ON THE DISTRIBUTION OF
 THE SEQUENCE $\left\{n d^{*}(n)\right\}$

BY

H. L. ABBOTT AND M. V. SUBBARAO

Abstract

Let $d^{*}(n)$ denote the number of unitary divisors of the positive integer n. For $x>1$, let $B(x)$ denote the number of integers n for which $n d^{*}(n) \leqq x$. Balasubramanian and Ramachandra proved that there exists a positive constant β such that $B(x)=(\beta+o(1)) x / \sqrt{\log x}$. In this note we give an explicit expression for β as an infinite product, namely $\beta=1 / \sqrt{\pi} \prod_{p}(p-1 / 2) / \sqrt{p(p-1)}=0.6189 \ldots$, where the product is over all primes p.

Let $d(n)$ denote the number of divisors and $d^{*}(n)$ the number of unitary divisors of the positive integer n. For $x>1$, let $A(x)$ denote the number of integers n for which $n d(n) \leqq x$ and let $B(x)$ denote the number of integers n for which $n d^{*}(n) \leqq x$. Since the value of $n d^{*}(n)$ determines n, we could define $B(x)$ as the number of integers of the form $n d^{*}(n)$ not exceeding x. We proved (unpublished) that there exist positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
c_{1} x / \sqrt{\log x}<A(x)<c_{2} x / \sqrt{\log x} \tag{1}
\end{equation*}
$$

Balasubramanian and Ramachandra [1] proved that there exist positive constants α and β such that as, $x \rightarrow \infty$,

$$
\begin{equation*}
A(x)=(\alpha+o(1)) x / \sqrt{\log x} \text { and } B(x)=(\beta+o(1)) x / \sqrt{\log x} \tag{2}
\end{equation*}
$$

In fact, they prove a general theorem of which (2) is a special case. However, they do not determine explicitly the values of α and β. The object of this note is to give an expression for β as an infinite product, namely,

$$
\begin{equation*}
\beta=\frac{1}{\sqrt{\pi}} \prod_{p} \frac{p-1 / 2}{\sqrt{p(p-1)}}=0.6189 \ldots \tag{3}
\end{equation*}
$$

At the same time we give a proof of the second equation in (2) which is along different lines than the proof in [1]. In what follows all o - and O - estimates refer to $x \rightarrow \infty$.

Our argument uses the following classical result of Sathe [2], which we formulate as a lemma.

Lemma. Let $\omega(n)$ denote the number of distinct prime divisors of n and let $\rho_{m}(x)$ denote the number of integers $n \leqq x$ for which $\omega(n)=m$. For $c \geqq 0$ let

$$
f(c)=\frac{1}{\Gamma(c+1)} \prod_{p}(1-1 / p)^{c}(1+c / p)(1+c /(p+c)(p-1))
$$

Then, for $0 \leqq c \leqq e$ and $m=(c+o(1)) \log \log x$, the following estimate holds:

$$
\rho_{m}(x)=(f(c)+o(1)) \frac{x(\log \log x)}{(m-1)!\log x}^{m-1} .
$$

We shall prove that

$$
\begin{equation*}
\beta=f(1 / 2) / 2 \tag{4}
\end{equation*}
$$

It is easy to check that (3) follows from (4). Observe first that if h denotes the number of integers n such that $n d^{*}(n) \leqq x$ and $d^{*}(n)>(\log x)^{\log 2}$, and if n^{\prime} is the largest such integer, then $x \geqq n^{\prime} d^{*}\left(n^{\prime}\right)>h(\log x)^{\log 2}$, so that $h<x /(\log x)^{\log 2}=o(x / \sqrt{\log x})$. Thus in order to prove (4), we need only consider those n for which $d^{*}(n) \leqq(\log x)^{\log 2}$, or, since $d^{*}(n)=2^{\omega(n)}$, those n for which $\omega(n) \leqq \log \log x$.

Let $I=[0, \log \log x]$, and for $k \in I$, let $B_{k}^{x}=\left\{n: n d^{*}(n) \leqq x, \omega(n)=k+1\right\}$. By the observations in the preceding paragraph, we need to show

$$
\begin{equation*}
\sum_{k \in I}\left|B_{k}^{x}\right|=(f(1 / 2) / 2+o(1)) x / \sqrt{\log x} \tag{5}
\end{equation*}
$$

For $k \in I$, define c_{k} by $k=c_{k} \log \log x$. Then by the lemma,

$$
\left.\sum_{k \in I}\left|B_{k}^{x}\right|=(f(1 / 2) / 2)+o(1)\right) \frac{x}{\log x} S
$$

where

$$
S=\sum_{k \in I} f\left(c_{k}\right) \frac{(\log \log x)^{k}}{2^{k} k!}
$$

In order to prove (5) we need to show that

$$
\begin{equation*}
S=(f(1 / 2)+o(1)) \sqrt{\log x} \tag{6}
\end{equation*}
$$

Let M, H, N, L and T be defined as follows:

$$
\begin{align*}
M & =1 / 2 \log \log x \tag{7}\\
H & =\sqrt{\log \log x \log \log \log x} \\
N & =M-H \\
L & =M+H \\
T & =\sqrt{\log \log \log x}
\end{align*}
$$

Write $S=S_{1}+S_{2}+S_{3}$, where the intervals of summation for S_{1}, S_{2} and S_{3} are respectively, $[0, N],(N, L)$ and $[L, 2 M]$.

We estimate S_{1} as follows: Since f is continuous and therefore bounded on $[0,1]$ and since the largest term in the sum is the last one, we have

$$
\begin{aligned}
S_{1} & \ll M(2 M)^{N} / 2^{N}[N]! \\
& \ll M^{N+1} /(N / e)^{N} N^{1 / 2}, \text { by Stirling's formula } \\
& \ll M^{1 / 2}(1-H / M)^{H-M} e^{M-H} \\
& \ll \sqrt{M \log x} \exp \left(-(1+o(1)) H^{2} / M\right) \\
& \ll \sqrt{\log x} M^{-3 / 2+o(1)} \\
& =o(\sqrt{\log x})
\end{aligned}
$$

where, in making the estimations, we used (7) in various places.
A similar argument shows that $S_{3}=o \sqrt{\log x}$), since the largest term in S_{3} is the first one and the number of terms is at most M.

It remains to estimate S_{2}. By Stirling's formula and the fact that for k in (N, L) the estimates $k=(1+o(1)) M$ and $c_{k}=1 / 2+o(1)$ hold, we have

$$
\begin{equation*}
S_{2}=\frac{f(1 / 2)+o(1)}{\sqrt{2 \pi M}} \sum_{N<k<L}(e M / k)^{k} \tag{8}
\end{equation*}
$$

Define r_{t} by $r_{t}=t-M$. We may write

$$
(e M / k)^{k}=\sqrt{\log x} e^{r_{k}} G, \text { where } G=\left(1+r_{k} / M\right)^{-k}
$$

Then

$$
\begin{aligned}
\log G & =k \sum_{\nu=1}^{\infty} \frac{(-1)^{\nu}}{\nu}\left(r_{k} / M\right)^{\nu}=-r_{k}-r_{k}^{2} / 2 M \\
& +O(\log \log \log x)^{3 / 2} /(\log \log x)^{1 / 2}
\end{aligned}
$$

so that

$$
G=(1+o(1)) \exp \left(-r_{k}-r_{k}^{2} / 2 M\right)
$$

It follows that

$$
(e M / k)^{k}=(1+o(1)) \sqrt{\log x} g(k)
$$

where

$$
g(t)=\exp \left(-r_{t}^{2} / 2 M\right)=\exp \left(-(t-M)^{2} / 2 M\right)
$$

Thus (8) may be written as

$$
\begin{equation*}
\left.S_{2}=f(1 / 2)+o(1)\right) \sqrt{(\log x / 2 \pi M} \sum_{N<k<L} g(k) . \tag{9}
\end{equation*}
$$

From the Euler-Maclaurin summation formula, and the fact that the summands in (9) are symmetrical about M, we get

$$
\begin{align*}
\sum_{N<k<M} g(k) & =g(N)+g(M)+2 \int_{N}^{M} g(t) d t \tag{10}\\
& +2 \int_{N}^{M} g^{\prime}(t)(t-[t]-1 / 2) d t
\end{align*}
$$

The substitution $z \sqrt{2 M}=t-M$ gives $(T=\sqrt{\log \log \log x})$

$$
2 \int_{N}^{M} g(t) d t=2 \sqrt{2 M} \int_{-T}^{0} \exp \left(-z^{2}\right) d z=(1+o(1) \sqrt{2 \pi M} .
$$

The second integral in (10) is $O(\sqrt{\log \log \log x})$ and $g(N)$ and $g(M)$ are bounded independently of x. It now follows from (8) that (6) and hence also (4) holds.

We have not been able to determine the value of α by the method of this note.

References

1. R. Balasubramanian and K. Ramachandra, On the number of integers n such that $n d(n) \leqq x$. Acta Arithmetica. 49 (1988), pp. 313-322.
2. L. Sathe, On a problem of Hardy on the distribution of integers having a given number of prime factors, J. Indian Math. Soc. 17 (1953), pp. 63-141.

Department of Mathematics

University of Alberta
Edmonton, Canada
T6G 2G1

