

(H2)
c2

2
< 2+

l∑
j=1

∫ t2
j

0
I j (s) ds −

l∑
j=1

∫ 2t j

0
N j (s) ds +

∫ 1

0
g(s) ds;

(H3)
2
∫ 1

0 max|ξ |≤c F(t, ξ) dt

c2

<

∫ 1
0 F(t, t2) dt

2+
∑l

j=1

∫ t2
j

0 I j (s) ds −
∑l

j=1

∫ 2t j
0 N j (s) ds +

∫ 1
0 g(s) ds

;

(H4) f (t, u)≤ a + b|u|p, for every (t, u) ∈ [0, 1] × R. Then, for each

λ ∈

[2+
∑l

j=1

∫ t2
j

0 I j (s) ds −
∑l

j=1

∫ 2t j
0 N j (s) ds +

∫ 1
0 g(s) ds∫ 1

0 F(t, t2) dt
,

c2

2
∫ 1

0 max|ξ |≤c F(t, ξ) dt

]
,

IBVP (1.1) has at least three classical solutions.
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PROOF. Owing to Lemma 2.2, the critical points of the functional8− λ9 are exactly
the classical solutions of IBVP (1.1). Hence, to prove our assertion it is enough to
apply Theorem 2.1.

Obviously, X is a reflexive real Banach space. From the previous section we
have seen that 8 is a continuously Gâteau differentiable, sequentially weakly lower
semicontinuous and coercive functional whose Gâteau derivative (2.3) admits a
continuous inverse on X∗ (see Lemma 2.4). 9 is a sequentially weakly upper
semicontinuous and Gâteau differentiable functional whose derivative (2.4) is compact
(see Lemma 2.6).

Setting r = c2/2, u0(t)= 0, ū(t)= t2 for all t ∈ [0, 1], we have u0, ū ∈ X ,
8(u0)= 0,

8(ū)= 2+
l∑

j=1

∫ t2
j

0
I j (s) ds −

l∑
j=1

∫ 2t j

0
N j (s) ds +

∫ 1

0
g(s) ds,

and 9(ū)=
∫ 1

0 F(t, t2) dt . Therefore

(r −8(u0))
9(ū)

8(ū)−8(u0)

=
c2

2

∫ 1
0 F(t, t2) dt

2+
∑l

j=1

∫ t2
j

0 I j (s) ds −
∑l

j=1

∫ 2t j
0 N j (s) ds +

∫ 1
0 g(s) ds

(3.1)

and, from (H2), we obtain 8(u0) < r <8(ū).
On the other hand, for all u ∈ X such that 8(u)≤ r , we have ‖u‖X ≤ (2r)1/2 and,

owing to Lemma 2.3, ‖u‖ ≤ ‖u‖X ≤ (2r)1/2 = c. Therefore,

sup
8(u)≤r

9(u)≤
∫ 1

0
max
|ξ |≤c

F(t, ξ) dt. (3.2)

In view of (3.1), (3.2) and (H3), condition (A1) in Theorem 2.1 is satisfied.
For any u ∈ X , by (H1), (H3) and Lemma 2.3,

8(u)− λ9(u) =
1
2
‖u‖2X +

l∑
j=1

∫ u′(t j )

0
I j (s) ds −

l∑
j=1

∫ u(t j )

0
N j (s) ds

+

∫ u(1)

0
g(s) ds − λ

∫ 1

0
F(t, u) dt

≥
1
2
‖u‖2X − λa‖u‖ − λb‖u‖p+1

≥
1
2
‖u‖2X − λa‖u‖X − λb‖u‖p+1

X .

Since p < 1, then lim‖u‖X→∞(8(u)− λ9(u))=+∞ for all λ≥ 0. So (A2) in
Theorem 2.1 is satisfied. Hence, our claim is proved and Theorem 2.1 ensures the
conclusion. 2
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We consider a special case of IBVP (1.1). Let f (t, u)= h(u) ∈ C(R). Define
H(ξ)=

∫ ξ
0 h(s) ds. We have the following result.

COROLLARY 3.2. Suppose that (H1) (or (H1)′) and (H2) hold. Moreover, assume
that

(H3)′
2 max|ξ |≤c H(ξ)

c2

<

∫ 1
0 H(t2) dt

2+
∑l

j=1

∫ t2
j

0 I j (s) ds −
∑l

j=1

∫ 2t j
0 N j (s) ds +

∫ 1
0 g(s) ds

,

(H4)′ h(u)≤ a + b|u|p, for every u ∈ R, hold. Then, for each

λ ∈

[2+
∑l

j=1

∫ t2
j

0 I j (s) ds −
∑l

j=1

∫ 2t j
0 N j (s) ds +

∫ 1
0 g(s) ds∫ 1

0 H(t2) dt
,

c2

2 max|ξ |≤c H(ξ)

]
,

IBVP (1.1) has at least three classical solutions.

EXAMPLE 3.3. Consider the following problem:

u(4)(t)= λh(u) a.e. t ∈ [0, 1],

1(u′′(t j ))= I j (u′(t j )) j = 1,

1(u′′′(t j ))= N j (u(t j )) j = 1,

u(0)= u′(0)= u′′(1−)= 0

u′′′(1−)= g(u(1))

(3.3)

where g(u)= u, I j (u)= 32u and N j (u)=−u. Clearly, condition (H1) is satisfied.
Let

h(u)=


1
32
, u ≤

1
2
,

1000u1/3
−

1000
3
√

2
+

1
32
, u >

1
2
.

Then

H(u)=


1
32

u, u ≤
1
2
,

750u4/3
−

1000
3
√

2
u +

1
32

u +
125

3
√

2
, u >

1
2
.

Taking t j =
1
2 , a = 1

32 , b = 1000, l = 1
3 , c = 1

2 , then g, I j , N j , h satisfy
(H2), (H3)′ and (H4)′ in Corollary 3.2. Applying Corollary 3.2, for each λ ∈31/8 =

[0.0058, 8], IBVP (3.3) has at least three classical solutions.
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