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GYCLOTOMIC DIVISION ALGEBRAS 

R. A. MOLLIN 

1. I n t r o d u c t i o n . Let K be a field of characterist ic zero. T h e Schur 
subgroup S(K) of Brauer group B(K) consists of those equivalence 
classes [A] which contain an algebra which is isomorphic to a simple 
summand of the group algebra KG for some finite group G. I t is well 
known tha t the classes in S(K) are represented by cyclotomic algebras, 
(see [16]). However it is not necessarily the case t h a t the division algebra 
representat ives of these classes are themselves cyclotomic. T h e main 
result of this paper is to provide necessary and sufficient conditions for 
the lat ter to occur when K is any algebraic number field. 

Next we provide necessary and sufficient conditions for the Schur 
group of a local field to be induced from the Schur group of an arbi t rary 
subfield. We obtain a corollary from this result which links it to the main 
result. Finally we link the concept of the stufe of a number field to the 
existence of certain quaternion division algebras in S(K). 

The above results continue work begun in [11]-[13]. We note further
more tha t in [4], [5] and [7] we have given explicit construct ions of 
cyclotomic quaternion division algebras. 

2. N o t a t i o n a n d p r e l i m i n a r i e s . Let K be an algebraic number field 
containing e„., a primitive nth root of unity for a fixed positive integer n. 
Let S denote the set of all X-primes containing the infinite primes and 
all primes dividing n. For a in K*t the multiplicative group of non-zero 
elements of K, we let 5' together with the i^-primes dividing a be denoted 
by S (a). Fur thermore we let IK

S(a) denote the subgroup of the ideal 
group 1K, of K generated by the imprimes outside S (a). Now, for 38 in 
1K

 S{a) the power residue symbol is defined by: 

«y^O») = (a/38)n^ 

where $ denotes the Artin m a p in K(n\/a) over K. We refer to our develop
ment in [11], for other details and properties involved. 

A crossed product algebra is denoted by (L/K, (3). This is the central 
simple i£-algebra having L-basis uT where r £ G (L/K), the Galois group 
of L over K subject to : 

u au T = (3 (a, T)U„T for a, r (~ G (L/K), 

Received February 8, 1980 and in revised form February 10, 1981. This research 
was supported by an NSERC university research fellowship. 

1074 

https://doi.org/10.4153/CJM-1981-082-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-082-5
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and 

u<jX = xaua for x (E L*. 

When G = (x) then (L/K, /S) denotes the crossed product in which: 

. __ (uTi if 1 S i < \L : K\; 
UT ~ \p iii= \L:K\ 

where \L : K\ denotes the degree of L over K. For further information on 
crossed products, the reader is referred to [15]. 

By [16, Corollary 3.11, p. 33], S(K) consists of those classes which 
contain a cydotomic algebra; i.e., a crossed product of the form (K(e)/K, fi) 
where e is a root of unity and the values of the factor set f3 are roots of 
unity in K(e). If ëP and i2 are imprimes above q then A ®K K^ and 
A ®K K$ have the same index, (see [16] or [6]) where K& denotes the 
completion of K at ëP. We denote the common value of the indices 
A ®K Kâ for all imprimes i2 above q by indff A, called the q-local index 
olA. 

Note that most fundamental results concerning the Schur group may 
be found in [16]. Furthermore, henceforth when we write a tensor 
product it shall be assumed to be taken over the center of the algebra in 
the left factor. 

Now we give some comments on notation. L/K shall mean "the field 
extension L over K". If m is an integer and m = pat where p and / are 
relatively prime then we shall use the symbol \m\v — pa to denote the 
highest power of p dividing m. If a £ K* and & is a i^-prime then Vp(a) 
refers to the ^ -ad ic valuation of a. When referring to a prime below SP 
in KjF we shall abuse notation by denoting it by SP C\ F rather than 
referring to the intersection of ëP and the ring of integers of F. Finally 
^ will denote equivalence in the Brauer group. 

3. Cyclotomic division algebras. Let K be an algebraic number field 
and let n be the order of the largest root of unity in K. Let D be a K-
division algebra, i.e., a finite dimensional division algebra over K, with 
center K. We say that D is a cyclotomic division algebra if D is a cyclic 
crossed product (L/K, e) where e is a root of unity in K, and L is a 
cyclotomic extension of K in the sense that K Ç L C K(Ç) for some root 
of unity f. Furthermore we shall let Sp denote the set of all rational primes 
q such that |inde D\p > 1 for a given prime p. Now the stage is set for 
the main result. 

THEOREM 1. Let [D] G S(K) with index m. D is a cyclotomic division 
algebra if and only if: for all finite primes p and q where q is in Sp the 
following hold; 
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(a) c ^ a + d — b and, 
(b) For each K-prime 21 above q we have; 

\KJZ : QQ(epd)\p = mm{pa+d~c-\pd-»}, 

where \n\p = pa, \'mdgD\p = pb, \q — l\p = pc, and \m\p = pd. 

Proof. First we assume that D ~ (L/K, e) is a cyclotomic division 
algebra. We note that we may assume without loss of generality that 
[D] e S(K)P. Assume ind$ D = pb for finite q Ç Sp. We initially deal with 
the case where either q 9^ 2 or p ^ 2. 

Since the index of £> is pd then |L : i£| = pd, (see [15]). Therefore, by 
Kummer theory L = K(pd\/â) for some a £ K*. Moreover since a unit 
is a norm in an unramified extension (see [3]), then q must be ramified 
in L/K, (see [15, (30.7), p. 26]). Suppose e = epC. Now we show that 
c = a is forced. Inflated to K(*ay/a) to get : 

inf[D] = [(K(vaV^)/K,epC*a-d)} 

from [15, Theorem (30.10), p. 262]. Therefore: 

inf [D] = [(K(pa\^)/K, epc-d+a)]. 

But c - a + d ^ d from [15, Corollary (30.7), p. 262]. Therefore c è a 
and since we clearly have c ^ a then c = a as required. Thus: 

inf [£>] = [(K(Ty/a)/K, e,«)] 

which is equivalent to [D] in S(K). 
Now, since q 9^ 2 or p ^ 2 then q 9^ p (see [16] or [6]). Moreover; 

N(£) = 1 (mod ^a) where i2 is a i^-prime above q, and iV denotes the 
norm in K/Q. Thus we may invoke the relationship between the norm 
and power residue symbols to get: 

(a, epd)â = (*pd/£)'&«> = 6,e,[("(*>-i>/*«]^(«>. 

Since indQD = pb and the inflation map does not change the class of D 
in B(K) then (a, cpd)Q is forced to be a pb-th. root in unity [15, Corollary 
30.7, p. 261]. Hence: \N(£) - l\p g pa+d~b is forced. Since TV(^) = q* 
where / is the residue class degree of q in K/Q then \q — l\p ^ pa+d-b 

which is (1). 
Now, let Nf denote the norm in Kâ over QQ(epa), and let j2 ' be a 

Q(epa)-prime below i2. Since L/i£ is cyclotomic we may assume that 
Q(pd\/cï)/Q is abelian without loss of generality. Thus, by [2, Proposition 
12-2-5, p. 221] we have: 

(a, epd)^ = (a, &(&))£' - (a, e ^ ' 1 * ^ ^ I 

where the latter equality holds since d S a. On the other hand if N" 
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denotes the norm in Q(ep*)/Q then we have: 

(a,6pd)r = (€,*/&')>*'& = € p d [ (* ' '<*Vi) / i* ]r j '<«>. 

Hence: 

(a, evd)â = epdi^"{â')^i)m{vA,{a)]\Kâ,QquPa)\t 

Since (a, epd) must be a ̂ &-th root of unity and we have shown that 

Iff - 1|* = pc ^ Pa+d~b 

then it must follow that: 

\K2 : QQ((pa)\p = min ip^.p'-^-"}. 

This completes the case: q ^ 2 or p ^ 2. 
Now if £ = g = 2 then a = 6 = c = d = l and c = 0. Therefore (1) 

trivially holds. We now demonstrate that (2) holds; i.e. that \Kâ : Q2I2 = 
1. We have (a, —1)2 = — 1. Now, since L/i£ is cyclotomic we may assume 
Q(\^a)/Q is abelian. Thus we may use [2, Proposition 12-2-5, p. 221] 
to get 

(« , -1)* = (a,N(-l))2 

where N denotes the norm in KJQ2. Hence N( — l) = —1 which 
ensures that \Kâ : Ç2I2 = 1. This completes the proof of the necessity. 

Conversely, we assume [D] Ç S(K) with non-trivial local indicies at 
the primes of T = {qi, g2, . . ., qs\. Also for each g in T we assume (1) and 
(2) hold. Now, we assume without loss of generality that [D] 6 S(K)P. 
To see this we suppose that for each prime pf dividing m we find a cyclo
tomic division algebra Dt = (Lt/K, e,) with index \m\v.. Then we let L 
be the compositum of the Lt. Thus, 

Z> ~ £>i ® . . . ® Z>, ~ (L/K, m inf <<>€<) 

where inf(i) is the inflation map from Li to L. We note that L/K is cyclic 
since it is the compositum of cyclic extensions of relatively prime degrees 
and clearly -K inf(i) e* is a root of unity in K. Thus D is the required 
division algebra. 

Now we assume [D] Ç S(K)P with indQ.D = pbi for each qt Ç T. First 
we prove that for each odd prime qt Ç T we have the existence of a field 
Lf in K(eg.) with degree pbi over K. Assume that the claim is false; i.e., 

\K(U.) : K\ < p»K 

Let cK be the tame ramification index of =21 in K/Q where i2 * Pi Q = (qt). 
Thus we have: 

\qt- l\p ^ \K(eQi) :K\p\cK\p < p»<\cK\p. 
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However, by [16, Theorem 4.4] we have t ha t pbi divides \qt — l\p/ 
\cK\p. Therefore: 

\<Li ~ 1|* è pbi\cK\p. 

We conclude t ha t \qt — l\p > \qt — l|p , a contradict ion which establishes 
the claim. 

Hence for each odd qt (z T we have the existence of a subfield L* of 
K(eQ.) with degree £&i over K. From [16, Theorem 6.1, p . 89] we have 
ep&, is in K and so by Kummer theory Lt = K(Pi) where fi?hi G K. 

Now set (3 = 6 IT fit where the product , I I , ranges over all i such t h a t 
qt f T is odd and where; if pa = 2 then: 

t V ^ ^ i i 2 Ç T a n d | r | 2 > 1 
Ô = V p ^ i f 2 g T a n d \T\2 = 1 

( \ A if 2 (E T a n d | r | 2 = 1 

where r is a prime with even residue class degree in K/Q and r = 3 (mod 4) . 
Otherwise 3 = 1. We note t ha t such an r exists since \T\2 = 1 forces 
\K : <2|2 > 1 by the Hasse sum theorem. 

Now let C = (K(0)/K, epa). We note t ha t [C] t 5 ( 2 0 by [16]. More
over ppd f K. Therefore \K(P) : K\ ^ pd. Bu t some g< G T is ramified 
of degree £d in K(fi)/K so t ha t |2£(/3) : X | - £rf. Fur the rmore ; K(P) is 
cyclotomic over K. By Kummer theory i£(0) - K(**\/CL) for some 
a (z K*. By the use of the inflation map we get t h a t 

C~B = ( Z r v a ) / i ^ , ¥ ) . 

First we show tha t 5 has the same Hasse invar iants as D. Let q ^ p be 
a finite prime in 7" with indç D = pb, and let «a be a i^-prime above g. 
Then by properties of the norm and power residue symbols we have: 

(a, epd)â = (a, N(epd))^ 

where i2 P\ Q(epa) = i2 and iV denotes the norm in Ki/Qq(epa). Since 
<i g a then : 

(a, e ^ - (a, e ^ ) j ^ : ^ ^ a ) ' . 

However: 

(a, epd)j - (w/ây*™ = ep*U*&-»/pa]và^ 

where N denotes the norm in Q(epa)/Q. 
Hence: 

(a,€pd)â = epdl(NW-l)/P"]v£W\K&Qq(epa)\m 

Now (1) and (2) of the hypothesis guarantees t h a t (a, evd)â is a pb-t\\ 
root of uni ty. We have t h a t ind ç B = indç D. By raising B to an appropr i 
a te power, say s, we get inv Bs = invj D for a given i^-prime i2 above g. 
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I t remains to show tha t ind, B = 1 for all t G T and if 2 or oo is in T 
then the local index a t 2 a n d / o r GO is 2. Since a unit is a norm in an 
unramified extension then by the choice of B it remains to check for only 
2 and GO. However, ind2 C > 1 or indœ C > 1 only if we have pa = 2. 
Thus we assume: 

5 = {K{y/Z)/K, - 1 ) = ( X ( « ( V ^ ) ) / i f , - 1 ) . 

In wha t follows & denotes a i£-prime above r, S^ denotes a i^-prime 
above 2, and^ 7 " denotes a i^-prime above oo. We note t ha t from (1) of 
the hypothesis it follows tha t fit = —qt where qt = 3 (mod 4) for each i 
such tha t qt G 7" is odd. Now we t reat the remaining cases. 

Case 1. 2 G T and I712 > 1. By [2], op. cit. 
(a) If oo 6 T: 

(a, -1)^ = ( - 2 ^ , , - 1 ) 2 = ( - 1 , - 1 ) 2 ( 2 , - 1 ) 2 T T ( ^ , - 1 ) 2 

= ( - 1 , - 1 ) 2 - " I 

since the number of qt is even and (2, —1)2 = 1. (a, —1)$- = —1 since 
a < 0. 

(b) If oo (Z T: 

(a, - 1 ) ^ = (2ir<z<f - 1 ) 2 = (2, - l )2 i r(<z„ - 1 ) 2 - - 1 

since the number of qt is odd. (a, —1)$- = 1 since a > 0. 

Case 2. 2 G T and !T|2 = 1. 
(a) If oo 6 T: 

(a, -I)y = (-.rirqu -l)y = ( - n r g , , - 1 ) 2 

= - ( r , ~-l)27r(gz, - 1 ) 2 = - 1 

since the number of g?: is odd and r = 3 (mod 4) . 

(a, — 1)$- = — 1 since a < 0. 

(«» — 1)* = (a, l ) r = 1 

since r has even residue class degree in K over Q. 
(b) If oo (2 T: 

(a, -!)<? - ( n r ^ , -I)? = (nrg*, ~ 1 ) 2 - (r, - l ) 2 7 r ( ^ , - 1 ) 2 

= (r, - 1 ) 2 = - 1 
since the number of qi is even. 

(a, —1)^ = 1 since a > 0. 

(«» — l ) a = («» ! ) r = 1 

since r has even residue class degree in K over Q. 

Case 3. 2 g T and \T\2 = 1. 
(a) If oo G T: 

(a, - 1 ) ^ = (-rTrg*, - 1 ) ^ = {-rirqu ± 1 ) 2 = 1 
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since the number of qi is even. 

(a, —l)sr = — 1 since a < 0. 

(«» - l ) a = («» l ) r = 1 

since r has even residue class degree in K over Q. 
(b) oo $ T: 

(a, - l ) s = (nrg*, - l ) s - (rirqif - 1 ) 2 = 1 

since the number of q t is odd and r = 3 (mod 4) . 

(a, —l)^- = 1 since a > 0. 

(«» — l ) a = («» l ) r = 1 

since r has even residue class degree in K over (X 

Case 4. 2 g T and |T | 2 > 1. 
(a) If 00 Ç T: 

(a, - 1 ) ^ = (-7rg<, - 1 ) ^ = ( - T T ^ , ± 1 ) 2 = 1 

since the number of qt is odd. 

(a, —1)$- = — 1 since a < 0. 

(b) 00 g T: 

(a, - 1 ) ^ = (irqu -1)<? = (wqu =bl) 2 = 1 

since the number of qf is even. 

(a, —l)g- = 1 since a: > 0. 

We have proved t h a t 5 and D have the same invar iants . T h u s C ~ 
B ~ D, since C is a division algebra then C is i£-isomorphic to D. How
ever, C is a cyclotomic division algebra. Th is completes the proof. 

In the following corollary S(K, q) denotes the subgroup of S(K) con
sisting of all elements having /-local index equal to 1 for all pr imes t 9^ q. 
T h e following is immediate from the theorem. 

COROLLARY 1. If [D] £ S(K, q) then D is a cyclotomic division algebra 
if and only if for each prime p, dividing ind ç D we have: 

q JE 1 (mod pa+1) and \Kâ : Qq(epa)\p = 1 

for each K-prime i 2 above q. 

W e note t h a t when K/Q is abelian the above is linked to the existence 
of a spli t t ing field for an absolutely irreducible character of a finite group 
of given exponent, (see [13]). 

T h e following is immediate from Corollary 1. 

COROLLARY 2. / / [D] £ S(K, q) is a cyclotomic division algebra then 
D = C ® K where [C] £ S(Q(epa)) and C is a cyclotomic division algebra. 
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We now show that the converse of Corollary 2 does not hold. In the 
following example K = Q(en),q = 5, p = 2 and C = (<2(e2o)/<2(e4), €4). 
From [16, Lemma 8.5] we have that ind5 C = 4 and indr C = 1 for all 
r T± 5. Since | f t : (M^) ! = 2 then 

ind5 (C 0 f t = 2 and indr (C 0 X) = 1 for all r ^ 5; 

i.e., [C 0 ft Ç «S^ft 5) is a quaternion division algebra. Moreover C is 
clearly a cyclotomic division algebra by Corollary 1. However C 0 K 
is not cyclotomic since | f t : ( M ^ ) ^ > 1. This completes the example. 

Now we prove a result which we link to the main result. This provides 
necessary and sufficient conditions for S(k^)p to be induced from S(F$)P 

where F is a subfield of K and 21 is a i^-prime with 21 C\ F = i2. In the 
following theorem / ( i2 ) denotes the residue class degree of i2 in ftF, 
and âC\Q = (q). 

THEOREM 2. IfS{Kg)p 9^ 1 J/&£w: 
S(K£)P = S(Fâ)p 0 ft i/awd <m/;y i/V 
0) | / ( ^ ) | „ = 1 when q j* 2; 

(ii) | f t : F^l^ = 1 when q = 2. 

Proof. Assume S(K£)P = S(F$)P 0 ft. First we assume q 9^ 2 and 
set |<? — l|p = £. Let c^ (respectively cF) denote the tame ramification 
index of K^/Qq (respectively F£/Qg) and set \cK\p = ps (respectively 
\cF\p = pl). By [16, Theorem 4.4] there exists [A] £ S ( f t ) p with ind^ 4 
= £d~5. Since i ~ 5 (̂  ft where [5] Ç S(F^)P by hypothesis, then 
ind? 5 ^ £*-' by [16, Theorem 4.4']. Now S(K£)P 7* 1 guarantees d > s. 
Therefore: 

1 < pd~s = mdqA = ind, (B 0 ft) g max {1, ( ^ - < ) / | f t : ^ U 

= maxjl, (^-S)/I/(^)U. 
Hence \f(â)\p = 1 which is (i). 

On the other hand if q = 2 then S(Kg)p 9^ 1 implies p = 2, and S ( f t ) 2 

is the subgroup of £ ( f t ) 2 of order 2 by [16, Theorem 5.14]. Let [̂ 4] £ 
•S(ft)2 with ind2,4 = 2. By hypothesis 4 ~ B 0 ft with [5] G 5(F 5 ) ; 
i.e., 

inv 4̂ = inv 5 0 ft = | f t : ^ | inv B (mod 1). 

Clearly then | f t : F^| = 1 which is (ii). 
Conversely if q ^ 2 then by [16, Theorem 4.4'] S(K£)P is^the subgroup 

of 5 ( f t ) of order £» where £& = \(q - l)/cK\p. Since \f(È)\p = 1 then 
S(Fâ)p 0 ft is the subgroup of order pb; i.e., 

S ( f t ) , = S(FA)P 0 ft. 

When q = 2, S(K$)P ^ 1 implies p = 2 and S ( f t ) 2 is equal to 
5(fe) 0 ft == 5(fe) where & is the maximal cyclotomic extension of Q2 
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contained in i£j, by [16, Theorem 5.15]. Moreover \K^ : k\2 = 1. By 
[16, Theorem 5.14] S(k) is the unique subgroup of B(k) of order 2. Since, 
by hypothesis \K% : F1\2 = 1 we need only verify that S(Fâ P k) is 
the unique subgroup of B(Fâ P k) of order 2, because Fg P k is the 
maximal cyclotomic extension of Q2 contained in F%, and |F^ : / ^ Pi k\2 

= 1. Since S(&) 5̂  1 then there exists a root of unity ô such that the 
inertia group of Q2(à)/k is not cyclic. Therefore the inertia group of 
Q2(8)/(k P Fâ) is not cyclic. Therefore by [16, Theorem 5.14] S(Fâ P k) 
is the unique subgroup of B{Fâ P k) of order 2. 

An immediate consequence is the next result which links Theorems 1 
and 2, and restates Corollary 2 in different form. 

COROLLARY 3. If S(K, q) is represented by a cyclotomic division algebra 
then 

S(Kâ)P = S(Qq(epa))p ® Kâ. 

Now we present a counterexample to the converse of Corollary 3. Let 
K be the subfield of Qie^) of degree 3 over Q(e3). By Theorem 2 we get 

5 ( ^ ) 3 = 5((?19(€8))3 ® Kâ 

where i2 Pi Q = (19). However 19 = 1 (mod 9) implies by Corollary 1 
that S(K, 19),3 is not represented by a cyclotomic division algebra. 

It is worth noting at this juncture that there does not exist a field K 
such that S(K)P has every class represented by a cyclotomic division 
algebra. This is in contrast to the fact that for every field K, S(K) is 
represented by a cyclotomic algebra in the sense of [15]. To see this let us 
assume without loss of generality that m ^ 2 (mod 4). Choose a prime q 
such that q = 1 (mod pa+l) where tpa is the largest p-power root of unity 
in Ky as before. Moreover assume q = 1 (mod m). Now there exists 
[C] t S(Q(epa))p with indtf C = pa, and by the choice of q, [C ® K] C: 
S(K) with ind, [C ® K] = p\ However q = 1 (mod pa+1), so by Theorem 
1, [C ® iv] cannot be represented by a cyclotomic division algebra. Thus 
we have presented an example for each prime p to show that there does 
not exist a field K such that every class of S(K)P is represented by a 
cyclotomic division algebra. 

Now we set the stage for the final result. Let K be an algebraic number 
field with no real infinite primes. Then — 1 is totally positive and so can 
be written as a sum of four or fewer squares. The smallest number of 
squares possible in such a representation of — 1 is called the stufe of K, 
and is denoted by s(K). It is well known that s(K) = 1, 2 or 4. If s(K) 
= 1 then €4 is in K. Now we present a result which will link the concept of 
the stufe of K to the existence of non-trivial S(K, 2). 
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THEOREM 3. Let K be an algebraic number field with no real infinite 
primes. If S(K} 2) is represented by a non-trivial cyclotornic division algebra 
then s (K) = 4. 

Proof. Since S(K, 2) ^ 1 then e4 is not in K, (see [16]). Therefore 
s(K) = 2 or 4. 

Now, s(K) = 2 if and only if — 1 is a norm in K(s/^1)/K. By the 
Hasse norm theorem the latter occurs if and only if ( —1, — 1)^ = 1 for 
all iT-primes SP. By invoking [2] op. cit. we get ( — 1, — 1)^ = ( — 1, 
i V ( - l ) ) p where N denotes the norm in K9/Qv and & C\ Q = (p). Thus 
( - 1 , N(-l))p = 1 for slip > 2 and ( - 1 , N(~l))2 - 1 if and only if 
\Kâ : Q2I2 > 1 for all i^-primes i2 above 2. We have shown that s(i£) = 2 
if and only if \Kâ : Q2I2 > 1 for all i^-primes i2 above 2. (As a matter of 
interest this is [1, Theorem, p. 20]). Thus 5 (K) = 4 if and only if \Kâ : Q2I2 
= 1 for some i£-prime i2 above 2. invoking Corollary 1 now yields the 
theorem. 

The following is a counterexample to the converse of Theorem 3. 

Let K = Q(6) where 6 is a complex root of f(x) = x"â — 11. It can be 
verified that 2 splits into two primes £P\ and ^ 2 of K where SP\, say, has 
relative degree 1, and :ÛP2 has relative degree 2. Thus \K^x : ()2| ~ 1 
which implies s(K) = 4. However by Corollary 1, \K&2 : QÏ\ = 2 implies 
that S(K, 2) is not represented by a cyclotornic division algebra. This 
completes the counterexample. 

We now make a suitable restriction on K to render s(K) = 4 as a 
necessary and sufficient condition for S(K, 2) to be represented by a 
non-trivial cyclotornic division algebra. 

COROLLARY 4. Let K be a finite normal extension of Q, with no real infinite 
primes. Then S(Ky 2) is represented by a non-trivial cyclotornic division 
algebra if and only if s(K) = 4. 

Proof. From the proof of Theorem 3 we have s(K) = 4 if and only if 
\Kâ : Ç2U = 1 for some i^-prime i2 above 2. However since K/Q is 
normal then \Kâ : C?2J2 = 1 for some i^-prime above 2 if and only if 
\Kâ : Ç2I2 = 1 for all i^-primes above 2. By Corollary 1 the proof is 
complete. 
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