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1. Introduction

Let p be a prime number. A naive way of describing the Bousfield–Kan p-completion func-
tor [1] is to say that it transforms mod p cohomology isomorphisms into actual homotopy
equivalences. It is then therefore natural to think that the homotopy type of a p-complete
space X should be characterized in some sense by its mod p cohomology ring H∗(X).
Classifying spaces of finite p-groups provide nice examples of p-complete spaces. Then
the following question arises: given a finite p-group P , and a p-complete space X such
that H∗(X) ∼= H∗(BP ), is X � BP?

One would like to give a positive answer to the question above, but the very first step
towards that positive answer is to understand, or to give the appropriate meaning to,
the isomorphism H∗(X) ∼= H∗(BP ).

It is well known that there are infinitely many examples of non-isomorphic finite
p-groups (hence infinitely many examples of non-homotopic p-complete spaces) having
isomorphic mod p cohomology rings, even as unstable algebras (see [4] for a general proof
of this fact in the case when p = 2). This is not surprising, since p-completion does not
invert abstract mod p cohomology isomorphisms, but inverts just those which are induced
by continuous maps, and these compare unstable algebras plus secondary operations.
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In this regard, Broto and Levi [2] suggested that mod p cohomology rings of finite
p-groups should be considered objects in the category Kβ of unstable algebras endowed
with Bockstein spectral sequences (see § 2 for precise definitions). Here we follow that line
and consider the family of groups studied by Leary in [7], proving the following theorem.

Theorem 1.1. Let p be an odd prime and define the finite p-group

P (p, n) = 〈A, B, C | Ap = Bp = Cpn−2
= [A, C] = [B, C] = 1, [A, B] = Cpn−3〉.

Given X, a p-complete CW-complex:

(a) if n = 3, 4 and H∗(X) ∼= H∗(BP (p, n)) as unstable algebras, then X � BP (p, n);

(b) if n � 5 and H∗
β(X) ∼= H∗

β(BP (p, n)) as objects in Kβ , then X � BP (p, n).

Proof. Statement (a) is proved in Corollary 4.6 for n = 3, and Corollary 4.7 (a) for
n = 4. Statement (b) is proved in Corollary 4.7 (b). �

Besides its own topological interest, the result above and the techniques developed
in its proof may be appealing from a group theoretical point of view. First, since the
classifying space of a finite p-group is a p-complete CW-complex, Theorem 1.1 provides
a cohomological characterization of P (p, n).

Theorem 1.2. Let p be an odd prime and let G be a finite p-group. Then G ∼= P (p, n)
if and only if H∗

β(BG) ∼= H∗
β(BP (p, n)).

Second, the ideas in the proof of Theorem 1.1 can be used to obtain a cohomological
characterization of P (p, n) as a complement for some N � G. This characterization can
be seen as a generalization of Tate’s cohomological criteria of p-nilpotency [9].

Theorem 1.3. Let p be an odd prime and let G be a finite group such that P (p, n) �
G. Then P (p, n) is a complement for some N � G if and only if one of the following
holds:

(a) n = 3, 4 and there exists ψ : H∗(BP (p, n)) → H∗(BG) as unstable algebras such
that (res ◦ ψ)|H1

β(BP (p,n)) is the identity;

(b) n � 5 and there exists

ψ : H∗
β(BP (p, n)) → H∗

β(BG) in Kβ

such that (res ◦ ψ)|H1
β(BP (p,n)) is the identity.

Proof. If P (p, n) is a complement for some N � G, then the induced projection
G

π−→ G/N ∼= P (p, n) gives rise to a map between classifying spaces BG
Bπ−−→ BP (p, n)

that provides the desired cohomological morphism ψ = Bπ∗.
The converse is proven in Proposition 5.1 for the case n = 3, and in Proposition 5.2

for the case n > 3. �
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1.1. Organization of the paper

In § 2 we introduce the notation used in the paper. In § 3 the group P (p, n) is defined
and the mod p cohomology ring of its classifying space is described. In § 4, we explore
endomorphisms of the mod p cohomology ring of BP (p, n) and we conclude that mod p

cohomology determines the homotopy type of BP (p, n). Finally, in § 5 we apply the ideas
developed in the previous section to the group theoretical framework.

2. Definitions and notation

We follow the notation and conventions in [2, § 2]. As our study is done for a fixed odd
prime p, we just recall the definitions in this case.

All the spaces considered here have the homotopy type of a p-complete CW-complex.
Unless otherwise stated, H∗(X) refers to the cohomology of the space X with trivial
coefficients in Fp.

Definition 2.1. Let p be an odd prime and let K be an unstable algebra. A Bock-
stein spectral sequence (BSS) for K is a spectral sequence of differential graded algebras
{Ei(K), βi}∞

i=1 where the differentials have degree 1 and such that

(a) E1(K) = K and β1 = β is the primary Bockstein operator,

(b) if x ∈ Ei(K)even and xp �= 0 in Ei+1(K), i � 1, then βi+1(xp) = xp−1βi(x).

We work in the category Kβ , whose objects are pairs (K; {Ei(K), βi}∞
i=1), where K is

an unstable algebra and {Ei(K); βi}∞
i=1 is a BSS for K. A morphism f : K → K ′ in Kβ

is a family of morphisms {fi}∞
i=1, where f1 : K → K ′ is a morphism of Ap-algebras and

for each i � 2, fi : Ei(K) → Ei(K ′) is a morphism of differential graded algebras, which,
as a morphism of graded algebras, is induced by fi−1.

The mod p cohomology of a space X is an object of Kβ that is denoted by H∗
β(X).

Definition 2.2. We say that two spaces X and Y are comparable if H∗
β(X) and H∗

β(Y )
are isomorphic objects in the category Kβ . We say that X is determined by cohomology
if, given a space Y comparable to X, there is a homotopy equivalence X � Y .

Definition 2.3. Let Kβ be an object in Kβ . Let K be the underlying unstable algebra
over Ap. We say that Kβ is weakly generated by x1, . . . , xn if any endomorphism f of Kβ

such that the restriction of f to the vector subspace of K generated by x1, . . . , xn is an
isomorphism is an isomorphism in Kβ .

3. The cohomology of some p-groups

In this section, the p-group P (p, n), p an odd prime, n � 3, is introduced, and in what
follows the notation in [7] is used.

The group

P (p, n) = 〈A, B, C | Ap = Bp = Cpn−2
= [A, C] = [B, C] = 1, [A, B] = Cpn−3〉 (3.1)
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has order pn and fits in a central extension:

0 → Z/pn−2 → P (p, n) → Z/p × Z/p → 0. (3.2)

The cohomology of P (p, n) is calculated in [7].

Theorem 3.1 (Leary [7, Propositions 3, 8 and Theorem 7]). H∗(BP (3, 3)) is
generated by elements y, y′, x, x′, Y , Y ′, X, X ′, z with

deg(y) = deg(y′) = 1,

deg(x) = deg(x′) = deg(Y ) = deg(Y ′) = 2,

deg(X) = deg(X ′) = 3,

deg(z) = 6,

subject to the following relations:

yy′ = 0, Y Y ′ = xx′,

xy′ = x′y, Y 2 = xY ′,

yY = y′Y ′ = xy′, Y ′2 = x′Y,

yY ′ = y′Y, yX = xY − xx′,

y′X ′ = x′Y ′ − xx′, XY = x′X,

Xy′ = x′Y − xY ′, X ′Y ′ = xX ′,

X ′y = xY ′ − x′Y, XY ′ = −X ′Y,

xX ′ = −x′X, XX ′ = 0,

x(xY ′ + x′Y ) = −xx′2, x3y′ − x′3y = 0,

x′(xY ′ + x′Y ) = −x′x2, x3x′ − x′3x = 0,

x3Y ′ + x′3Y = −x2x′2 x3X ′ + x′3X = 0.

Moreover, the action of the mod 3 Steenrod algebra is determined by

β(y) = x, P1(X) = x2X + zy,

β(y′) = x′, P1(X ′) = x′2X ′ − zy′

β(Y ) = X, P1(z) = zc2,

β(Y ′) = X ′,

where c2 = xY ′ − x′Y − x2 − x′2.

Theorem 3.2 (Leary [7, Propositions 3, 8 and Theorem 6]). For an odd prime
p � 5, the cohomology H∗(BP (p, 3)) is generated by elements y, y′, x, x′, Y , Y ′, X, X ′,
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d4, . . . , dp, c4, . . . , cp−1 and z with

deg(y) = deg(y′) = 1,

deg(x) = deg(x′) = deg(Y ) = deg(Y ′) = 2,

deg(X) = deg(X ′) = 3,

deg(di) = 2i − 1,

deg(ci) = 2i,

deg(z) = 2p

subject to the following relations:

yy′ = 0, xy′ = x′y, yY = y′Y ′ = 0, yY ′ = y′Y,

Y 2 = Y ′2 = Y Y ′ = 0, yX = xY, y′X ′ = x′Y ′,

Xy′ = 2xY ′ + x′Y, X ′y = 2x′Y + xY ′,

XY = X ′Y ′ = 0, XY ′ = −X ′Y, xX ′ = −x′X,

x(xY ′ + x′Y ) = x′(xY ′ + x′Y ) = 0,

xpy′ − x′py = 0,

xpx′ − x′px = 0,

xpY ′ + x′pY = 0,

xpX ′ + x′pX = 0,

and

ciy =

{
0

−xp−1y
ciy

′ =

{
0 for i < p − 1,

−x′p−1y′ for i = p − 1,

cix =

{
0

−xp
cix

′ =

{
0 for i < p − 1,

−x′p for i = p − 1,

ciY =

{
0

−xp−1Y
ciY

′ =

{
0 for i < p − 1,

−x′p−1Y ′ for i = p − 1,

ciX =

{
0

−xp−1X
ciX

′ =

{
0 for i < p − 1,

−x′p−1X for i = p − 1,

cicj =

{
0 for i + j < 2p − 2,

x2p−2 + x′2p−2 − xp−1x′p−1 for i = j = p − 1,

diy =

{
0

−xp−1Y
diy

′ =

{
0 for i < p,

−x′p−1Y ′ for i = p,

dix =

⎧⎪⎨
⎪⎩

0

−xp−1y

xp−1X

dix
′ =

⎧⎪⎨
⎪⎩

0 for i < p − 1,

−x′p−1y′ for i = p − 1,

−x′p−1X ′ for i = p,
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diY = 0, diY
′ = 0,

diX =

{
0

−xp−1Y
diX

′ =

{
0 for i �= p − 1,

−x′p−1Y ′ for i = p − 1,

didj =

{
0 for i < p or j < p − 1,

x2p−3Y + x′2p−3Y ′ + xp−1x′p−2Y ′ for i = p, j = p − 1,

dicj =

⎧⎪⎨
⎪⎩

0 for i < p − 1 or j < p − 1,

−x2p−3y + x′2p−3y′ − xp−1x′p−2y′ for i = j = p − 1,

−x2p−3X + x′2p−3X ′ − xp−1x′p−2X ′ for i = p, j = p − 1.

Moreover, the action of the mod p Steenrod algebra is determined by

β(y) = x, β(y′) = x′, β(Y ) = X, β(Y ′) = X ′,

β(di) =

{
ci for i < p,

0 for i = p,

P1(z) = zcp−1,

P1(X) = xp−1X + zy,

P1(X ′) = x′p−1X ′ − zy′,

P1(ci) =

{
izci−1 if 2 � i < p − 1,

−zcp−2 + x2p−2 + x′2p−2 − xp−1x′p−1 if i = p − 1,

where c1 = yy′, and c2 and c3 are non-zero multiples of xY ′ +x′Y and XX ′ respectively.

Remark 3.3. It is straightforward to check from the relations in Theorems 3.1 and 3.2
that the Fp-vector spaces H∗BP (p, 3) for p � 3 and ∗ = 1, 2, 3, 4 have as basis

{y, y′},

{x, x′, Y, Y ′},

{xy, xy′, x′y′, yY ′, X, X ′}

and

{x2, x′2, xx′, xY, xY ′, x′Y, x′Y ′},

respectively. Also notice that the generator z is free, i.e.

H∗BP (p, 3) = 〈z〉 ⊗ (H∗BP (p, 3)/〈z〉).

Finally, consider the quotient map p : H∗BP (p, 3) � H∗BP (p, 3)/I, where I is the
ideal generated by all generators but x and x′, and consider the map i : Fp[x, x′] →
H∗BP (p, 3). As the first relation involving only x and x′ occurs at degree 2p + 2, it is
clear that p ◦ i is an isomorphism in degrees ∗ < 2p + 2.
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Remark 3.4. It is well known [3, Proposition 2.3] that, given a group G, one can
make the identification H1(G) ∼= hom(G, Z/p) ∼= hom(Gab, Z/p), where Gab stands for
the abelianization of G. Therefore, it is possible to describe the one-dimensional classes
in Theorems 3.1 and 3.2 in terms of group morphisms P (p, 3)ab → Z/p or P (p, 3) → Z/p.

Note that P (p, 3)ab = 〈Ā, B̄〉 ∼= Z/p × Z/p where ḡ denotes the image of the element
g ∈ P (3, p) by the abelianization morphism. Since aut(P (p, 3)) acts transitively on the
generators of P (p, 3)ab [5, Lemma A.5], the classes y and y′ can be identified (up to a
change of base) with the morphisms Ā∗ : P (p, 3) → 〈Ā〉 ∼= Z/p and B̄∗ : P (p, 3) → 〈B̄〉 ∼=
Z/p respectively [7, pp. 68 and 73].

Remark 3.5. As stated in [7, p. 71], one can verify that in the cohomology ring
H∗(BP (p, 3)), p � 5, any product of the generators y, y′, x, x′, Y , Y ′, X, X ′ in degree
greater than 6 may be expressed in the form

f1 + f2Y + f3Y
′ for even total degree,

f1y + f2y
′ + f3X + f4X

′ for odd total degree,

where each fi is a polynomial in x and x′. So, if we define d1 = d2 = d3 = 0, then for
1 � n � p any element u ∈ H2n−1(BP (p, 3)) can be expressed as

u = adn + f1y + f2y
′ + f3X + f4X

′,

where a ∈ Fp and each fi is a polynomial in x and x′.

Remark 3.6. Note that the product of any two generators other than z can be
expressed as a sum of products of the generators y, y′, x, x′, Y , Y ′, X and X ′. Therefore,
any decomposable element in H∗(BP (p, 3)), p � 5, of degree greater than 6 that does
not involve the generator z may be expressed as described in the previous remark.

Theorem 3.7 (Leary [7, Theorem 4]). For n � 4, H∗(BP (p, n)) is generated by
elements u, y, y′, x, x′, c2, c3, . . . , cp−1, z, with

deg(u) = deg(y) = deg(y′) = 1,

deg(x) = deg(x′) = 2,

deg(ci) = 2i,

deg(z) = 2p,

subject to the following relations:

xy′ = x′y, xpy′ = x′py, xpx′ = x′px,

ciy =

{
0

−xp−1y
ciy

′ =

{
0 for i < p − 1,

−x′p−1y′ for i = p − 1,

cix =

{
0

−xp
cix

′ =

{
0 for i < p − 1,

−x′p for i = p − 1,

cicj =

{
0 for i + j < 2p − 2,

x2p−2 + x′2p−2 − xp−1x′p−1 for i = j = p − 1.
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Moreover, we have the following operations of the mod p Steenrod algebra:

β(y) = x, β(y′) = x′, β(u) =

{
0 for n > 4,

y′y for n = 4,

and

P1(z) = zcp−1, P1(ci) =

{
izci−1 for i < p − 1,

−zcp−2 + x2p−2 + x′2p−2 − xp−1x′p−1 for i = p − 1,

where c1 = y′y.

Remark 3.8. Consider for n � 4 and p an odd prime the homomorphism of rings
i : Fp[x, x′, cp−1] → H∗BP (p, n) and the quotient map p : H∗BP (p, n) � H∗BP (p, n)/I,
where I is the ideal generated by all generators except x, x′ and cp−1. From the relations
the map p ◦ i is an isomorphism in degrees ∗ < 2p and has kernel Fp[cp−1x+xp, cp−1x

′ +
x′p] in degree ∗ = 2p.

We also have a map i : Fp[cp−2, z] → H∗BP (p, n) and a quotient p : H∗BP (p, n) �
H∗BP (p, n)/I, where I is the ideal generated by all generators except cp−2 and z. From
the relations we deduce that p ◦ i is an isomorphism in all degrees.

Remark 3.9. In order to give a complete description of H∗
β(BP (p, n)) for n � 4 as

an object in Kβ , we have to describe its Bockstein spectral sequence (Definition 2.1): the
Bockstein spectral sequence is completely determined by mod p Steenrod algebra and a
higher Bockstein operator (differential) βn−3(u) = yy′ [7, p. 66]. In particular, βi(u) = 0
for i = 1, . . . , n − 4, and u survives to the En−3-page of the Bockstein spectral sequence.

Remark 3.10. Following the notation presented in Remark 3.4 for n � 4 we have

P (p, n)ab = 〈C̄, Ā, B̄〉 ∼= Z/pn−3 × Z/p × Z/p

(note that C̄ has order pn−3), and we can identify the classes y, y′ and u with the
morphisms

Ā∗ : P (p, n) → 〈Ā〉 ∼= Z/p,

B̄∗ : P (p, n) → 〈B̄〉 ∼= Z/p,

and

C̄∗ : P (p, n) → 〈C̄〉/〈C̄p〉 ∼= Z/p,

respectively [7, p. 66].
The existence of the higher Bockstein of the class u described in Remark 3.9 has its

group theoretical interpretation in the fact that the morphism C̄∗ can be extended to a
group morphism P (p, n) → 〈C̄〉 ∼= Z/pn−3.

The following result gives a characterization of the cohomology class that determines
a central extension by Z/p.
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Lemma 3.11. Let
0 → Z/p → G

π−→ K → 1 (3.3)

be the central extension classified by c ∈ H2(BK). Then ker π∗|H2(BK) = Fp{c}. More-
over, for any non-zero scalar λ ∈ Fp, the central extension classified by λc gives rise to a
group isomorphic to G.

Proof. The proof of the first statement is done by inspection of (E∗,∗
∗ , d∗), the Leary–

Serre spectral sequence [8, Chapters 5 and 6] associated to the exact sequence (3.3).
Define H∗(BZ/p) = E(u) ⊗ Fp[v]; then E∗,∗

2 = H∗(BZ/p) ⊗ H∗(BK) and c ∈ H2(BK)
classifies the central extension (3.3) if and only if d2(u) = c. By dimensional reasons
E2,0

∞ = H2(BK)/Fp{c}, and by means of the edge morphism we obtain kerπ∗|H2(BK) =
Fp{c} (cf. [8, Theorem 6.8]).

Now, let λ ∈ Fp be a non-zero scalar, and let

0 → Z/p → G̃
π̃−→ K → 1

be the central extension classified by λc.
Multiplication by λ in Z/p induces a group morphism · λ : Z/p → Z/p, and therefore

a continuous map B2( · λ) : B2
Z/p → B2

Z/p that maps the fundamental class ι ∈
H2(B2

Z/p) to λι ∈ H2(B2
Z/p). At the level of central group extensions, · λ gives rise

to a group morphism G
f−→ G̃ that makes the following diagram commute:

0 �� Z/p ��

·λ
��

G
π ��

f

��

K �� 1

0 �� Z/p �� G̃
π̃ �� K �� 1

This shows that G and G̃ are isomorphic groups. �

The description of the cohomology classes classifying the central extensions involved
in the p-central series of P (p, n) follows from the previous lemma.

Proposition 3.12. Consider the groups Z/pi×Z/p×Z/p and fix the following notation
for the cohomology:

H∗(BZ/pi × BZ/p × BZ/p) = E(ui, y, y′) ⊗ Fp[vi, x, x′], βi(ui) = vi,

where generators are sorted as components. Then, for n � 4, there is a tower of extensions:

P (p, n)
πn−3−−−→ Z/pn−3 ×Z/p×Z/p

πn−4−−−→ Z/pn−4 ×Z/p×Z/p → · · · π1−→ Z/p×Z/p×Z/p,

where each extension πi, for 1 � i < n − 3, is classified by βi(ui), πn−3 is classified by
βn−3(un−3) − yy′, and where πn−3 is the abelianization morphism P (p, n) → P (p, n)ab ∼=
Z/pn−3 × Z/p × Z/p.

Proof. According to Lemma 3.11, the extension πi is classified (up to isomorphism)
by a generator of kerπ∗

i |H2 . Note that π∗
i |H1 is always an isomorphism, then kerπ∗

i |H2

can easily be calculated by comparison of the Bockstein spectral sequences of the groups
involved. �
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4. Cohomological uniqueness

Let p be an odd prime, let n � 3 and let P (p, n) be the group defined in (3.1). In this
section we prove that the homotopy type of the classifying space of P (p, n) is determined
by its cohomology (Definition 2.2). The initial step towards that result is to study the
behaviour of some endomorphisms of the mod p cohomology ring of BP (p, n).

First we consider the case n � 4. In this case we do not need to use higher Bocksteins
and it is enough to consider the structure of unstable algebra.

Theorem 4.1. Let ϕ : H∗(BP (3, 3)) → H∗(BP (3, 3)) be a homomorphism of
A3-algebras which restricts to the identity in H1. Then ϕ is an isomorphism.

Proof. In this proof we follow the notation in Theorem 3.1 for generators and relations
in cohomology.

By hypothesis, ϕ(y) = y and ϕ(y′) = y′. Now, since β(y) = x and β(y′) = x′, we
have ϕ(x) = ϕ(β(y)) = β(ϕ(y)) = β(y) = x and, analogously, ϕ(x′) = x′. Moreover, by
Remark 3.3,

ϕ(Y ) = aY + bY ′ + cx + dx′

for some a, b, c, d ∈ F3. Because yY = xy′, we obtain

xy′ = ϕ(xy′) = ϕ(yY ) = yϕ(Y ) = ayY + byY ′ + cyx + dyx′

and, by regrouping terms,

xy′ = (a + d)xy′ + byY ′ + cyx.

From Remark 3.3 we obtain a+d = 1 and b = c = 0, and ϕ(Y ) = aY +dx′ with a+d = 1.
Analogously ϕ(Y ′) = bY ′ + cx with b, c ∈ F3 and b + c = 1. Now, as Y 2 = xY ′, we have

ϕ(Y )2 = xϕ(Y ′),

a2Y 2 + d2x′2 + 2adY x′ = bxY ′ + cx2.

Remark 3.3 now implies that c = d = 0 and a2 = a = b = 1. So ϕ(Y ) = Y and
ϕ(Y ′) = Y ′, and, applying Bockstein again, ϕ(X) = X and ϕ(X ′) = X ′ too. So ϕ is the
identity up to dimension 5 and it remains to check where it maps z.

Using the first Steenrod power of X,

ϕ(P1(X)) = P1(ϕ(X)),

ϕ(x2X + zy) = P1(X),

x2X + ϕ(z)y = x2X + zy,

ϕ(z)y = zy.

Thus, ϕ(z) = z + α where αy = 0 and α ∈ 〈y, y′, x, x′, Y, Y ′, X, X ′〉. So ϕ(α) = α, z =
ϕ(z − α) and ϕ is an epimorphism. In fact, because H∗(BP (3, 3)) is a finite-dimensional
F3-vector space in each dimension, ϕ is an isomorphism dimension-wise and thus ϕ is an
isomorphism. �
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Theorem 4.2. Let p � 5 be a prime. If ϕ : H∗(BP (p, 3)) → H∗(BP (p, 3)) is a homo-
morphism of Ap-algebras that restricts to the identity in H1, then ϕ is an isomorphism.

Proof. Consider the notation of generators and relations in cohomology given in The-
orem 3.2. We calculate the image under ϕ of every generator of H∗(BP (p, 3)).

As ϕ is the identity on y and y′, by applying Bockstein operations we get that ϕ(x) = x

and ϕ(x′) = x′.
As Y is of degree 2, there exist coefficients a, b, c and d such that

ϕ(Y ) = ax + bx′ + cY + dY ′.

Using the relation Y 2 = 0, we get ϕ(Y )2 = 0, which implies via Remark 3.3 that a = b =
0, and so ϕ(Y ) = cY + dY ′. The relation yY = 0 implies 0 = yϕ(Y ) = dyY ′, so d = 0,
yielding that there exists c such that ϕ(Y ) = cY . Using the same arguments, there exists
d such that ϕ(Y ′) = dY ′.

According to Remark 3.5, there are an ∈ Fp and fn,i polynomials in x and x′ such
that, for 4 � n � p,

ϕ(dn) = andn + fn,1y + fn,2y
′ + fn,3X + fn,4X

′,

and, by applying the Bockstein operation, we get that, for 4 � n � p − 1,

ϕ(cn) = ancn + fn,1x + fn,2x
′.

The relation cp−1x = −xp gives rise to the following equalities:

−xp = ϕ(−xp)

= ϕ(cp−1x)

= ϕ(cp−1)ϕ(x)

= ϕ(cp−1)x

= ap−1cp−1x + fp−1,1x
2 + fp−1,2xx′

= −ap−1x
p + fp−1,1x

2 + fp−1,2xx′,

so (ap−1 − 1)xp = fp−1,1x
2 + fp−1,2xx′. By Remark 3.3 we can simplify to

fp−1,1x + fp−1,2x
′ = (ap−1 − 1)xp−1. (4.1)

Doing the same computations using the relation cp−1x
′ = −x′p, we get

fp−1,1x + fp−1,2x
′ = (ap−1 − 1)x′p−1. (4.2)

Now, comparing (4.1) and (4.2) and again using Remark 3.3, we get ap−1 = 1, ϕ(cp−1) =
cp−1.

We now show that ϕ(cn) = ancn, for 4 � n < p − 1: using the relation cnx = 0 and
applying ϕ, we get fn,1x + fn,2x

′ = 0, so

ϕ(cn) = ancn. (4.3)
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In order to calculate ϕ(z), we apply ϕ to the following equality:

P1(cp−1) = −zcp−2 + x2p−2 + x′2p−2 − xp−1x′p−1.

Since ϕ(cp−1) = cp−1, ϕ(x) = x and ϕ(x′) = x′, we get

zcp−2 = ϕ(z)ap−2cp−2. (4.4)

The generator z is free in H∗BP (p, 3), i.e. H∗BP (p, 3) = Fp[z] ⊗ (H∗BP (p, 3)/〈z〉).
Hence, (4.4) implies that ap−2 �= 0 and ϕ(z) = a−1

p−2z + g, where g is an expression not
involving z (hence g is decomposable), and such that gcp−2 = 0.

We use the knowledge that ap−2 �= 0 to check that an �= 0 for 4 � n < p − 2 with an
induction argument: assume ϕ(cn) = ancn with an �= 0 and 5 � n � p − 2, and compute
ϕ(cn−1):

nzcn−1 = P1(cn) = P1(ϕ(a−1
n cn)) = ϕ(a−1

n P1(cn)) = a−1
n nϕ(z)an−1cn−1.

This implies zcn−1 = a−1
n an−1ϕ(z)cn−1, and this can only happen if an−1 �= 0 and ϕ(z) =

ana−1
n−1z + g (g not involving z).

From the expression c3 = µXX ′ we deduce that ϕ(c3) = a3c3 with a3 = cd, where c

and d were introduced at the beginning of the proof and are such that ϕ(Y ) = cY and
ϕ(Y ′) = dY ′. Again

4µXX ′z = 4zc3

= P1(c4)

= P1(ϕ(a−1
4 c4))

= ϕ(a−1
4 P1(c4))

= a−1
4 4ϕ(z)a3c3

= 4a−1
4 µcdϕ(z)XX ′;

hence, a3 = cd is also non-zero. Therefore, c, d and an for all n ∈ {3, . . . , p − 1} are
non-zero.

We now check that the coefficients c and d are equal: recall that c2 was defined as
λ(xY ′ + x′Y ) with λ non-zero. Then, applying P1 to c3 we get

3zc2 = P1(c3)

= P1(ϕ(a−1
3 c3))

= a−1
3 ϕ(P1(c3))

= a−1
3 (ϕ(3zc2))

= a−1
3 3ϕ(z)ϕ(c2)

= a−1
3 3ϕ(z)λ(dxY ′ + cx′Y ),

which implies λz(xY ′ + x′Y ) = a−1
3 λϕ(z)(dxY ′ + cx′Y ) and can be simplified to

zxY ′ + zx′Y = da−1
3 ϕ(z)xY ′ + ca−1

3 ϕ(z)x′Y. (4.5)
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Again, as z does not appear in any relation and ϕ(z) = a−1
p−2z + g, (4.5) can be true only

if c = d. In particular, ϕ(c2) = a2c2 with a2 = cλ �= 0.
Now we can assume that all the coefficients an for 2 � n � p−1 and c and d are equal

to 1: as all are different from zero and rp−1 = 1 if r ∈ Fp \ {0}, ϕp−1 is the identity on
Y , Y ′ and cn. Use now that ϕ is an isomorphism if and only if ϕp−1 is so. Therefore, at
this point we have that

ϕ(y) = y, ϕ(y′) = y′, ϕ(x) = x, ϕ(x′) = x′,

ϕ(Y ) = Y, ϕ(Y ′) = Y ′, ϕ(X) = X, ϕ(X ′) = X ′,

and

ϕ(ci) = ci for 2 � i � p − 1,

ϕ(di) = di + gi for 4 � i � p − 1,

ϕ(z) = z + g,

where g and all gi are expressions in x, x′, y, y′, X, X ′, Y and Y ′ (Remarks 3.5 and 3.6).
This implies that all generators but dp are in the image of ϕ.

The image of dp, as it is in odd degree greater than 6, must be

ϕ(dp) = apdp + fp,1y + fp,2y
′ + fp,3X + fp,4X

′

with ap ∈ Fp, and fp,i polynomials in x and x′. As β(dp) = 0, the Bockstein operation
on ϕ(dp) must vanish, and this means that

0 = β(ϕ(dp)) = fp,1x + fp,2x
′.

So this is a polynomial of degree 2p in x, x′ which must be zero. By Remark 3.3 there
exists a polynomial fp in x and x′ such that fp,1 = fpx

′ and fp,2 = −fpx.
This implies that (recall xy′ = x′y),

fp,1y + fp,2y
′ = fp(x′y − xy′) = 0,

and then
ϕ(dp) = apdp + fp,3X + fp,4X

′.

As any expression on x, x′, X and X ′ is in the image, we have only to check that ap �= 0.
Applying P1 to the above expression for ϕ(dp) and using that P1(dp) = 0, we get

0 = ap · 0 + P1(fp,3)X + fp,3P1(X) + P1(fp,4)X ′ + fp,4P1(X ′)

= P1(fp,3)X + P1(fp,4)X ′ + fp,3(xp−1X + zy) + fp,4(x′p−1X ′ − zy′)

= P1(fp,3)X + P1(fp,4)X ′ + fp,3x
p−1X + fp,4x

′p−1X ′ + z(fp,3y − fp,4y
′).

Again using the fact that z is a free generator, we obtain fp,3y − fp,4y
′ = 0, and then,

applying the Bockstein homomorphism, we get fp,3x − fp,4x
′ = 0, i.e. fp,3x = fp,4x

′.
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From this we deduce that there exists a polynomial f ∈ Fp[x, x′] such that fp,3 = x′f

and fp,4 = xf .
Going back to the description of ϕ(dp) we find that

ϕ(dp) = apdp + fp,3X + fp,4X
′ = apdp + x′fX + xfX ′ = apdp + f(x′X + xX ′) = apdp,

where the last equality holds because x′X +xX ′ = 0. Hence, we learn that ϕ(dp) = apdp.
To finish the proof we recall that dpx = xp−1X and apply the homomorphism ϕ:

ϕ(dpx) = ϕ(dp)x = apdpx = apx
p−1X = ϕ(xp−1X) = xp−1X.

Then we deduce that ap �= 0 and ϕ is an isomorphism. �

We now consider the case of n > 3. Here the use of Bockstein operators is needed.

Theorem 4.3. Let p be an odd prime and consider the notation of the generators
and relations in H∗

β(BP (p, n)) as in Theorem 3.7.

(a) If ϕ : H∗(BP (p, 4)) → H∗(BP (p, 4)) is a homomorphism of unstable algebras that
fixes y and y′, then ϕ is an isomorphism.

(b) If n � 5 and ϕ : H∗
β(BP (p, n)) → H∗

β(BP (p, n)) is a homomorphism in Kβ which
fixes y and y′. Then ϕ is an isomorphism.

Proof. We prove both results at the same time. Just observe that the Bockstein used
in the proof is βn−3, which is part of the mod p Steenrod algebra when n = 4.

Starting from ϕ(y) = y and ϕ(y′) = y′ and using the Bockstein operator we reach
ϕ(x) = x and ϕ(x′) = x′. On the other hand, there exist a, b, c ∈ Fp such that ϕ(u) =
au + by + cy′. From Remark 3.9 we know that βn−3(u) = y′y and βi(u) = 0 for i =
1, . . . , n − 4. For the case n = 4 we have

ϕ(β(u)) = ϕ(yy′) = yy′ = β(ϕ(u)) = ay′y + bx + cx′.

Hence, a = 1, b = c = 0 and u ∈ Im ϕ. For n > 4 we have in particular that β(u) = 0,

ϕ(β(u)) = 0 = β(ϕ(u)) = bx + cx′

and hence b = c = 0. Applying now βn−3 we find that

ϕ(βn−3(u)) = ϕ(yy′) = yy′ = βn−3(ϕ(u)) = ay′y

and that a = 1. In either case (n = 4 or n > 4) we get 〈u, y, y′, x, x′〉 � Im ϕ.
Now consider the generator cp−1. We can write

ϕ(cp−1) = ap−1cp−1 + bxp−1 + cx′p−1 + gp−1

with ap−1, b, c ∈ Fp and gp−1 not containing scalar multiples of the monomials cp−1, xp−1

and x′p−1. Applying ϕ to the equation cp−1x
′ = −x′p, we obtain

−x′p = ap−1cp−1x
′ + bxp−1x′ + cx′p + gp−1x

′

= −ap−1x
′p + bxp−1x′ + cx′p + gp−1x

′.
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Then from Remark 3.8 we get −1 = −ap−1 + c and b = 0. The same argument with
cp−1x = −xp instead gives

−xp = ap−1cp−1x + bxp + cx′p−1x + gp−1x

= −ap−1x
p + bxp + cx′p−1x + gp−1x.

Again by Remark 3.8 we get −1 = −ap−1 + b and c = 0. We conclude that b = c = 0,
ap−1 = 1 and ϕ(cp−1) = cp−1 + gp−1.

Next we deal with cp−2 of degree 2(p − 2) and z of degree 2p. Their images are
ϕ(cp−2) = ap−2cp−2 + gp−2 and ϕ(z) = azz + gz, with ap−2, az ∈ Fp, and gp−2 and gz

not involving the monomials cp−2 and z, respectively. Write the Steenrod power

P1(cp−1) = −zcp−2 + x2p−2 + x′2p−2 − xp−1x′p−1

as P1(cp−1) = −zcp−2 + f , with f = x2p−2 + x′2p−2 − xp−1x′p−1. Applying ϕ, we get

ϕ(P1(cp−1)) = P1(ϕ(cp−1)),

ϕ(−zcp−2 + f) = P1(cp−1 + gp−1),

−(azz + gz)(ap−2cp−2 + gp−2) + f = −zcp−2 + f + P1(gp−1),

−azap−2zcp−2 − azzgp−2 − ap−2gzcp−2 − gzgp−2 = −zcp−2 + P1(gp−1).

Because gp−1 does not involve cp−1 and the action of P1 on u, y, y′, x, x′ is determined
by the axioms, we deduce that P1(gp−1) does not involve zcp−2. Then from Remark 3.8
we have that azap−2 = 1 and both az and ap−2 are non-zero.

For the rest of the generators ci for i = 2, 3, . . . , p − 3 we can write ϕ(ci) = aici + gi,
with ai ∈ Fp and gi not involving ci. The Steenrod power P1(ci+1) = (i + 1)zci then
yields

ϕ(P1(ci+1)) = P1(ϕ(ci+1)),

ϕ((i + 1)zci) = P1(αi+1ci+1 + gi+1),

(i + 1)(azz + gz)(aici + gi) = (i + 1)ai+1zci + P1(gi+1),

(i + 1)(azaizci + azzgi + aigzci + gzgi) = (i + 1)ai+1zci + P1(gi+1).

Note again that there is no relation involving the generator z and the relations involving
ci are ciy = ciy

′ = cix = cix
′ = cicj = 0 for j < 2p−2− i. Also, the monomial zci cannot

appear in zgi, gzci and gzgi because gi does not contain ci and gz does not contain z.
Moreover, P1(gi+1) does not involve zci as gi+1 does not involve ci+1. We deduce that
(i + 1)azai = (i + 1)ai+1. As az �= 0 and ap−2 �= 0, an inductive argument shows that
ai �= 0 for i = 2, 3, . . . , p − 3, and hence for all i = 2, 3, . . . , p − 1.

To finish we show that all the generators c2, c3, . . . , cp−1, z are in the image of ϕ. We
start with c2 = (ϕ(c2)−g2)/α2. As g2 ∈ 〈u, x, x, y, y′〉 � Im ϕ, c2 is also in the image of ϕ.
An inductive argument shows that ci = (ϕ(ci)− gi)/αi is in the image of ϕ as gi belongs
to 〈u, x, x′, y, y′, c2, c3, . . . , ci−1〉. This argument also applies to show that z ∈ Im ϕ.

Hence, ϕ is an epimorphism. Because H∗
β(BP (p, n)) is finite in each dimension, ϕ is

an isomorphism. �
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Then, the following corollary is straightforward.

Corollary 4.4. H∗
β(BP (p, n)) for odd p and n � 3 is weakly generated (Definition 2.3)

by y and y′.

Proof. Let ϕ be an endomorphism of H∗
β(BP (p, n)) which is an isomorphism

on 〈y, y′〉. Using the outer automorphism group of P (p, n) that is described in [5,
Lemma A.5], there is a morphism f : BP (p, n) → BP (p, n) such that the composition
f∗ ◦ ϕ fixes y and y′. Now use Theorems 4.1, 4.2 and 4.3 to get the result. �

Note that for any finite p-group there is a natural isomorphism H1P ∼= P/Φ(P ), where
Φ(P ) stands for the Frattini subgroup of P [6, p. 173]. Therefore, Theorems 4.1–4.3 can
be seen as a cohomological counterpart of the following group theoretical result.

Proposition 4.5. Let P be a finite p-group and let f : P → P be a group morphism
such that the induced morphism at the level of Frattini quotients f̃ : P/Φ(P ) → P/Φ(P )
is an isomorphism. Then f is an isomorphism.

Proof. Let n be such that P/Φ(P ) = (Z/p)n [6, Theorem 5.1.3]. Assume f is not an
isomorphism. Then f(P ) � H < P for some maximal subgroup H < P , and therefore
f̃(P/Φ(P )) < H/Φ(P ) = (Z/p)n−1 < P/Φ(P ), that is, f̃ is not an isomorphism. �

Now, we apply the results above to obtain the cohomology uniqueness of the classifying
space BP (p, n). We split this result into two corollaries because the structure of P (p, 3)
is essentially different from that of P (p, n), n > 4.

Corollary 4.6. Let p be an odd prime and let X be a p-complete space such that
H∗(X) ∼= H∗(BP (p, 3)) as unstable algebras. Then X � BP (p, 3).

Proof. Consider the central extension

0 → Z/p → P (p, 3) π−→ Z/p × Z/p → 0

and denote by y and y′ the two generators of H1(Z/p × Z/p) that are mapped by π to
the generators of the same name in H1(P (p, 3)) (see Remark 3.4).

By the same argument used in the proof of Proposition 3.12 or by a direct computation
using the cochains in Remark 3.4, we find that this central extension is classified by
yy′ ∈ H2(Z/p × Z/p), and it gives rise to the principal fibration

BP (p, 3) Bπ−−→ BZ/p × BZ/p
yy′

−−→ B2
Z/p.

Consider the map πX : X → BZ/p×BZ/p that classifies the classes y, y′ ∈ H1(X). Then
the composite

X
πX−−→ BZ/p × BZ/p

yy′

−−→ B2
Z/p

https://doi.org/10.1017/S0013091512000247 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000247


Cohomological uniqueness of some p-groups 465

is null-homotopic because of Theorems 3.1 and 3.2, and so πX lifts to ϕ : X → BP (p, 3),
giving the commutative diagram

BP (p, 3)

Bπ

��
X

ϕ
��

πX �� BZ/p × BZ/p

which implies that ϕ∗ fixes y and y′. Now apply Theorems 4.1 and 4.2 to ϕ∗. �

Corollary 4.7. Let p be an odd prime and let X be a p-complete space.

(a) If H∗(X) ∼= H∗(BP (p, 4)) as unstable algebras, then X � BP (p, 4).

(b) If n � 5 and H∗
β(X) ∼= H∗

β(BP (p, n)) as objects in Kβ , then X � BP (p, n).

Proof. Consider the central extensions and notation in Proposition 3.12. For i =
1, . . . , n − 4 we have the short exact sequences

0 → Z/p → Z/pi+1 × Z/p × Z/p
πi−→ Z/pi × Z/p × Z/p → 0,

which are classified by βi(ui) ∈ H2(Z/pi × Z/p × Z/p) with ui ∈ H1(Z/pi).
Now let π1,X be the map π1,X : X → BZ/p × BZ/p × Z/p that classifies the classes

u, y, y′ ∈ H1(X), i.e. such that, in cohomology, π∗
1,X maps u1, y and y′ from H1(BZ/p×

BZ/p × Z/p) to u, y and y′ from H1(X) respectively.
The composite

X
π1,X−−−→ BZ/p × BZ/p × BZ/p

β(u1)−−−→ B2
Z/p

is null-homotopic because β(u) = 0 in H∗(X) according to Remark 3.9. Hence, the map
π1,X extends to a map π2,X which fits into the following commutative diagram:

BZ/p2 × BZ/p × BZ/p

Bπ1

��
X

π2,X

��

π1,X �� BZ/p × BZ/p × BZ/p

Note that in cohomology Bπ1 maps u1, y and y′ to u2, y and y′ respectively. Hence,
π2,X maps u2, y and y′ to u, y and y′ respectively. Using inductively that all the higher
Bockstein operators βi(u) vanish for i = 2, . . . , n − 4, we build step by step a map

πn−3,X : X → BZ/pn−3 × BZ/p × BZ/p,

which in cohomology maps un−3, y and y′ to u, y and y′ respectively. To finish the proof
we use the abelianization morphism from Proposition 3.12:

0 → Z/p → P (p, n)
πn−3−−−→ Z/pn−3 × Z/p × Z/p → 0,
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which is classified by βn−3(un−3) − yy′ ∈ H2(Z/pn−3 × Z/p × Z/p), where un−3, y and
y′ are generators of H1(Z/pn−3 ×Z/p×Z/p) that are mapped by πn−3 to the generators
u, y and y′ in H1(P (p, n)).

Because βn−3(u) − yy′ = 0 in H∗(X), the composite

X
πn−3,X−−−−−→ BZ/pn−3 × BZ/p × BZ/p

βn−3(un−3)−yy′

−−−−−−−−−−−→ B2
Z/p

is null-homotopic and we can lift πn−3,X to a map ϕ that makes the following diagram
commutative:

BP (p, n)

Bπn−3

��
X

ϕ
��

πn−3,X �� BZ/pn−3 × BZ/p × BZ/p.

This shows that ϕ∗ fixes y and y′, and hence Theorem 4.3 gives the result. �

5. Some applications to group theory

The techniques used in the proof of Corollaries 4.6 and 4.7 can be used to obtain a
cohomological characterization of P (p, n) as a complement for some N � G, for a super
group P (p, n) � G. Recall that, given a group G and a normal subgroup N � G, K � G

is a complement for N if G = NK and N ∩ K = 1, that is, if G = N � K.
Again, we consider the case n = 3 separately.

Proposition 5.1. Let p be an odd prime and let G be a finite group such that
P (p, 3) � G. Assume also that there exists ψ : H∗(BP (p, 3)) → H∗(BG) as unstable
algebras such that (res ◦ ψ)|H1

β(BP (p,3)) is the identity. Then P (p, 3) is a complement for
some N � G.

Proof. As stated above, we work along the same lines as in the proof of Corollary 4.6.
We begin by considering the map BπG : BG → BZ/p × BZ/p that classifies the classes
ψ(y), ψ(y′) ∈ H1(BG). This means that if we denote (as we did in Corollary 4.6) by y

and y′ the two generators of H1(BZ/p × BZ/p) that are mapped by Bπ : BP (p, 3) →
BZ/p×BZ/p to the generators of the same name in H1(BP (p, 3)) (see also Remark 3.4),
then Bπ∗

G(y) = ψ(y) and Bπ∗
G(y′) = ψ(y′).

Moreover, Bπ∗
G(yy′) = Bπ∗

G(y)Bπ∗
G(y′) = ψ(y)ψ(y′) = ψ(yy′) = ψ(0) = 0 (Theo-

rems 3.1 and 3.2), and the composite

BG
BπG−−−→ BZ/p × BZ/p

yy′

−−→ B2
Z/p

is null-homotopic. Therefore, BπG lifts to Bφ : BG → BP (p, 3), giving the commutative
diagram

BP (p, 3)

Bπ

��
BP (p, 3) res �� BG

Bφ
��

BπG �� BZ/p × BZ/p
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which implies that Bφ∗(y) = ψ(y) and Bφ∗(y′) = ψ(y′), and

(res ◦ Bφ)∗(y) = (res∗ ◦ ψ)(y) = y and (res ◦ Bφ)∗(y′) = (res∗ ◦ ψ)(y) = y′.

Now, applying Theorems 4.1 and 4.2 or Proposition 4.5, we obtain that φ|P (p,3) is an
automorphism of P (p, 3), that is, P (p, 3) is a complement for N = ker φ � G. �

We now proceed with the case n > 3.

Proposition 5.2. Let p be an odd prime and let G be a finite group such that
P (p, n) � G.

(a) If n = 4 and there exists ψ : H∗(BP (p, 4)) → H∗(BG) as unstable algebras such
that (res ◦ ψ)|H1

β(BP (p,4n)) is the identity, then P (p, 4) is a complement for some
N � G.

(b) If n � 5 and there exists ψ : H∗
β(BP (p, n)) → H∗

β(BG) a morphism in Kβ such that
(res ◦ ψ)|H1

β(BP (p,n)) is the identity, then P (p, n) is a complement for some N � G.

Proof. We now follow the lines of the proof of Corollary 4.7 but start with the map
Bπ1,G : BG → BZ/p × BZ/p × BZ/p that classifies the classes ψ(u), ψ(y), ψ(y′) ∈
H1(BG). This means that in cohomology this map carries the elements u1, y and y′

from H1(BZ/p × BZ/p × BZ/p) (defined in Proposition 3.12) to ψ(u), ψ(y) and ψ(y′),
respectively.

The arguments in Corollary 4.7 together with the fact that ψ preserves relations and
higher Bockstein operators show that there exists a map

BG
Bφ→ BP (p, n)

which satisfies Bφ∗(y) = ψ(y), Bφ∗(y′) = ψ(y′) and Bφ∗(u) = ψ(u). Hence, we also get
the following:

(res ◦ Bφ)∗(y) = (res∗ ◦ ψ)(y) = y,

(res ◦ Bφ)∗(y′) = (res∗ ◦ ψ)(y) = y′,

(res ◦ Bφ)∗(u) = (res∗ ◦ ψ)(u) = u.

Again, applying Proposition 4.5 or Theorem 4.3, we obtain that φ|P (p,n) is an automor-
phism of P (p, n), that is, P (p, n) is a complement for N = ker φ � G. �
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