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Abstract

Congenital Zika is a devastating consequence ofmaternal Zika virus infections. Estimates of age-
dependent seroprevalence profiles are central to our understanding of the force of Zika virus
infections. We set out to calculate the age-dependent seroprevalence of Zika virus infections in
Brazil. We analyzed serum samples stratified by age and geographic location, collected from
2016 to 2019, from about 16,000 volunteers enrolled in a Phase 3 dengue vaccine trial led by the
Institute Butantan in Brazil. Our results show that Zika seroprevalence has a remarkable age-
dependent and geographical distribution, with an average age of the first infection varying from
region to region, ranging from 4.97 (3.03–5.41) to 7.24 (6.98–7.90) years. The calculated basic
reproduction number, R0, varied from region to region, ranging from 1.18 (1.04–1.41) to 2.33
(1.54–3.85). Such data are paramount to determine the optimal age to vaccinate against Zika, if
and when such a vaccine becomes available.

Introduction

The emergence of Zika virus in the Americas led to the declaration of a public health emergency
of international concern in January 2016 due to its causal association with congenital Zika
syndrome (CZS) as a result of maternal infection [1, 2]. Although Zika virus infections (ZVI) had
already been described in the 1940s inAfrica, the risk of birth defects only came to light during the
explosive outbreak in Brazil in 2016 [3]. It appears that virus attenuation led to the emergence of
CZS, whereby the virus has evolved to be less pathogenic not resulting in foetal death but in foetal
anomalies [4–7]. The emergence of severe birth defects prompted an accelerated search for Zika
vaccines [8, 9]. Due to the decline in cases towards 2017, Phase 3 trials are no longer feasible
[8]. The rapid geographic spread of ZVI in Brazil and beyond led to high seroprevalence rates
with high population-level immunity, thus effectively ending the public health emergency of
international concern [10].

The spread of ZVI was not homogeneous and was mainly driven by mobility patterns and
population densities [10]. Re-emergence is highly likely, as ZVI have not disappeared with
occasional outbreaks and sporadic cases still being reported [11–14]. The explosive outbreak that
resulted in more than 280,000 reported cases in 2016 has stabilized at endemic levels of around
20,000 new cases per year in the subsequent years (http://tabnet.datasus.gov.br/cgi/tabcgi.exe?
sinannet/cnv/zikabr.def).

If and when a Zika vaccine becomes available, vaccine introduction needs to take into account
age-stratified seroprevalence rates and geographic distribution of seroprevalence. The objective
of our study is to determine Zika seroprevalence rates stratified by age and geolocation in Brazil.

Methods

Study design

The Phase 3 trial to evaluate the efficacy and safety of a live attenuated tetravalent dengue vaccine
(DEN-03-IB) developed by the National Institute of Health, United States, was carried out by the
Butantan Institute in Brazil from 2016 to 2019 (ClinicalTrials.gov Identifier: NCT02406729)
[15]. All study subjects had blood samples taken at baseline. As the DEN-03-IB study was
designed before the Zika outbreak in Brazil, an amendment to the ethics approval was sought in
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April 2016 to include the study of other arboviruses, including the
Zika virus. The National Ethics Council (CONEP) approved this
amendment on 1 July 2016 (CAAE: 44462915.8.1001.0068).

All blood samples were collected before vaccination over the
recruitment period from 2016 to 2019, with an age de-escalating
approach starting with adults (18–59 years old), adolescents (7–
17 years old) followed by children (2–6 years old). Samples were
representative of the period from 2016 to 1,019 and of different
geolocations representing geographic regions of Brazil.

Sampling methods

The number of individuals sampled within each age class, n0 að Þ,
was estimated using standard theory [16].

n0 að Þ= 1�P að Þ
ε2P að Þ (1)

where P að Þ is the a priori estimate of seroprevalence and ε is set for
the desired level of precision (assumed as 0.2). In the absence of
suitable age-stratified Zika serology in Brazil, the expected proportion
of seropositive individuals by age was estimated from the notified
number of cases, reported to the Ministry of Health (http://tabnet.
datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/zikabr.def). Since the com-
munities studied were relatively small, a finite population correction
factor was applied to sample sizes [16] as follows:

n0 að Þ= n0 að Þ
1þ n0 að Þ�1½ �=N að Þf g (2)

The sampling could be described succinctly as a 2-level cluster
sample: individuals were sampled within families within randomly
selected administrative regions [16]. The number of necessary
dwellings to be visited within the community is such that by chance
the desired sample size for each age class would be achieved, D að Þ.
It was calculated by:

D að Þ= n0 að ÞDt

N að Þ (3)

where Dt is the total number of dwellings in the town, n0 að Þ is the
number of individuals within the age class corrected to a finite
population, and N að Þ is the number of individuals of age a known
from census records [17].

Blood sample collection

Blood samples from 5,300 subjects, aged 2 to 59 years old, were
collected from July 2016 to June 2019 from seven sites in Brazil. Of
these seven sites, four were from the North-eastern region of the
country (Recife, Salvador, Fortaleza, and Laranjeiras), one from the
South-eastern region (Belo Horizonte), one from the Northern
region (Porto Velho), and two from the Central region (Cuiabá
and Campo Grande) (Figure 1). Samples were collected one day
before the dengue vaccination. Pregnant and lactating women,
immunocompromised persons, and persons with underlying
comorbidities were excluded.

Serum samples were taken and kept on ice during transport and
then stored at � 80 °C before serological testing.

Diagnostic assay

We tested Zika IgG-specific antibodies in serum, using a com-
mercial indirect anti-Zika IgG ELISA (Zika-V IgG ELISA–Adva-
Gen), following exactly themanufacturers’ instructions. Briefly, in

Figure 1. Sites of sample collection.

Table 1. Sensitivity, specificity, positive predictive value, and negative
predictive value parameters for performance assessment of ELISA ZIKA-v IgG

95%CI

Sensitivity (%) 90.7 (80.98–98.57)

Specificity (%) 94.12 (86.8–98.06)

PPV (Positive predictive value) (%) 90.7 (88.3–93.1)

NPV (Negative predictive value) (%) 94.12 (92.3–95.8)

Note: Cutoff 0,2,295.
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this technique, the Zika recombinantΔNS-1 antigen is adhered to
a solid surface. In order to remove the cross-reactivity with the
dengue virus, the patient’s serum was previously adsorbed with
dengue 1, 2, 3, and 4 ΔNS-1 antigens before being added to the
reaction. The assay was conducted as per protocol. The serum was

considered positive if the optical density (O.D.) at 450 nm is
≥0.272, indeterminate if 0.217 > O.D. 450 nm < 0.272, and
negative if the O.D. is ≤0.217. This kit was chosen because of its
high specificity for the detection of anti-Zika antibodies, even in
dengue endemic areas [18–25]. Table 1 shows sensitivity,

Figure 2. Seroprevalence data (dots) and the continuous function (Equation (4)) adjusted to the data of Brazil as a whole and to the seven collection sites. The continuous line
represents the average and the dotted lines represent the 95% confidence interval.
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specificity, positive predictive value, and negative predictive value
for the ELISA test used.

To determine cross-reaction with other flaviviruses, 35 dengue
positive samples (confirmed by PRNT90) from São José do Rio
Preto city, state of São Paulo, and 40 samples from volunteers who
had received a yellow fever vaccine from Salvador city, Bahia state,
were used. No cross-reactivity was observed.

Calculation of age-dependent seroprevalence and the
average age of the first infection

We adjusted a continuous curve, given by Equation (4), to the
proportion of seropositive individuals to Zika, Sþ að Þ:

Sþ að Þ= 1� exp
k1
k2
ae�k3aþ 1

k3

k1
k3
�k2

� �
e�k3a�1
� ��k2a

� �
(4)

Parameters k1 to k3 have no biological meaning and are just fitting
parameters. The model was fitted to data by the least-square
method.

From the seroprevalence curve, it follows that the age-
dependent force of infection (incidence density), λ að Þ, is given
by [26]:

λ að Þ= k1a�k2ð Þe�k3aþk2 (5)

where the parameters ki are the same as in Equation (4), fitted to the
data for each site.

Given the seroprevalence curve (Equation (4)) and the force of
infection (Equation (5)), it follows that the average age of the first
infection, A, is given by:

A=

Z∞

0

a λ að Þ 1�Sþ að Þ½ �da

Z∞

0

a λ að Þ 1�Sþ að Þ½ �da
(6)

Figure 2 shows the adjusted seroprevalence profile (Equation (4)) of
the country as a whole and to the seven collection sites.

Note that it appears from Figure 2 that the seroprevalence in
children younger than 2 years age is practically zero. This in fact is a
fitting artefact because the cohorts were sampled from age

2 upwards. In some places, the sample size was too small to allow
a more accurate fitting.

Results

From the total of 5,300 serum samples, 1,531 were positive (28.9%)
for Zika, 3,491 (65.9%) were negative, and 278 (5.2%)were undeter-
mined (grey zone). The distribution of Zika virus IgG seropreva-
lence per geographic location, as well as the average age of the first
infection, is shown in Table 2.

The age-dependent seroprevalence for Brazil stabilized at the
average value of 35% (95% CI 26–48%), which means that the
seropositive proportion for the country as a whole did not change
above the age of 35 years. The relationship between the fraction of
people remaining susceptible at the end of the epidemic, S ∞ð Þ ,
(that is, calculated for very large ages) and the basic reproduction
number, R0 is given by [27]:

R0 =
1

S ∞ð Þ (7)

Its value for Brazil as a whole is R0=1.54 (1.35–1.92), which agrees
with the estimation of Villela et al. [28] of R0 for Zika virus, who
found the value ofR0 = 1�25 (1�18–1�36) for Brazil. The values of the
basic reproduction number for the other sites are given in Table 2.

Figure 3 shows the age-dependent forces of infection for Brazil
as a whole and for the other 7 collection sites.

Note that for the country as a whole the force of infection
declines to zero after the age of 35 years because, as mentioned
above, the proportion of seropositive persons above this age did not
change. In addition, it can be noted that the force of infection for
children below age 2 years is not shown in the figure. This is due to
the fact that children below age 2 were not sampled in this study.

Table 3 shows the correlation between the human development
index (HDI), a proxy for the socioeconomic level of each site, and
the basic reproduction number, R0, which is a proxy for the
intensity of transmission of Zika virus in each site.

Discussion

The objective of our study is to determine the age-dependent
seroprevalence of Zika infection in Brazil. Our results show that
there is a remarkable age-dependent distribution of

Table 2. Sample size, seroprevalence, and average age of the first infection for each site

Site Sample size Seroprevalencea Average age of infectionb R0
c

Brazil 5,108d 0.35 (0.26–0.48) 7.24 (6.98–7.90) 1.54 (1.35–1.92)

Belo Horizonte 817 0.22 (0.07–0.41) 6.33 (5.43–6.33) 1.28 (1.08–1.69)

Salvador 494 0.29 (0.11–0.52) 5.66 (5.12–6.03) 1.41 (1.12–2.08)

Laranjeiras 574 0.57 (0.35–0.74) 7.27 (3.32–5.36) 2.33 (1.54–3.85)

Fortaleza 345 0.30 (0.17–0.46) 6.32 (5.48–7.09) 1.43 (1.21–1.85)

Recife 1,110 0.47 (0.25–0.69) 6.72 (6.40–7.28) 1.89 (1.33–3.23)

Cuiaba and Campo Grande 1,017 0.40 (0.30–0.72) 4.97 (3.03–5.41) 1.67 (1.43–3.57)

Porto Velho 751 0.15 (0.04–0.29) 5.90 (5.54–6.02) 1.18 (1.04–1.41)

aaccording to Equation (3).
baccording to Equation (5).
caccording to Equation (7).
dexcluding undetermined.

4 Viviane Fongaro Botosso et al.

https://doi.org/10.1017/S0950268823001814 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268823001814


seroprevalence, with an average age of the first infection varying
from region to region, ranging from 4 (3.03–5.41) to 7 (6.98–
7.90) years.

The calculated basic reproduction number, R0, varied
from region to region, ranging from 1.18 (1.04–1.41) to 2.33 (1.54–
3.85). These results are consistent with previous estimations [28].

Figure 3. Age-dependent forces of infection as calculated according to Equation (6). The continuous lines represent the average and the dotted lines represent the 95% confidence
intervals.
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The calculation of the age-dependent seroprevalence profile is
central to the estimation of the optimal age to vaccinate against
Zika, if and when a Zika vaccine becomes available. As shown by
Massad et al. [26] for the case of rubella and by Maier et al. [29] for
the case of dengue, age-dependent seroprevalence rates have guided
decisions for rubella and dengue vaccine introductions. The opti-
mal age to vaccinate should be targeted to the age range below the
average age of the first infection. Our results therefore provide age
estimates that can guide the optimal age for introducing a Zika
vaccine.

By using a simple Ross–Macdonald model, it is possible to
project the expected number of cases for the post-epidemic period.
Preliminary results suggest that Zika could well return around 2026
with a new epidemic wave [30]. This conjecture, however, needs a
more elaborate analysis.

One important limitation of this study is the fact that after the
2016-2017 outbreak, Zika did not completely stabilize and
remained since only approximately in a steady state. Since a steady
state is a condition for the proper calculation of the average age of
the first infection, our results, with respect to this, are only an
approximation.

Our findings show that the geographic distribution of sero-
prevalence mirrors the incidence of reported cases in Brazil from
2016 to 2017 with the highest number of reported cases in the
North-eastern and Central regions. These two regions accounted
for around 70% of the total cases reported in the country. ((http://
tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/zikabr.def ). The
North-eastern region, especially the semiarid region in which the
average range of rainfall is from 500 to 800 mm, is considered less
developed. In addition, a significant number of municipalities are
characterized by low human development indexes (HDIs). Conse-
quently, these populations are socioeconomically vulnerable with a
monthly family income around 5 to 10 times lower than in regions
with higher HDIs. Previous studies showed higher Zika virus
infection rates in lower social strata from North-eastern cities of
Brazil, which may reflect the precarious living conditions, with the
lack of basic sanitation and water storage resulting in greater vector
abundance [31, 32]. Our results, which show a negative correlation
between the HDI and the intensity of Zika virus transmission in the
studied regions, confirm these previous findings.

Finally, it should bementioned that the age-stratified seropreva-
lence of Zika is similar to the age-stratified seroprevalence of
dengue. Although the Zika virus epidemic at the time of the study
was explosive across all ages and then rapidly declined, Zika
remains endemic in several regions of the country up to this day
(http://www.portalsinan.saude.gov.br/).

In summary, our results can help identify the target population
for a future vaccination programme.
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