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Abbreviations: 

GM: Gut microbiome 

GI: Gastrointestinal 

FI: Food insecure 

FS: Food secure 

VAR: Variable food secure 

SPARC: Social impact of Physical Activity and nutRition in College 

ASU: Arizona State University 

BMI: Body mass index 

QIIME2: Quantitative Insights Into Microbial Ecology 2 

ASV: Amplicon sequence variants 

GTDB: Genome Taxonomy Database 

PICRUSt2: Phylogenetic Investigation of Communities by Reconstruction of Unobserved 

States 2 

ACN: Acetonitrile 

MeOH: Methanol 

LC-MS: Liquid chromatography-mass spectrometry 

QC: Quality control 

HILIC: Hydrophilic interaction chromatography 

ESI: Electrospray ionization 

RT: Retention time 

MS: Exact mass 

HMDB: Human Microbiome Database 

ANOVA: Analysis of variance 

PERMDISP: Permutation test for homogeneity in multivariate dispersion 

LME: Linear-mixed effect 

PERMANOVA: Permutational multivariate analysis of variance 

GLM: General linear model 

PLS-DA: Partial least squares-discriminant analysis 

GFLASSO: Graph-guided fused least absolute shrinkage and selection operator 

RMSE: Root mean squared error 

https://doi.org/10.1017/S0007114525103668  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114525103668


Accepted manuscript 

ER: Enrichment ratio 

PA: Polyamine  
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Abstract 

Food insecurity affects the health of college-aged individuals, but its impact on the gut 

microbiome (GM) over time is poorly understood. This study explored the association between 

food insecurity and the GM in 85 college students, identifying microbial taxa, metabolites, and 

pathways linked to food security status and examining GM stability and microbe-metabolite 

interactions. Longitudinal GM and metabolomic data were collected from first-year students over 

an academic year, encompassing periods of variable food security status. Participants were 

categorized into three groups: food insecure (FI, n=13), food secure (FS, n=44), and variable 

(VAR, n=28) status. GM composition varied significantly between FS classifications (Bray-

Curtis dissimilarity, P ≤ 0.005). Stability analysis revealed correlations between stability scores 

and microbial features, pathways, and metabolites. Specific microbes (e.g., Bifidobacterium 

species, Faecalibacterium prausnitizii D, and Lachnospiraceae), pathways (energy and 

microbial turnover), and metabolites (cadaverine, N-acetylcadaverine, putrescine, testosterone 

sulfate, and creatine) associated with FI status were identified. Multi-omic integration revealed 

metabolic pathways influenced by differentially abundant microbial species and co-occurring 

fecal metabolites in food-insecure participants related to the microbial production of polyamines, 

detoxification, and energy metabolism. The transition from FS to FI showed no significant 

differences at specific taxonomic, functional, or metabolite levels. This study uncovers complex 

interactions between food security, GM composition, and metabolism. Significant differences 

were found in microbial community variability and metabolic pathways associated with food 

security status, but the transition from food security to insecurity disrupted the GM without clear 

taxonomic or functional distinctions, emphasizing the need for further research into these 

mechanisms.
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Introduction 

Food insecurity is an increasing public health problem that disproportionally affects vulnerable 

populations across the lifespan. Despite targeted efforts, food insecurity continues to be prevalent 

in the United States, occurring in 12.8% of households as of 2021 
(1)

. Defined as a socio-cultural 

construct tied to the lack of consistent access to healthy food 
(2)

, food insecurity is particularly 

problematic amongst college-aged individuals with prevalence levels several times higher than 

the national average 
(3)

. Food insecurity in this population is correlated with poor physical and 

mental health, dietary, and academic outcomes 
(3–7)

. During the formative period of emerging 

adulthood (the general age of college students), food insecurity has the potential to significantly 

disrupt an individual's health trajectory, leading to suboptimal health that may persist into later 

life 
(8)

. 

Food insecurity shares multiple characteristics with dietary behaviors involving nutrient 

or food deprivation, such as caloric restriction, intermittent fasting, and disordered eating 
(9–11)

. 

However, it is important to recognize that the psychological mechanisms surrounding food 

insecurity, including anxiety and depression related to food access, are distinct from voluntary 

dietary practices (e.g., caloric restriction) 
(12)

. Moreover, direct comparison of the aforementioned 

dietary behaviors with food insecurity for factors such as energy intake, nutrient profile, and 

other related health considerations may not be appropriate. Therefore, more research in this area 

is greatly warranted, particularly longitudinal assessments in tandem with systems biology 

approaches to unravel the complex impact of food insecurity on individual health. In this context, 

the gut microbiome (GM), comprising the diverse community of microbes inhabiting the 

gastrointestinal (GI) tract, has emerged as a valuable and elucidating factor, responsive to dietary 

pressures akin to food security status. For example, evidence supports that caloric restriction, 

intermittent fasting, and disordered eating influence the ecological landscape of the GM, 

modulating microbial competitiveness favoring particular taxa and metabolic pathways 
(13–16)

. 

The metabolites synthesized or modified within this environment have also been reported to play 

a crucial role in corresponding health implications for the host 
(17)

. For instance, microbial-

generated metabolites have been suggested as a mediator between an altered GM and behavior 

associated with anorexia nervosa 
(15)

. Consequently, the GM and metabolome represent essential 

complementary omic layers, poised to offer predictive biomarkers and co-occurrent signatures 

for capturing pathological variation over time. 
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Previously we established distinct microbial and metabolic signatures in food insecure 

individuals compared to food secure counterparts in a college-based population 
(18)

. Our findings 

suggested that compared to food secure students, the GM of food insecure students exhibited 

greater within-sample differences and estimated metabolic pathway activity, particularly related 

to hydrolysis reactions, energy substrate biosynthesis, and macronutrient metabolism. 

Additionally, we observed elevated metabolites (i.e., picolinic acid, phosphocreatine, 2-

pyrrolidinone) associated with energy transfer and gut-brain-axis communication with food 

insecurity 
(18)

. While this work was cross-sectional, these results indicate that the architecture of 

a food insecure GM may be primed to handle periods of deprivation and encode for the 

production/transformation of metabolic products relevant to gut-brain communication. However, 

the ecological stability of microbial communities under dietary pressure remains unclear, as 

within-subject longitudinal variation depends on factors like host lifestyle or sudden changes in 

nutritional status 
(19)

. Furthermore, it is important to understand how functional attributes and 

metabolic end-products of the GM may shift over time depending on variable or fixed food 

security status. 

As a continuation of our research to uncover the influence of food insecurity status on the 

GM and its functional output 
(18)

, we assembled longitudinal GM and metabolomic data from 

first-year college students, capturing a timeframe that accurately aligns with the academic year 

and is known to induce variability in food security status 
(3)

. We categorized participants into 

three groups: those with a fixed status of either food insecure (FI) or food secure (FS), and those 

with a variable (VAR) status throughout the study period. Our objectives were to identify specific 

taxa, metabolites, and functional pathways in the GI tract associated with food security status, 

while also shedding light on GM stability and meaningful microbe-metabolite co-occurrence 

signatures that may influence host health. This investigation represents an important, early step 

in deepening our understanding of the underlying mechanisms linking food security status to GM 

dynamics and metabolic profiles, which may ultimately provide valuable insight to improve 

health outcomes in this vulnerable population. 

Methods 

Participants and Study design 

The devilWASTE study was a sub-study of the Social impact of Physical Activity and nutRition 

in College (SPARC) study, which sought to analyze relationships between lifestyle factors, 
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weight outcomes, and the social networks of first-year college students 
(20)

. DevilWASTE 

participants were recruited from the SPARC cohort from six dorms across three different Arizona 

State University (ASU) campuses. Participants in devilSPARC were recruited from one dorm on 

each of the three campuses. Given participants lived on campus, all participants were required to 

have a meal plan. All participants had pre-paid for at least 8 meals per week. The exclusion 

criteria for devilWASTE included age less than 18 years, certain GI conditions such as 

malabsorptive diseases, history of eating disorders, antibiotic use 2-3 months prior to study 

visits, and conditions that affect the microbiome including HIV infection, diabetes, and high 

blood pressure. Inclusion criteria included living in a residence hall at ASU, English speaking, 

and participation in the SPARC study. Eligible participants provided written informed consent 

before enrollment. The devilWASTE study and the parent SPARC study were approved by the 

ASU Institutional Review Board. 

Data Collection 

Recruitment for devilWASTE took place during the academic year starting in August 2015 and 

data collection continued through May 2016. Stool samples were collected at up to three of the 

four SPARC study time points (beginning and end of fall and spring semesters). In the present 

analysis, only individuals who provided a stool sample at the start of the Fall semester (T1), 

either at the end of the Fall or start of the Spring semester (T2), and at the end of the Spring 

semester (T3) were retained to support this longitudinal analysis. At each time point, 

anthropometrics, physical activity, and diet information were collected. At baseline socio-

demographic characteristics including age, sex, race, and ethnicity were collected. Participant 

Pell grant status for the Fall 2015 and Spring 2016 semesters was acquired from university 

records. 

Anthropometrics were obtained by trained research staff using Seca 869 scales (Seca, 

USA) for weight (kg), Seca 217 stadiometers (Seca, USA) for height (cm), and flexible, tension 

spring-loaded Gulick measuring tapes for waist (cm) and hip (cm) circumference (Creative 

Health Products, USA). These measurements were taken at each of the four devilSPARC study 

visits and completed up to three times at each visit to ensure accuracy. The two measures that 

were within 0.5 kg and 0.5 cm for weight and height, respectively, were averaged for final 

measurements. If none of the first three measurements were within 0.5 units of each other, 

another set of up to three measurements were taken. Similarly, the two waist and hip measures 
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within 0.5 cm were averaged for final measures, and if none were within 0.5 cm another set of up 

to three measurements was obtained. Participant body mass indexes (BMI) were calculated and 

reported in kg/m
2 

while waist-to-hip ratios were calculated as waist divided by hip. 

Questionnaires were used to evaluate lifestyle behaviors. Physical activity was assessed 

with the Godin-Shephard Leisure-Time Physical Activity Questionnaire which categorizes and 

quantifies activity into vigorous, moderate, and light physical activity 
(21)

. Sedentary behavior 

was assessed with an additional question: “Yesterday, how much time did you spend in front of a 

screen (excluding time in class and being physically active)?” 
(22)

. Participants selected a 

response from a range of zero to six hours. Self-reported dietary intake was reported using the 

National Cancer Institute Dietary Screener Questionnaire that assesses consumption frequency of 

key food items and food groups 
(23)

. This tool does not estimate caloric intake but rather tracks 

consumption of food group categories such as fruits and vegetables, high-fat and processed 

foods, added sugar, dietary fiber, and whole grain intake. Weekly alcohol intake was assessed by 

the number of drinks consumed weekly by asking: “For each day of the week in the calendar 

below, indicate the number of alcoholic drinks typically consumed on that day (Only if yes to 

alcohol is selected).” The dropdown ranged from 1-15 drinks for all days of the week. For 

capturing depression 
(24)

 and perceived stress 
(25)

, students completed previously validated 

questionnaires with robust test-rest correlations (0.89 and 0.74, respectively) in a similar college-

aged population 
(6)

. 

Food insecurity was measured using the United States Department of Agriculture 6-item 

food insecurity screener 
(26)

. The time frame in the validated question was adapted and the 

framing of the question changed from “we” to “I”, as has been done by others 
(27)

. Of the 6 items 

administered, participants that provided an affirmative answer to two or more questions were 

categorized as food insecure in the past month. Participants were then distributed into three 

groups: those with a fixed status of FI or FS, and those with a VAR status throughout the study 

period. 

Fecal sample collection and DNA extraction 

Research staff delivered fecal sample collections kits to the residence halls of eligible 

participants. As previously noted, fecal samples were collected at up to three timepoints for each 

participant. Participants were asked to report any medication and supplement use within the last 

3 months; if participants had taken any antibiotics, antifungals, or probiotics within the previous 
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3 months, a fecal sample was not obtained. Research staff picked up the fecal samples within 30 

min of a participant’s reported bowel movement and transported them to the laboratory where 

they were frozen at  -80 °C until further processing. Frozen samples were thawed at 4 °C, and 

wet weight was recorded to the nearest 0.01 g after subtracting the weight of fecal collection 

materials. DNA was extracted from approximately 300 mg of feces, collected from the center of 

the sample, using a modified version of the manufacturer protocol (MoBio Power Soil DNA 

Isolation Kit #12888-100, MoBio, Carlsbad, CA). Per manufacturer recommendations, a heating 

step of 65 °C for 10 min was added to the protocol to reduce the influence of inhibitors 

commonly found in feces and increase DNA yield. DNA concentration and quality were 

quantified using the QIAxpert System (Qiagen, Germantown, MD) according to manufacturer 

instructions. 

Fecal microbiome sequencing 

High-throughput genomic sequencing of the 16S rRNA gene was performed at the Biodesign 

Institute at ASU in Tempe, Arizona using Illumina miSeq technology after ligating 515F and 

806R primers and Illumina adapters via polymerase chain reaction. Negative controls were 

included and run with the study samples. A detailed report of methods to prepare and sequence 

DNA has been published 
(18,28)

. 

Due to the complex nature of the devilWASTE study design, large number of 

participants, and low-quality sequencing for a few samples in initial runs, three sequencing runs 

were conducted. In cases where samples were sequenced multiple times, files were merged after 

performing quality control. This method has been supported by expert census from the 

Quantitative Insights Into Microbial Ecology 2 (QIIME2) software development team 
(29)

, the 

bioinformatic pipeline used in the present analysis. Overall, the 16S rRNA sequencing produced 

a total of 22,628,375 reads across the three runs with a median of 46,238 (run 1), 33,395 (run 2), 

and 77,808 (run 3) reads per sample. Paired-end, demultiplexed data were imported and analyzed 

using QIIME 2 software version 2021.8. Upon examination of sequence quality plots, base pairs 

were trimmed at position 20 and truncated at position 240 and were run through DADA2 (each 

run separately to prevent error modeling) to remove low quality regions and construct a feature 

table using amplicon sequence variants (ASVs). Next feature tables and representative sequences 

from the three runs were merged using the functions ‘feature-table merge’ and ‘feature-table 

merge-seqs’, respectively. Parameters were set to ‘sum’ for ‘--p-overlap-method’ to pool all 
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features from duplicated samples in one and summarize all identical features in that sample. 

Taxonomy was assigned by first constructing a classifier against the Genome Taxonomy 

Database (GTDB; r.202) 
(30)

 using a naive Bayes approach via the q2-feature-classifier. Refined 

taxonomic classification was produced by assembling bespoke taxonomic weights with q2-

clawback to achieve benchmarked species-level resolution 
(31)

. A phylogenic tree was then 

constructed using the fragment-insertion plugin. A rarefaction threshold was assessed at 8,000 

and used to impute high-quality reads and normalize for uneven sequencing depth between 

samples 
(32)

. A phyloseq (v1.38.0) object was created, and downstream analyses and 

visualizations were performed in R (v.4.1.2). Sequences were removed including mitochondrial 

and plant DNA. In addition, any remaining singleton ASVs across samples were removed. 

Alpha-diversity was calculated using observed ASVs and phylogenetic diversity metrics. Beta-

diversity was assessed using the Bray-Curtis dissimilarity metric. Estimated functional potential 

of the overall bacterial community was surveyed via the Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States 2 (PICRUSt2) algorithm (v2.4.2) 
(33)

. 

Pathway abundances were inferred based on structured pathway mappings of Enzyme 

Commission gene families to the MetaCyc database 
(34)

. 

Fecal Metabolomics 

Acetonitrile (ACN), methanol (MeOH), ammonium acetate, and acetic acid, all liquid 

chromatography-mass spectrometry (LC-MS) grade, were purchased from Fisher Scientific 

(Pittsburgh, PA). Ammonium hydroxide was bought from Sigma-Aldrich (Saint Louis, MO). DI 

water was provided in-house by a Water Purification System from EMD Millipore (Billerica, 

MA). PBS was bought from GE Healthcare Life Sciences (Logan, UT). The standard metabolite 

compounds were purchased from Sigma-Aldrich (Saint Louis, MO) and Fisher Scientific 

(Pittsburgh, PA). 

Briefly, each fecal sample (~20 mg) was homogenized in 200 µL MeOH:PBS (4:1, v:v, 

containing 1,810.5 μM 
13

C3-lactate and 142 μM 
13

C5-glutamic Acid) in an Eppendorf tube using 

a Bullet Blender homogenizer (Next Advance, Averill Park, NY). Then 800 µL MeOH:PBS (4:1, 

v:v, containing 1,810.5 μM 
13

C3-lactate and 142 μM 
13

C5-glutamic Acid) was added, and after 

vortexing for 10 s, the samples were stored at -20 
o
C for 30 min. The samples were then 

sonicated in an ice bath for 30 min. The samples were centrifuged at 14,000 RPM for 10 min (4 

o
C), and 800 µL supernatant was transferred to a new Eppendorf tube. The samples were then 
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dried under vacuum using a CentriVap Concentrator (Labconco, Fort Scott, KS). Prior to MS 

analysis, the obtained residue was reconstituted in 150 μL 40% PBS/60% ACN. A quality control 

(QC) sample was pooled from all the study samples. 

The untargeted LC-MS metabolomics method used here was modeled after that 

developed and used in a growing number of studies 
(28,35)

.
 
Briefly, all LC-MS experiments were 

performed on a Thermo Vanquish UPLC-Exploris 240 Orbitrap MS instrument (Waltham, MA). 

Each sample was injected twice, 10 µL for analysis using negative ionization mode and 4 µL for 

analysis using positive ionization mode. Both chromatographic separations were performed in 

hydrophilic interaction chromatography (HILIC) mode on a Waters XBridge BEH Amide 

column (150 x 2.1 mm, 2.5 µm particle size, Waters Corporation, Milford, MA). The flow rate 

was 0.  mL/min, auto-sampler temperature was kept at 4  C, and the column compartment was 

set at 40  C. The mobile phase was composed of Solvents A (10 mM ammonium acetate, 10 mM 

ammonium hydroxide in 95% H2O/5% ACN) and B (10 mM ammonium acetate, 10 mM 

ammonium hydroxide in 95% ACN/5% H2O). After the initial 1 min isocratic elution of 90% B, 

the percentage of Solvent B decreased to 40% at t=11 min. The composition of Solvent B 

maintained at 40% for 4 min (t=15 min), and then the percentage of B gradually went back to 

90%, to prepare for the next injection. Using mass spectrometer equipped with an electrospray 

ionization (ESI) source, we will collect untargeted data from 70 to 1050 m/z. 

To identify peaks from the MS spectra, we made extensive use of the in-house chemical 

standards (~600 aqueous metabolites), and in addition, we searched the resulting MS spectra 

against the Human Metabolome Database (HMDB) library, Lipidmap database, METLIN 

database, as well as commercial databases including mzCloud, Metabolika, and ChemSpider. 

The absolute intensity threshold for the MS data extraction was 1,000, and the mass accuracy 

limit was set to 5 ppm. Identifications and annotations used available data for retention time 

(RT), exact mass (MS), MS/MS fragmentation pattern, and isotopic pattern. We used the Thermo 

Compound Discoverer 3.3 software for aqueous metabolomics data processing. The untargeted 

data were processed by the software for peak picking, alignment, and normalization. To improve 

rigor, only the signals/peaks with CV < 20% across QC pools, and the signals showing up in 

>80% of all the samples were included for further analysis. Chemical taxonomy was obtained by 

querying metabolome features against the most recent version of the HMDB (v.5.0) 
(36)

. A 
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Canberra distance matrix was computed on the metabolomics feature table, as previously 

described 
(37)

. 

Statistical Analysis 

Anthropometric, behavioral, and dietary data from participant’s was first assessed for normality 

using QQ-plots and Shapiro-Wilk’s test. Differences in baseline values between the three FS 

statuses were then analyzed by analysis of variance (ANOVA) or Kruskal-Wallis tests, depending 

on normality. Potential differences in anthropometric, behavioral, and dietary data at each of the 

three time points between the three FS classifications were assessed by ANOVA or Kruskal-

Wallis tests with post-hoc comparisons, where appropriate. 

 To ensure that the study had sufficient power to detect differences in gut microbiome 

composition across the food security groups, we conducted a power analysis using the Xmcupo 

test from the HMP package (v2.0.2.). The Xmcupo test applies a Dirichlet-Multinomial model, 

which is particularly suited for over-dispersed microbiome data. The Xmcupo test demonstrated 

sufficient statistical power to detect significant differences in microbial community composition 

between the groups. The analysis returned an Xmcupo statistic of 4207.375 (P < 0.001), 

indicating a highly significant difference in microbiome composition across food security 

statuses. This result confirms that, despite the unequal group sizes, the study design provides 

adequate power to detect meaningful differences in gut microbial diversity and composition 

between the food security groups. 

For analysis of the GM, features and estimated functional pathways that were not present 

in at least 10% of samples were removed. First, a permutation test for homogeneity in 

multivariate dispersion (PERMDISP) was conducted using the ‘betadisper’ function in the vegan 

package (v2.6.2.) to compare dispersion across FS classification. Next, calculated intra-

individual differences for the microbiome, estimated functional pathways, and fecal metabolome 

and alpha diversity metrics were tested for the effect of time, group, and their interaction using 

linear-mixed effect (LME) modeling using the nLME package (v3.1.153.). To assess feature 

stability, we computed Bray-Curtis dissimilarity (for species and estimated pathways) and 

Canberra distance (for the fecal metabolome) using the ecodist package (v2.0.9.) for each 

participant across the three sample-collection time points. We then calculated a stability score for 

each feature as 1 minus its Bray–Curtis (or) Canberra value (i.e., “1 – dissimilarity”). Because a 

smaller dissimilarity value indicates higher similarity across time points, this approach yields a 
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stability measure that ranges from 0 (least stable) to 1 (most stable). This metric has been 

previously described 
(19,38)

 but here serves to highlight how consistently a given feature’s 

abundance remains within an individual over multiple time points. We then pooled all feature-

level observations (i.e., each species, pathway, or metabolite in each participant) to perform a 

single Spearman’s rank correlation (ρ) comparing the distribution of stability scores to the 

distribution of log-transformed abundances within each data type (microbial species, pathways, 

or metabolites). Next, to determine whether the slope (relationship) between stability and 

abundance differed by FS status, we fitted separate linear regression models for each data type 

(estimates reflect the average across all features within that data type). In these models, 

individual feature observations were nested within each FS classification, and FS status was 

treated as an interaction term with the stability measure. Where a significant interaction was 

observed, we conducted post-hoc pairwise comparisons between FS categories to test for 

differences in the slope of stability vs. abundance. If significant interactions were detected, 

pairwise contrasts were used to detect significant differences in beta-coefficients between the FS 

classifications. Permutational multivariate analysis of variance (PERMANOVA) models were 

constructed for Bray-Curtis dissimilarity metrics (microbiome and estimated functional 

pathways) in the vegan package testing the effects of the individual (nested factor), FS status, 

time, and the interaction between these factors, controlling for sex and baseline BMI 

(permutation n = 999). Differential abundance analyses for microbial features at the phylum, 

family, and species level and estimated functional pathways were performed using the MaAsLin2 

package with default parameters (v1.12.0) 
(39)

. To detect differences in features between the three 

FS statuses, we built linear mixed models with FS as the reference group that included time, and 

the covariates of sex and baseline BMI and the participant as a random factor. 

To assess differences in metabolite abundances between the three FS statuses, fecal 

metabolome samples from all time points were pooled and a covariate adjusted general linear 

model (GLM), accounting for time, sex, and baseline BMI, was assembled with FS status used as 

the reference group. Significant features were then selected and used to construct a supervised 

partial least squares-discriminant analysis (PLS-DA) as a model predictive of FI and FS status. 

Pathway and enzyme topology and enrichment models were analyzed between groups using 

MetaboAnalyst software 
(40)

. For pathway analysis, impact was calculated using a 

hypergeometric test, while significance was determined using a test of relative betweenness 
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centrality. All metabolomics data were log10-transformed, and Pareto scaled to approximate 

normality prior to analysis. 

For multi-omic analysis, we integrated significant microbial taxa from the linear mixed 

models and the reliably detected and annotated fecal metabolomic data with graph-guided fused 

least absolute shrinkage and selection operator (GFLASSO) regression (R package: GFLASSO, 

v0.0.0.9000). Using this correlation-based network approach, significant microbial features were 

entered as the predictor variable and fecal metabolites as the response variable. Solution 

parsimony was determined by an unweighted (i.e., presence or absence of association by 

imposing a correlation threshold) network structure. For our purposes, we imposed a Spearman’s 

rank correlation of ρ = 0.80 to provision for balance between running time and network density. 

The regularization and fusion parameters were determined from the smallest root mean squared 

error (RMSE) estimate via cross-validation, accounting for interdependencies among microbial 

features. The tested parameters encompassed all combinations between λ and γ with values 

ranging from 0 to 1 (inclusive) in step increments of 0.1. GFLASSO coefficient matrices were 

constructed using a threshold coefficient of >0.02 to discern the strongest associative signals. 

The highest beta coefficients detected from GFLASSO models were further assessed by 

performing Spearman correlations of select microbial features with the response variables. 

Where appropriate, statistical models accounted for baseline BMI and sex as covariates 

with participant as a random effect. A P-value of 0.05 was used to denote statistical significance 

and P-value adjustments (Q) were performed where appropriate using the Benjamini-Hochberg 

(BH) procedure. A Q-value < 0.10 was considered statistically significant. All statistical analyses 

were performed in the R environment (v4.1.2.). 

Results 

Participant Characteristics 

In total, 85 participants from the previously described parent study 
(20)

 provided a full stool 

sample at the requisite time points and were included in this analysis (Fig. 1). No significant 

differences between FS classification at baseline (beginning of the Fall semester) were detected 

for age, body weight, waist circumference, waist/hip ratio, or BMI (ANOVA/Kruskal-Wallis 

tests, P ≥ 0.085); nor for self-reported lifestyle behaviors, including moderate to vigorous 

physical activity (MVPA), screen time, stress, sleep, and dietary factors (ANOVA/Kruskal-Wallis 

tests, P ≥ 0.079; Table 1). There was a significant difference in depression and total alcohol 
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consumption (Kruskal-Wallis tests, P ≤ 0.011), with FI individuals displaying greater initial 

levels compared to FS individuals (pairwise comparison, P ≤ 0.05). As a proxy for economic 

status, we did not detect a significant difference between classifications for Pell grant status 

(Fisher’s exact test, P = 0.981). No significant time or interaction effects were detected for any 

anthropometric or behavioral variable (P ≥ 0.085; Supplementary Table S1). 

Community structure and stability of gut microbes, function, and metabolome display 

variability by food security status 

Covariate controlled, nested adonis analysis revealed significant individual variance over time 

between the three food security classifications (PERMANOVA, R
2
 = 0.194, P = 0.001), with the 

individual effects of group (R
2
 = 0.017, P = 0.001) and time (R

2
 = 0.005, P = 0.001) explaining 

less overall variance. This was not the case for estimated functional pathways, which was not 

significant for any factor as above (P = 0.180) or the individual variance over time for the fecal 

metabolome (P = 0.304). However, the fecal metabolome was significant for the individual 

effects of group (R
2
 = 0.015, P = 0.001) and time (R

2
 = 0.005, P = 0.001). 

There were no significant time or interaction effects for the surveyed alpha diversity 

metrics, observed ASVs and phylogenic diversity (P ≥ 0.122; Supplementary Fig. S1A-B). 

Comparison of distributions of Bray-Curtis dissimilarity with a total of 3,570 ASVs across 255 

samples revealed significant within-group differences by food security status (ANOVA, P = 

0.004), with the GM of FS participants showing greater overall variability compared to FI and 

VAR participants (pairwise comparison, P ≤ 0.008; Fig. 2A). Assessing Bray-Curtis intra-

individual dissimilarity, time had a significant effect (P = 1.0e-04), with the overall GM 

community appearing to display greater dissimilarity between the first two timepoints and then 

becoming more similar to baseline by the third time point (Fig. 2B). In contrast, the pooled 334 

estimated microbial functional pathways were not significant by any factor using Bray-Curtis 

dissimilarity (LME, P ≥ 0.468; Fig. 2C), suggestive of the established conserved functional 

pathways compared to taxonomic membership in the GM 
(41)

. For the fecal metabolome, the 

reliably detected 554 metabolites (i.e., QC CV < 20% and relative abundance > 1,000 in 80% of 

samples) displayed no significant effects (P ≥ 0.173; Fig. 2D) via assessment of the Canberra 

distance. 

We next extended these results to explore the stability of individual microbial features 

and estimated functional pathways and fecal metabolites. Pooling feature-level values across 
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individuals within each data type, we noted moderate, large, and small correlations between 

stability scores and log(abundance) for microbial species (Spearman’s ρ = 0.422, P = 2.2e-16; 

Fig. 2E), estimated pathways (Spearman’s ρ = 0.882, P < 2.2e-16; Fig. 2F), and fecal 

metabolites (Spearman’s ρ = 0.211, P < 2.2e-16; Fig. 2G), respectively. To determine if these 

correlations differed by FS status, we fit linear regression models in which each feature (e.g., 

each species) contributed a stability-versus-abundance data point, and FS status served as an 

interaction term. We found a significant interaction for microbial species (P = 0.034) such that 

the slope between stability and abundance differed significantly for FI and VAR over FS status 

(Q ≤ 0.021). In other words, for these groups, an increase in species abundance was associated 

with either a steeper or shallower increase in stability than what we observed in the FS group. 

This suggests that food-insecure and variably food-secure students might rely on certain 

microbial species to maintain a more consistent community (higher stability) under changing 

dietary conditions – particularly for those species that are more abundant. A similar pattern 

emerged for estimated functional pathways (P = 0.004), where FI and FS showed a steeper 

stability–abundance relationship than VAR (Q ≤ 0.041). These findings indicate that the more 

abundant functional pathways remained more stable across time for FI and FS, whereas for VAR, 

abundance did not translate into stability to the same extent. In contrast, there was no significant 

difference for fecal metabolome stability by FS classification (P = 0.189). Because these 

analyses are done at the feature level, each reported slope represents an average effect across all 

species, pathways, or metabolites. 

Differential feature shift and abundance in gut microbes, functional pathways, and 

metabolites by food security status 

To better understand the significant group × time interaction we examined the differences 

between the three FS classifications by multivariate regression models, controlling for time, sex, 

and baseline BMI with FS as the reference, we found that the FI group had significantly greater 

species abundance of Bifidobacterium samirii, Collinsella sp900760325, Bifidobacterium 

callitrichidarum, Turicibacter sp001543345, UBA9502 sp003669055 (unclassified 

Lachnospiraceae), Bifidobacterium bifidum, Faecalibacterium prausnitzii D, Clostridium Q 

sp003024715, Phascolarctobacterium A sp900544885, UBA7182 sp003480725 (unclassified 

Lachnospiraceae), and Gemella haemolysans (log fold-change (logFC): 0.55-2.69, Q ≤ 0.090; 

Fig. 3A). Conversely, there was a significantly lower abundance in the family Butyricicoccaceae 
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(logFC: -1.163, Q = 0.097) and species Paramuribaculum sp900551515, Akkermansia 

sp001580195, Bacteroides sp002491635, and Bacteroides sp902362375 in the FI group (logFC: 

-2.25-1.12, Q ≤ 0.008). For VAR participants, we observed greater abundance in Dialisteraceae 

at the family level (logFC: 1.23, Q = 0.097) and GCA 900066495 sp900545985 (unclassified 

Peptostreptococcaceae), Collinsella sp900760325, Dialister invisus, Anaerostipes hadrus, 

Phocaeicola vulgatus, and Faecalibacterium prausnitzii D at the species level (logFC: 1.01-1.64, 

Q ≤ 0.096; Fig. 3B). There was a lower abundance of Akkermansia sp001580195, ER4 

sp000765235 (unclassified Oscillospiraceae), CAG-110 sp900544945 (unclassified 

Oscillospiraceae), CAG-83 sp900545585 (unclassified Oscillospiraceae), Alistipes A 

indistinctus, and Phascolarctobacterium sp900544795 in the VAR group (logFC: -0.85-1.50, Q ≤ 

0.090). 

 At the functional pathway level, examining the differences between FS classification with 

FS as the reference, we found that the FI group had significantly greater abundance of L-lysine 

biosynthesis II, L-methionine biosynthesis I, superpathway of S-adenosyl-L-methionine 

biosynthesis, superpathway of L-lysine, L-threonine and L-methionine biosynthesis I, and 

superpathway of L-methionine biosynthesis (transsulfuration) (logFC: 0.30-0.91, Q ≤ 0.04 ; Fig. 

3C). Conversely, there was a significantly lower abundance in Chondroitin sulfate degradation I 

(bacterial), Pyridoxal 5'-phosphate biosynthesis I, Phosphate biosynthesis and salvage, and 

superpathway of L-methionine biosynthesis (by sulfhydrylation) (logFC: -1.41-0.93, Q ≤ 0.0 8). 

For VAR participants, we observed greater pathway abundance in octane oxidation, myo-inositol 

degradation I, hexitol fermentation to lactate, formate, ethanol and acetate, and superpathway of 

hexitol degradation (bacteria) (logFC: 0.44-0.97, Q ≤ 0.086; Fig. 3D). 

To assess potential individual feature shifts in the fecal metabolome, we pooled samples 

from all time points and assembled a covariate adjusted GLM, accounting for time, sex, and 

baseline BMI. With FS status as the reference group, we observed significant differences across 

classifications on 26 metabolites (Q ≤ 0.089). FI samples displayed increases in edetic acid, 

parathion, and N-acetylvaline, and decreases in n-arbamoylputrescine, L-carnitine, allysine, 

N6,N6,N6-trimethyl-L-lysine, thymine, carnosine, cysteinyl-aspartate, 4-aceotamido-2-amino-6-

nitroluene, testosterone sulfate, creatinine, L-palmitoylcarnitine, creatine, putrescine, n-

acetylcadaverine, cadaverine, and 5-hydroxylysine (Fig. 3E). It should be noted that these 

metabolites did change over time, though many were depleted (e.g., edetic acid, D-leucic acid, 
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thymine, and cysteinyl-aspartate) or enriched in abundance (e.g., cadaverine, N-

acetylcadaverine, 5-hydroxylysine, and putrescine) as compared to FS participants. Of note, VAR 

shared trends in abundance change with the other classifications, though unlike either FI or FS 

metabolite shifts, there was a pattern for increased N-carbamoylputrescine, carnosine, 4-

acetamido-2-amino-6-nitrotoluene, creatinine, L-palmitoylcarnitine, creatine, and cadaverine 

(logFC > 0.5). 

Next, a PLS-DA model was constructed using levels of significant between-group 

metabolites solely for FS and FI classifications because of the complexities involved in the status 

change for VAR. The model accounted for 37.9% of between-group variance (Supplementary 

Fig. S2A). Notably, PLS-DA regression coefficients showed that cadaverine, N-

acetylcadaverine, putrescine, testosterone sulfate, and creatine accounted for the greatest 

influence of between group differences (model coefficients ≥ 60.84) and were all weighted 

towards FI status. Although the PLS-DA model displayed considerable accuracy (R
2
X = 0.789), it 

exhibited low explanatory capacity (R
2
Y = 0.308) and poor predictive capacity (R

2
Q = 0.172). To 

assess the robustness of the PLS-DA model, 1000 permutations were performed to confirm the 

model was not overfit (Supplementary Fig. S2B; observed P <  0.001). 

Comparing FI to FS, pathway enrichment analysis detected 16 significant pathways (Q ≤ 

0.091; Fig. 3F). The most significant pathways were glutathione metabolism, lysine degradation, 

and fatty acid degradation (Q ≤ 0.01), whereas those with the greatest impact included histidine 

metabolism (I = 0.770), taurine and hypotaurine metabolism (I = 0.714), and arginine and proline 

metabolism (I = 0.538). At the main chemical class level, enrichment analysis queried against a 

reference library of 464 metabolite sets revealed enrichment of fatty amines, carboxylic acids, 

amines, steroid conjugates, arylsulfates, organic carbonic acids, organooxygen compounds, 

sulfonic acids, pyrimidines, fatty esters, and fatty acids and conjugates (FI/FS: Q ≤ 0.098; Fig. 

3G). Compared to FS, the fecal metabolome of VAR participants revealed significant enrichment 

of organic thiophosphoric acids, steroid conjugates, purines, and butyrophenones (Q ≤ 0.094; 

data not shown). This was not the case for metabolic pathway enrichment analysis, where no 

differences were detected (Q ≥ 0. 29; data not shown). 
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Multi-omic integration suggests enriched FI microbes and co-occurrent fecal metabolites 

influence important metabolic processes in the gut 

Seeking to uncover potential multi-omic signatures within the FI microbiome environment, we 

selected differentially abundant FI species (vs. FS classification) and the full set of metabolome 

features channeling these data sets in a regularized high-dimensional regression framework via 

GFLASSO. This model was selected due to its ability to handle large numbers of predictors and 

outcomes in comparison to the number of samples. To determine metabolites predictive of co-

occurrence with driving features of the FI microbiome, we selected those microbes with a total 

regression coefficient greater than 0.2 to determine the most prominent signals, as previously 

described 
(42)

. This rendered 11 species sets of 63 metabolites each, containing a total of 

approximately 11% of the entire reliably detected and annotated fecal metabolome (Fig. 4). 

Metabolites with positive beta-coefficients for significantly greater microbial species abundance 

with FI status were then selected and re-entered into a pathway enrichment analysis to determine 

how these multi-omic signatures might be influencing metabolism in the GM. Significantly 

enriched pathways included glutathione metabolism (enrichment ratio [ER]: 18.41), lysine 

degradation (ER: 12.18), and tryptophan metabolism (ER: 4.05) for FI relative to FS (Q ≤ 0.091). 

Focusing on the most pronounced co-occurrent patterns, we observed notable correlations 

between specific species and fecal metabolites through the use of Spearman correlations as a 

complementary approach, bolstering confidence in GFLASSO findings. Noteworthy correlations 

included: 1) Bifidobacterium bifidum with homoanserine (Spearman’s ρ = 0.17, Q = 0.027), 

desaminotyrosine (Spearman’s ρ = 0.23, Q = 1.36e-04), cadaverine (Spearman’s ρ = 0.32, Q = 

7.73e-06), triethanolamine (Spearman’s ρ = 0.35, Q = 9.25e-07), gamma-L-Glutamyl-L-cysteine 

(Spearman’s ρ = -0.26, Q = 2.21e-04), as well as putrescine (Spearman’s ρ = 0.38, Q = 1.55e-07), 

and n-acetylcadaverine (Spearman’s ρ = 0.35, Q = 9.62e-07); 2) Gmella haemolysans with 

glucose 1-phosphate (Spearman’s ρ = 0.33, Q = 3.20e-06), cadaverine (Spearman’s ρ = 0.26, Q = 

2.72e-04), n-acetylcadaverine (Spearman’s ρ = 0.27, Q = 2.05e-04), putrescine (Spearman’s ρ = 

0.27, Q = 1.86e-04), desaminotyrosine (Spearman’s ρ = 0.27, Q = 1.57e-04), and glycyl lysine 

(Spearman’s ρ = -0.18, Q = 0.001); 3) Phascolarctobacterium A sp900544885 with n-

acetylcadaverine (Spearman’s ρ = 0.31, Q = 1.59e-05); and 4) Faecalibacterium prausnitzii D 

with nicotinic acid (Spearman’s ρ = 0.22, Q = 0.003). 

Exploration of the gut microbiome during transition from FS to FI status 
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Exploration of the GM during the transition from FS to FI status was undertaken to gain insights 

into the dynamic changes that occur under this shift. Leveraging the variability within the VAR 

group, consisting of 28 individuals, we focused on those who transitioned from initial FS to FI 

status during the study period, totaling 19 individuals (Fig. 5A) and a pre/post sample set of 38 

observations for analysis. Assessing intra-individual dissimilarity using Bray-Curtis for the GM, 

estimated functional pathways, and Canberra distance for the fecal metabolome during the 

transition from FS to FI classification, we observed significant differences across all three omic 

layers, with the microbial community exhibiting the most pronounced disruption (Q ≤ 0.001; 

Fig. 5B). While no statistical significance was observed between different FI states for observed 

ASVs and phylogenetic diversity, we noted a trend toward significance for elevated richness and 

phylogenetic diversity with FI (P ≥ 0.369; Fig. 5C-D). To discern significant features during the 

transition from FS to FI status, we conducted further analyses at the phylum, family, and species 

levels, as well as for estimated functional pathways and fecal metabolites. However, we did not 

detect any statistically significant differences (Q ≥ 0.144). Notably, the observed variability in 

individual responses and the relatively small sample size within the transition subgroup may 

have contributed to these results (Fig. 5E). 

Discussion 

In the present study, we longitudinally characterized fecal GM composition, estimated function, 

and associated fecal metabolites of 85 dormitory housed college students with different food 

security status over the academic year. This approach afforded novel application to an 

understudied population and deeper phenotyping of the FI microbiome with the combined 

synergy of microbial sequencing and the fecal metabolome. Overall, our findings indicated a 

greater overall stability of the GM in college students experiencing persistent or intermittent FI 

when compared to their FS counterparts. Despite changes in GM taxonomy and fecal metabolite 

abundance over time, the estimated functional pathways within the GM remained relatively 

conserved across all groups. Moreover, we observed moderate to large correlations between 

microbial and estimated functional pathway stability scores and the abundance of individual 

microbial species. Notably, in a subset of students who transitioned from FS to FI status, we 

observed significantly greater community-level dissimilarity (Bray–Curtis or Canberra distance) 

across the GM, predicted functional pathways, and fecal metabolome (Q ≤ 0.001); however, no 

specific phylum-, family-, or species-level features or pathways reached statistical significance, 
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and alpha diversity showed only a nonsignificant trend toward higher richness and phylogenetic 

diversity in FI. 

 This study delved into the mechanisms through which FI may induce perturbations in 

GM composition and function. The observed GM stability in individuals experiencing FI may 

suggest either the conservation of GM function or that the stimuli (e.g., FI assessment within the 

past 30 days relative to fecal collection) were not potent enough to significantly disrupt GM 

activity. Previous studies have highlighted the functional redundancy of the human GM, 

emphasizing the highly conserved gene composition across a diverse taxonomic landscape 
(43,44)

. 

Regardless, taxonomic community analysis revealed significant individual variance over time 

between the three food security classifications at the species level, indicating that food security 

status influences the composition of gut microbes and serves as a key factor driving changes in 

the GM. These shifts in microbial composition were confirmed in multivariate regression 

models, which showed significant differences in species abundance between food security 

classifications. For instance, Bifidobacterium samirii, Collinsella sp900760325, Bifidobacterium 

callitrichidarum, and others were more abundant in the food-insecure group, while Akkermansia 

sp001580195 and other species were less abundant. Understanding these differences is not 

straightforward as microbes positively associated with FI status like Phocaeicola vulgatus are 

context dependent and may have beneficial (improvement of lipid metabolism 
(45)

) or detrimental 

(involved in human infections 
(46)

) influence on the host. 

In contrast to microbial composition, estimated functional pathways did not exhibit 

significant differences between food security classifications in the PERMANOVA analysis. This 

suggests that, at a functional level, the GM may maintain stability despite changes in microbial 

species. Nonetheless, examining specific functional pathway trends revealed varying profiles 

across the food security classifications. For example, food-insecure individuals displayed 

increased pathways related to energy and microbial turnover, while food-secure individuals 

showed a broad increase in fatty acid anabolism. These trends are consistent with the presumed 

health state of the individuals in these different FS classifications, in which FI students may 

experience erratic or reduced nutrient intake – potentially driving up energy-harvesting processes 

– while FS students have consistent access to meals, supporting anabolic pathways (e.g., lipid 

synthesis). However, to pinpoint the exact onset and duration of these functional shifts in the 

GM, more frequent longitudinal sampling would be necessary. Denser sampling could capture 
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day-to-day or week-to-week changes in diet and microbial function, offering greater insight into 

how quickly the microbiome responds to fluctuations in food availability. 

 In assessment of the fecal metabolome, metabolites that accounted for the most 

significant differences between food security groups include cadaverine, N-acetylcadaverine, 

putrescine, testosterone sulfate, and creatine, establishing a prominent role in distinguishing 

food-insecure individuals. Pathway enrichment analysis identified specific metabolic pathways 

that were significantly enriched in food-insecure individuals compared to food-secure 

individuals. These pathways included glutathione metabolism, lysine degradation, and fatty acid 

degradation, suggesting alterations in key metabolic processes associated with food insecurity. 

Because fecal metabolites can originate from both microbial and host processes, these findings 

likely reflect microbially mediated metabolic shifts and potential host responses to inconsistent 

or nutrient-poor food intake. For instance, increases in glutathione-related pathways may indicate 

heightened oxidative stress handling in the gut environment due to poor nutritional quality and 

the consumption of energy-dense, nutrient-poor foods 
(47)

. This stress could be due to the cyclical 

nature of food availability, leading to periods of overeating followed by scarcity. In relation, 

greater lysine and fatty acid degradation could reflect adaptations in microbial and/or host 

metabolism when carbohydrate or protein availability is limited. This could also be a 

compensatory mechanism to maintain energy homeostasis when dietary intake is insufficient. 

Finally, the degradation of fatty acids, or beta-oxidation, is a metabolic process that provides 

energy when carbohydrate availability is low. In FI individuals, increased fatty acid degradation 

may suggest reliance on fat stores for energy due to inconsistent access to food, particularly 

carbohydrates. Although we discuss possible physiological implications for humans experiencing 

FI (e.g., cyclical intake of nutrient-dense yet low-quality foods), our data do not definitively 

isolate whether these catabolic processes are predominantly driven by host versus microbial 

mechanisms. Future studies employing direct host biomarkers (e.g., blood metabolites) or 

shotgun metagenomic/metatranscriptomic approaches would help clarify the specific 

contributions of the gut microbiome relative to the host under conditions of food insecurity. 

To uncover potential multi-omic signatures within the food-insecure microbiome, a high-

dimensional regression framework was applied, identifying specific metabolites associated with 

food-insecure microbial species. Correlation analyses confirmed co-occurring patterns between 

certain microbial species and fecal metabolites. Notable positive correlations included those 
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between Bifidobacterium bifidum and cadaverine, triethanolamine, putrescine, and n-

acetylcadaverine. Similarly, Gmella haemolysans was positively associated with cadaverine, 

putrescine, and n-acetylcadaverine, as well as Phascolarctobacterium A sp900544885 with n-

acetylcadaverine and Faecalibacterium prausnitzii D with nicotinic acid. The current 

understanding of these specific metabolites is largely underdeveloped with respect to their 

overall presence, physiological role, functional pathways, and effects in the human body. Despite 

the paucity of studies acknowledging exogenous (i.e., food sources) and endogenous (i.e., cell 

synthesis) sources of these polyamines (PA), putrescine or cadaverine are thought to be more 

greatly produced from microbial sources 
(48)

; a connection that is still relatively uncharacterized. 

Very few studies to date have accomplished reporting linkages between metabolite production 

and GM composition as demonstrated in the present study 
(49)

. For example, Kitada et al., 

discovered novel linkages between three commensal bacterial populations, including 

Bifidobacterium spp. and the enhanced production of putrescine 
(50)

, a PA commonly found in the 

intestinal lumen within the human gut as well as in a variety of foods and food products, with 

higher concentrations typically found in fermented dairy products and animal-based processed 

foods 
(51)

. Interestingly, soluble and fermentable dietary fiber consumption has been shown to 

enhance the gut microbial production of PAs putrescine, cadaverine, and spermidine in rodents 

with gut microbes playing a key role 
(52–54)

. Previous research suggests the importance of PAs 

from dietary constituents for meeting the needs of the human body 
((55)

 which support intestinal 

DNA, RNA and protein synthesis, as well as cellular proliferation and differentiation 
(56,57)

. 

Pathway enrichment analyses further support this idea in that gut microbes are capable of 

decarboxylating lysine to cadaverine, and lysine degradation was identified as a key pathway in 

FI participants. Overall, these data suggest that microbially-derived PAs may serve as energy 

substrate 
(58)

 in the gut during periods of FI or intermittent food access. 

Based on the findings above, we can tangentially begin to make connections to how these 

interactions may be reflected within the human GM in response to food insecurity. For example, 

recent evidence reports in extreme FI conditions, such as migration/forced displacement, that 

certain coping strategies may develop in order to satisfy hunger or to ensure other members of 

the household are receiving adequate nutrition (e.g., children, elderly). One of these coping 

strategies includes consuming expired or contaminated food products, which may lead to the 

increased production, circulation, and excretion of PA from the human body due to increased 
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microbial activity 
(59,60)

. Finally, the positive correlation observed in this study between F. 

prausnitzii D and nicotinic acid (vitamin B3) is intriguing. While several microbial species 

obtain the vitamin B3 biosynthesis pathway, the role of vitamin B3 on the human GM is still 

considered relatively underdeveloped. Specifically investigating this relationship between F. 

prausnitzii D and vitamin B3, we can again turn to other evidence to help support this potential 

phenomenon. For example, studies have confirmed that the butyrate-producer F. prausnitzii 

increases with enhanced uptake of riboflavin (vitamin B2) 
(61,62)

. Vitamin B3 can be synthesized 

from the amino acid, tryptophan, where vitamin B2 serves as an important cofactor in relation to 

energy metabolism. While these two B vitamins share similar food sources, such as meat, dairy, 

eggs, and fortified foods, this positive correlation between vitamin B3 and F. prausnitizii D may 

reveal an underlying mechanism not yet well understood that warrants further investigation 
(63)

 

within the specific context of food insecurity and impacts on the human condition. 

 It is essential to recognize that FI extends beyond dietary factors and encompasses 

important social and psychological dimensions, such as psychological well-being and stress, 

which can influence the relationship between FI and dietary intake 
(64)

. These factors may 

underpin the complex interplay between FI and GM structure and function 
(18)

. Our previous 

research has highlighted the influence of these psychological factors in the context of FI. For 

example, we reported FI students had elevations in the fecal metabolites, picolinic acid, 2-

pyrrolidinone, and phosphocreatine 
(18)

. These metabolites are central to neurological health 
(65)

, 

gut-axis signaling 
(66)

, and energy metabolism 
(67)

, respectively. Many of the microbial and 

metabolomic features detected in the present analysis seem to be more nutritionally orientated, 

though could have secondary influence in relation to the gut-brain axis. Future work will be 

required with expanded longitudinal sampling as mentioned previously. 

 Very few studies have explored associations between FI and GM composition. An 

impactful strength of the present work was the longitudinal nature of the data allowing for the 

study of persistent and intermittent periods of FI in relation to the GM and metabolome and 

estimated functional activities. To our knowledge, no studies have explored the longitudinal 

relationship between FI and GM structure in a vulnerable adolescent population. Although our 

sample size of 85 participants may be considered moderate for an observational study, the 

repeated measures and multi-omic data still provided meaningful insights into the complex 

interplay of social, biological, and physiological factors underlying FI. Lastly, stool samples 
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serve as a valuable source of objective biological data reflecting gut microbiome–host 

interactions, complementing self-reported dietary measures in understanding the holistic dietary 

and physiological context. 

Despite the mentioned strengths, this study was not without limitations. Firstly, there was 

a sample size difference between FI and FS groups that occurred as a result of investigating a 

convenience sample. Although not balanced, these groups were representative of the student 

population under study 
(68,69)

 and cohorts from observational studies of food security among 

college students 
(3,18)

. Further, although 85 participants provided sufficient longitudinal data to 

detect notable differences, this is considered moderate for an observational study; subgroup 

analyses with fewer than 30 individuals inherently limit the detection of smaller effect sizes. 

Secondly, while dietary intake was assessed using the National Cancer Institute Dietary Screener 

Questionnaire, these data were not used as covariates because they did not significantly differ 

across the food security groups. Moreover, the screener does not capture the variety of foods 

consumed or potentially relevant eating behaviors (e.g., intermittent fasting), making it less 

sensitive in detecting nuanced dietary patterns that could affect the GM. Consequently, we could 

not fully capture differences in dietary diversity between groups. It is possible that FS 

participants had access to a wider variety of foods, contributing to the greater variability in their 

gut microbiome observed in this study. Thirdly, another limitation of this work was the lack of 

validated instruments for assessing FI in college students 
(70)

, as the instrument used has only 

been validated in low-income adults 
(70)

. Albeit, most studies of college students use a version of 

the measure used in the current study 
(27)

 . All of the students in this study had purchased a pre-

paid meal plan, which in theory minimizes food insecurity. However, our prior research has 

shown that even students who pre-paid for an unlimited meal plan report food insecurity 
(5)

. 

Potential explanations for this apparently contradictory finding include conflicts with students’ 

schedules and dining hall hours, and student time management. Fourth, although our multi-omic 

design provides novel insights, we inferred microbial function using 16S rRNA gene sequencing 

rather than employing shotgun metagenomic approaches. Because reference databases for 16S-

based functional prediction are incomplete, these functional inferences could introduce biases 

and must be interpreted cautiously. Finally, while we characterized overall relationships between 

abundance and stability, we did not define a “core” or exceptionally stable set of taxa or 
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functions, as this would require threshold-specific analyses and multiple-comparisons with more 

frequent sampling that extend beyond the scope of the present study. 

In summary, the results suggest that food security status is associated with significant 

shifts in the gut microbial composition, metabolite profiles, and metabolic pathways among 

college students. These findings underscore the complex interplay between food security, the 

GM, and host metabolism, highlighting the potential role of the GM in responding to dietary and 

environmental factors associated with food insecurity. Moving forward, future research should 

focus on addressing the limitations identified, such as employing more robust measures for 

assessing food security, dietary intake, and mental health symptoms associated with food 

insecurity. Additionally, diversifying the study population to include individuals not bound by 

dorm contracts with provided food could offer valuable insights into the broader spectrum of 

food security experiences among college students. Further investigation is needed to elucidate 

the mechanistic links between these observations and their implications for health and well-being 

in this population. 
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Tables: 

Table 1. Baseline demographic, anthropometric, and behavioral characteristics of study 

participants  

Characteristic Total (n = 85) FI (n = 13) FS (n = 44) VAR (n = 28) 

Age (years) 18.6 ± 0.8 18.5 ± 0.5 18.7 ± 0.9 18.6 ± 0.6 

Sex, % (n) 

 Male 

 Female 

 

38.8 (33) 

61.2 (52) 

 

53.8 (7) 

46.2 (6) 

 

45.5 (20) 

54.5 (24) 

 

21.4 (6) 

78.6 (22) 

Race/ethnicity % (n) 

 White 

 Black 

 Hispanic 

 Other 

 

49.4 (42) 

11.8 (10) 

21.2 (18) 

17.6 (15) 

 

30.8 (4) 

15.4 (2) 

23.1 (3) 

30.8.4 (4) 

 

56.8 (25) 

11.4 (5) 

20.5 (9) 

11.4 (5) 

 

46.4 (13) 

10.7 (3) 

21.4 (6) 

21.4 (6) 

Height (cm) 168.6 ± 10.5 168.1 ± 12.8 170.3 ± 9.6 166.5 ± 10.8 

Weight (kg) 71.1 ± 17.7 63.4 ± 13.3 73.1 ± 16.9 71.2 ± 19.9 

Waist circumference (cm) 82.4 ± 13.5 75.9 ± 7.4 84.1 ± 13.5 82.6 ± 14.9 

Waist/hip ratio 0.82 ± 0.07 0.78 ± 0.05 0.83 ± 0.07 0.82 ± 0.07 

BMI (kg/m
2
) 24.8 ± 5.1 22.2 ± 2.1 25.1 ± 4.9 25.5 ± 6.1 

BMI Categories (kg/m
2
), % 

(n) 

 <18.5 kg/m
2
 

 18.5-24.9 kg/m
2
 

 25-29.9 kg/m
2
 

 ≥ 0 kg/m
2
 

 

5.9 (5) 

57.6 (49) 

24.7 (21) 

11.8 (10) 

 

7.7 (1) 

84.6 (11) 

7.7 (1) 

- 

 

4.5 (2) 

50.0 (22) 

31.8 (14) 

13.6 (6) 

 

7.1 (2) 

57.1 (16) 

21.4 (6) 

14.3 (4) 

MVPA (min/day) 48.2 ± 31.1 56.9 ± 33.7 46.7 ± 30.7 46.8 ± 31.2 

Stress score 8.0 ± 2.3 8.9 ± 1.8 7.6 ± 2.4 8.2 ± 2.2 

Depression score 1.9 ± 0.8 2.3 ± 0.7* 1.7 ± 0.7 2.1 ± 0.8 

Hours of nightly sleep
1
 7.4 ± 0.9 6.8 ± 1.3 7.6 ± 0.9 7.4 ± 0.9 

Alcohol intake
2
 3.2 ± 5.5 7.6 ± 10.0* 1.8 ± 2.9 3.7 ± 5.1 

Fruit/vegetable intake
3
 2.5 ± 0.8 2.5 ± 0.8 2.7 ± 0.9 2.2 ± 0.7 
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Whole grain intake
4
 0.8 ± 0.3 0.7 ± 0.4 0.8 ± 0.3 0.7 ± 0.3 

Dairy intake
3
 2.0 ± 0.9 2.1 ± 0.9 2.2 ± 0.9 1.8 ± 0.6 

Red/processed meat intake
4
 0.9 ± 0.8 0.9 ± 0.8 0.9 ± 0.8 0.9 ± 0.7 

Daily sugar intake (g) 19.1 ± 7.2 21.5 ± 8.5 17.7 ± 5.8 20.3 ± 8.3 

Daily fiber intake (g) 16.4 ± 3.6 16.8 ± 4.2 17.1 ± 3.5 15.0 ± 3.3 

Data displayed as mean ± SD, unless stated otherwise. Abbreviations: FI, food insecure; FS, 

food secure; VAR, food variable; BMI, body mass index; MVPA, Moderate-to-vigorous 

physical activity. 

1
Average of combined weekday and weekend nightly sleep hours. 

2
Number of beverages over the last 7 days. 

3
Expressed as daily cup equivalents. 

4
Daily number of servings. 

*Significant difference between FI and FS (pairwise comparison), P < 0.05. 
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Figure Legends: 

 

Fig. 1. Overview of the study design and sample collection periods used in the present analysis.  
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Fig. 2. Gut microbiome and metabolome of college students by food security status. (A) Beta 

dispersion of Bray-Curtis dissimilarity for food insecure (FI), food secure (FS), and variable food 

security (VAR) classifications. NS = non-significant, ** P ≤ 0.005. Intra-individual shifts over 

the duration of the study period showing the 1
st
 (timepoint 1 vs 2) and 2

nd
 (timepoint 1 vs 3) time 

comparisons for the (B) microbiome, (C) estimated functional pathways, and (D) fecal 

metabolome. Scatter plots show Spearman’s rank correlation coefficients and linear regression 

slopes by FS status for (E) gut microbiome, (F) estimated functional pathway, and (G) fecal 

metabolome stability of each feature (1.0 = most stable, 0 = least stable) vs. log-transformed 

abundance.  
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Fig. 3. Volcano plots display differential abundance of significant microbial species for (A) FI 

and (B) VAR and estimated functional pathways for (C) FI and (D) VAR with FS as the reference 

group (Q < 0.10). Fecal metabolome analysis showing (E) significant between-group metabolites 

as determined by GLM adjusted for time, sex, and BMI. Significant metabolites are displayed 

over the three time periods by log10 abundance and logFC values (ordered by FI positive to 

negative change) between the first and last sample for each FS classification. (F) Significantly 

altered metabolic pathways and (G) metabolite sets at the main chemical class level comparing 

FI to FI status (Q < 0.10). Note: Pathway impact scores summarize normalized topology 

measures of differential metabolites in each pathway. The enrichment ratio is computed by 

number of observed hits / expected number of hits.  
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Fig. 4. Grid-fused least absolute shrinkage and selection operator (GFLASSO) regression of 

fecal metabolites that best predicted species abundance of significant microbes associated with 

food insecure (FI) status.  
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Fig. 5. Exploratory analysis of the gut microbiome and metabolome of college students with 

variable food security (VAR) status. (A) Overview of VAR participants transition between food 

insecure (FI) and food secure (FS) states over the academic year. (B) Intra-individual shifts from 

FS to FI status in 19 individuals at the microbial species, estimated functional pathway, and fecal 

metabolome level. Alpha diversity metrics, (C) observed amplicon sequence variants and (D) 

phylogenetic diversity, capturing the shift from FS to FI status in the 19 individuals. (E) Relative 

abundance of the most dominant family level features of the 19 VAR participants at the FS and 

FI state. Families with a mean relative abundance of less than 1% are collapsed in the category 

“Other”. NS = non-significant, ** P ≤ 0.01, **** P ≤ 0.001. 
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