
Canad. J. Math. Vol. 61 (6), 2009 pp. 1201–1213

Invariant Einstein Metrics on Some
Homogeneous Spaces of
Classical Lie Groups

Andreas Arvanitoyeorgos, V. V. Dzhepko, and Yu. G. Nikonorov

Abstract. A Riemannian manifold (M, ρ) is called Einstein if the metric ρ satisfies the condition

Ric(ρ) = c · ρ for some constant c. This paper is devoted to the investigation of G-invariant Ein-

stein metrics, with additional symmetries, on some homogeneous spaces G/H of classical groups. As

a consequence, we obtain new invariant Einstein metrics on some Stiefel manifolds SO(n)/SO(l).

Furthermore, we show that for any positive integer p there exists a Stiefel manifold SO(n)/SO(l) that

admits at least p SO(n)-invariant Einstein metrics.

1 Introduction

A Riemannian manifold (M, ρ) is called Einstein if the metric ρ satisfies the condition

Ric(ρ) = c · ρ for some real constant c. A detailed exposition on Einstein manifolds

can be found in A. Besse [4], and more recent results on homogeneous Einstein man-

ifolds can be found in the survey by M. Wang [20]. General existence results are hard

to obtain. Among the first important attempts are the works of G. Jensen [10] and

M. Wang and W. Ziller [21]. Recently, a new existence approach was introduced by

C. Böhm, M. Wang, and W. Ziller [5, 7]. The above existence results were used by

C. Böhm and M. Kerr [6] to show that every compact simply connected homoge-

neous space up to dimension 11 admits at least one invariant Einstein metric. It is

known [4, 6, 21] that in dimension 12 there are examples of compact simply con-

nected homogeneous spaces that do not admit any invariant Einstein metrics.

The structure of the set of invariant Einstein metrics on a given homogeneous

space is still not very well understood in general. The situation is only clear for a few

classes of homogeneous spaces, such as isotropy irreducible homogeneous spaces,

low dimensional examples, certain flag manifolds, and some other special types of

homogeneous spaces [2, 4, 14, 15, 18]. For an arbitrary compact homogeneous space

G/H it is not clear if the set of invariant Einstein metrics (up to isometry and up

to scaling) is finite or not (see [22]). A finiteness conjecture states that this set is,

in fact, finite if the isotropy representation of G/H consists of pairwise inequivalent

irreducible components [7, p. 683].
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Let G be a compact Lie group and H a closed subgroup so that G acts almost

effectively on G/H. In this paper we investigate G-invariant metrics on G/H with

additional symmetries. More precisely, let K be a closed subgroup of G with H ⊂
K ⊂ G, and suppose that K = L ′ × H ′, where {eL ′} × H ′

= H. It is clear that

K ⊂ NG(H), the normalizer of H in G. If we denote L = L ′ × {eH ′}, then the group

G̃ = G × L acts on G/H by (a, b) · gH = agb−1H, and the isotropy subgroup at eH

is H̃ = {(a, b) : ab−1 ∈ H}.

Later on it will be shown that the set M
eG of G̃-invariant metrics on G̃/H̃ is a

subset of MG, the set of G-invariant metrics on G/H. Therefore, it would be simpler

to search for invariant Einstein metrics on M
eG. In this way we obtain existence results

for Einstein metrics for certain quotients.

We apply this method for the case of Stiefel manifolds SO(n)/SO(n − k). Note

that the simplest case Sn−1
= SO(n)/SO(n − 1) is an irreducible symmetric space,

therefore it admits up to scale a unique invariant Einstein metric. Concerning history,

it was S. Kobayashi [13] who first proved the existence of an invariant Einstein metric

on T1Sn
= SO(n)/SO(n − 2). Later, A. Sagle [16] proved that the Stiefel manifolds

SO(n)/SO(n − k) admit at least one homogeneous invariant Einstein metric. For

k ≥ 3, G. Jensen [11] found a second metric. Einstein metrics on SO(n)/SO(n − 2)

are completely classified. If n = 3, the group SO(3) has a unique Einstein metric.

If n ≥ 5, A. Back and W. Y. Hsiang [3] showed that SO(n)/SO(n − 2) admits ex-

actly one homogeneous invariant Einstein metric. The same result was obtained by

M. Kerr [12]. The Stiefel manifold SO(4)/SO(2) admits exactly two invariant Ein-

stein metrics, which follows from the classification of 5-dimensional homogeneous

Einstein manifolds due to D. V. Alekseevsky, I. Dotti, and C. Ferraris [1]. We also

refer to [7, p. 727–728] for further discussion. For k ≥ 3 there is no obstruction

for existence of more than two homogeneous invariant Einstein metrics on Stiefel

manifolds SO(n)/SO(n − k).

In particular we prove the following.

Theorem 1.1 If s > 1 and l > k ≥ 3, then the Stiefel manifold SO(sk + l)/SO(l)

admits at least four SO(sk + l) × (SO(k))s-invariant Einstein metrics, two of which are

Jensen’s metrics.

We also prove the following.

Theorem 1.2 For any positive integer p there exists a Stiefel manifold SO(n)/SO(l)

that admits at least p SO(n)-invariant Einstein metrics.

We remark that, in fact, there are other homogeneous spaces for which the num-

ber of invariant Einstein metrics can be at least a prescribed number. Indeed, if a

compact homogeneous space G/H admits two distinct invariant Einstein metrics,

then the product of m copies of this space admits at least m + 1 distinct Einstein met-

rics invariant under the natural action of Gm. There are analogous examples in the

class of non-product homogeneous spaces. For instance, in [9, p. 62] it was shown

in particular that the groups SU (2n), SU (2n + 3), Sp(2n), and Sp(2n + 1) admit at

least n + 1 distinct left-invariant Einstein metrics, whereas the groups SO(2n) and

SO(2n + 1) admit at least 3n − 2 left-invariant Einstein metrics.
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We also note that the methods of this paper (after some minor revisions) can be

used for obtaining new invariant Einstein metrics on homogeneous spaces of the

groups Sp(n) and SU (n). It is interesting to note that the case of unitary groups

SU (n) is more tractable (in some sense) than the cases of the orthogonal groups

SO(n) and the symplectic groups Sp(n). For instance, one can compare the Einstein

equations and its solutions for the spaces SU (k1 + k2 + k3)/S(U (k1)×U (k2)×U (k3))

(see [2, 14]) with the Einstein equations and its solutions for the spaces

SO(k1 + k2 + k3)
/
SO(k1) × SO(k2) × SO(k3)

and

Sp(k1 + k2 + k3)
/

Sp(k1) × Sp(k2) × Sp(k3)

(see [15]).

This paper is organized as follows: the basic construction for searching for invari-

ant Einstein metrics with additional symmetries on G/H is presented in Section 2,

where we also clarify the meaning of such symmetries. Metrics with this property are

described for some homogeneous spaces of the group SO(n) (Section 3, Lemma 3.2).

In Section 4 we compute the scalar curvature for these metrics (Proposition 4.3), and

the variational approach to the Einstein metrics is given in Proposition 4.5. In Sec-

tion 5, as an application of our construction, we obtain Jensen’s invariant Einstein

metrics on the Stiefel manifold SO(k1 + k2)/SO(k2). In Section 6 we investigate in-

variant Einstein metrics on SO(sk + l)/SO(l). Finally, in Section 7 the proofs of the

main results are given.

2 The Main Construction

Let G be a compact Lie group and H a closed subgroup so that G acts almost effec-

tively on G/H. Let g, h be the Lie algebras of G and H, and let g = h ⊕ p be a reductive

decomposition of g with respect to some Ad(G)-invariant inner product on g. The

orthogonal complement p can be identified with the tangent space TeH G/H. Any G-

invariant metric ρ of G/H corresponds to an Ad(H)-invariant inner product ( · , · )

on p and vice versa. For G semisimple, the negative of the Killing form B of g is an

Ad(G)-invariant inner product on g, therefore we can choose the above decomposi-

tion with respect to this form. We will use such a decomposition later on. Moreover,

the restriction 〈 · , · 〉 = −B|p is an Ad(G)-invariant inner product on p, which gen-

erates a G-invariant metric on G/H called standard.

The normalizer NG(H) of H in G acts on G/H by (a, gH) 7→ ga−1H. For a fixed

a this action induces a G-equivariant diffeomorphism ϕa : G/H → G/H. Note that

if a ∈ H this diffeomorphism is trivial, so the action of the gauge group NG(H)/H is

well defined. However, it is simpler from a technical point of view to use the action

of NG(H). Let ρ be a G-invariant metric of G/H with corresponding inner product

( · , · ). Then the diffeomorphism ϕa is an isometry of (G/H, ρ) if and only if the

operator Ad(a)|p is orthogonal with respect to ( · , · ).

Let K be a closed subgroup of G with H ⊂ K ⊂ G such that K = L ′ × H ′, where

{eL ′} × H ′
= H, and consider L = L ′ × {eH ′}. It is clear that K ⊂ NG(H). The
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group G̃ = G × L acts on G/H by (a, b) · gH = agb−1H, and the isotropy at eH is

given as follows.

Lemma 2.1 The isotropy subgroup H̃ is isomorphic to K.

Proof It is clear that H̃ = {(a, b) ∈ G × L : ab−1 ∈ H}. Let i : K →֒ G be

the inclusion of K in G. Then i({eL ′} × H ′) = H and i(L ′ × {eH ′}) = L. Let

(a, b) ∈ G × L be such that ab−1
= h ∈ H. Then a = hb, so

(a, b) = (hb, b) = (i(b ′, eH ′)i(eL ′ , h ′), i(b ′, eH ′))((b ′, h ′), b ′)

∈ K × L ′
= L ′ × H ′ × L ′.

Thus H̃ is identified with a subgroup of L ′ × H ′ × L ′, and it is then obvious that H̃

is isomorphic to L ′ × H ′
= K .

The set MG of G-invariant metrics on G/H is finite dimensional. We consider the

subset M
G,K of M

G corresponding to Ad(K)-invariant inner products on p (and not

only Ad(H)-invariant).

Let ρ ∈ MG,K and a ∈ K . The above diffeomorphism ϕa is an isometry of

(G/H, ρ). The action of G̃ on (G/H, ρ) is isometric, so any metric form MG,K can be

identified as a metric in M
eG and vice versa. Therefore, we may think of M

eG as MG,K ,

which is a subset of MG.

Since metrics in M
G,K correspond to Ad(K)-invariant inner products on p, we call

these metrics Ad(K)-invariant metrics on G/H.

The aim of this work is to apply the above construction for G = SO(n) and

prove the existence of Einstein metrics in the set MG,K for choices of the subgroup

K = L ′ × H ′.

Let n ∈ N and k1, k2, . . . , ks, ks+1, . . . , ks+t be natural numbers such that ki ≥ 2,

k1 + · · · + ks = l, ks+1 + · · · + ks+t = m, l + m = n. Let G = SO(n) and K = L ′ × H ′,

where L ′
= SO(k1) × · · · × SO(ks) and H ′

= SO(ks+1) × · · · × SO(kt+s). The

embedding of K in G is the standard one.

We note that for s = 0 we obtain a flag manifold of the group. Invariant Einstein

metrics on SO(k1 + k2 + k3)/SO(k1) × SO(k2) × SO(k3), were studied in [15, 17].

3 Ad(K)-Invariant Metrics on the Space G/H

Let pi be the subalgebra so(ki) in g, 1 ≤ i ≤ s + t . We note that for 1 ≤ 1 ≤ s the

submodule pi of p is an Ad(K)-invariant and an Ad(K)-irreducible submodule. For

1 ≤ i < j ≤ s + t we denote by p(i, j) the Ad(K)-invariant and Ad(K)-irreducible

submodule of p that is determined by the equality

so(ki + k j) = so(ki) ⊕ so(k j) ⊕ p(i, j),

where p(i, j) is orthogonal to so(ki) ⊕ so(k j) with respect to the Killing form B.

Denote by di and d(i, j) the dimensions of the modules pi and p(i, j), respectively. It

is easy to obtain that di =
ki (ki−1)

2
and d(i, j) = ki k j .
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We have a decomposition of p into a sum of Ad(K)-invariant and Ad(K)-irreduc-

ible submodules:

(3.1) p =

s⊕
i=1

pi ⊕
⊕

1≤i< j≤s+t

p(i, j) .

Lemma 3.1 If for all 1 ≤ i ≤ s + t we have ki ≥ 2, and there is at most one 1 ≤ i ≤ s

such that ki = 2, then there are no pairwise Ad(K)-isomorphic submodules among pi

(i = 1, . . . , s) and p(i, j) (1 ≤ i < j ≤ s + t).

Proof It is clear that pi and p j act on p(i, j), and that each pi acts on itself. Moreover,

the last action is trivial if and only if ki = 2. Therefore, there are no pairwise Ad(K)-

isomorphic submodules.

If the assumptions of Lemma 3.1 are satisfied, then we have a complete description

of the Ad(K)-invariant metrics on G/H.

Let ρ be any Ad(K)-invariant metric on G/H with corresponding Ad(K)-invariant

inner product ( · , · ) on p.

Lemma 3.2 If there are no pairwise Ad(K)-isomorphic submodules among pi and

p(i, j), then

(3.2) ( · , · ) =

s∑

i=1

xi · 〈 · , · 〉|pi
+

∑

1≤i< j≤s+t

x(i, j) · 〈 · , · 〉|p(i, j)

for positive constants xi > 0 and x(i, j) > 0, where 〈 · , · 〉 = −B|p. Therefore, the set of

Ad(K)-invariant metrics on G/H depends on (s + t)(s + t − 1)/2 + s parameters.

In the case of pairwise Ad(K)-isomorphic modules pα and pβ the set of Ad(K)-

invariant metrics has a more complicated structure [21].

4 The Scalar Curvature and the Einstein Condition

Let {e
j
α} be an orthonormal basis of pα with respect to 〈 · , · 〉, where 1 ≤ j ≤ dα

(here α means any of the symbols of type i or (k, i)). We define the numbers (see

[21]) [αβγ] by the equation

[αβγ] =

∑

i, j,k

〈[
ei
α, e

j
β

]
, ek

γ

〉 2
,

where i, j, k vary from 1 to dα, dβ , dγ , respectively. The symbols [αβγ] are symmetric

with respect to all three indices, as follows from the Ad(G)-invariance of 〈 · , · 〉.
For any Lie algebra q we shall use the symbol Bq for the Killing form of q. If a

simple algebra q is a subalgebra of a Lie algebra r, then we denote by αq
r a real number

that satisfies the equality Bq = αq
r · Br|q.
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Lemma 4.1 Let q ⊂ r be arbitrary subalgebras in g with q simple. Consider in q an

orthonormal (with respect to −Br) basis { f j} (1 ≤ j ≤ dim(q)). Then

dim(q)∑

j,k=1

(−Br([ fi, f j], fk))2
= αq

r , i = 1, . . . , dim(q),

dim(q)∑

i, j,k=1

(−Br([ fi, f j], fk))2
= αq

r · dim(q),

where αq
r is determined by the equation Bq = αq

r · Br|q.

Proof By direct computations it follows that

∑

j,k

(−Br([ fi, f j], fk))2
=

∑

j

−Br([ fi, f j], [ fi, f j]) =

1

αq
r

∑

j

−Bq([ fi, f j], [ fi, f j]).

The vectors f̃ j =

(
1/

√
αq

r

)
f j form an orthonormal basis in q with respect to −Bq.

Then for i = 1, . . . , dim(q), and by use of the properties of the Killing form, we have

that

1 = −Bq( f̃i, f̃i) =

∑

j

Bq([ f̃i, [ f̃i, f̃ j]], f̃ j) =

1

(αq
r )2

∑

j

−Bq([ fi, f j], [ fi, f j]),

which proves the first statement of the lemma. The second statement is a direct con-

sequence of the first one.

Using this lemma we obtain an explicit expression for [αβγ]. It is clear that the

only non-zero symbols (up to permutation of indices) are

[aaa], [a(a, b)(a, b)], [b(a, b)(a, b)],

with 1 ≤ a < b ≤ s + t , and [(a, b)(b, c)(a, b)] with 1 ≤ a < b < c ≤ s + t .

Lemma 4.2 The following relations hold:

[aaa] =

ka(ka − 1)(ka − 2)

2(n − 2)
, [a(a, b)(a, b)] =

kakb(ka − 1)

2(n − 2)
,

[b(a, b)(a, b)] =

kakb(kb − 1)

2(n − 2)
, [(a, b)(b, c)(a, c)] =

kakbkc

2(n − 2)
.

Proof For the standard embedding so(k) ⊂ so(n) we have αso(k)
so(n) =

k−2
n−2

(see[9]).

The first equality [aaa] =
ka(ka−1)(ka−2)

2(n−2)
follows from Lemma 4.1. In fact, da =

dim(so(ka)) = ka(ka − 1)/2 and αso(ka)
so(n) =

ka−2
n−2

.
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To prove the second equality we consider the subalgebra so(ka + kb) ⊂ so(n). It is

clear that [pa, pb] = 0, [pa, p(a,b)] ⊂ p(a,b). According to Lemma 4.1 we have that

[aaa] + [a(a, b)(a, b)] = dim(pa) · αso(ka+kb)
so(n) =

ka(ka − 1)(ka + kb − 2)

2(n − 2)
,

which proves the second equality. The third equality can be obtained analogously.

To prove the fourth equality we consider the subalgebra so(ka + kb + kc) ⊂ so(n).

It is clear that

dim(p(a,b)) · αso(ka+kb+kc)
so(n) = 2 ([(a, b)a(a, b)] + [(a, b)b(a, b)] + [(a, b)(b, c)(a, c)]) ,

from which we obtain the last equality.

According to [21], the scalar curvature S of ( · , · ) is given by

S((·, ·)) =

1

2

∑

α

dα

xα
− 1

4

∑

α,β,γ

[αβγ]
xγ

xαxβ
,

where α, β, and γ are arbitrary symbols of the type i (1 ≤ i ≤ s) or of the type (i, j)

(1 ≤ i < j ≤ s + t).

For the metric (3.2) this formula takes the following form.

Proposition 4.3 The scalar curvature S of an Ad(K)-invariant metric (3.2) has the

form

(4.1)

S =

s∑

a=1

ka(ka − 1)(ka − 2)

8(n − 2)
· 1

xa
+

1

2

∑

1≤a<b≤s+t

kakb

x(a,b)

− 1

8(n − 2)

∑

1≤a≤s
a+1≤b≤s+t

kakb(ka − 1)
xa

x2
(a,b)

− 1

8(n − 2)

∑

1≤a<b≤s

kakb(kb − 1)
xb

x2
(a,b)

− 1

4(n − 2)

∑

1≤a<b<c≤s+t

kakbkc

( x(a,b)

x(a,c)x(b,c)

+
x(a,c)

x(a,b)x(b,c)

+
x(b,c)

x(a,b)x(a,c)

)
.

Denote by MG
1 the set of all G-invariant metrics with a fixed volume element on

the space G/H. The following variational principle for invariant Einstein metrics is

well known.

Proposition 4.4 [4] Let G/H be a homogeneous space where G and H are compact.

Then the G-invariant Einstein metrics on the homogeneous space G/H are precisely the

critical points of the scalar curvature functional S restricted to MG
1 .

For the general construction as described in Section 2, the above variational prin-

ciple implies the following.
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Proposition 4.5 Let M
G,K
1 be the subset of M

G,K with fixed volume element. Then

a metric in M
G,K
1 is Einstein if and only if it is a critical point of the scalar curvature

functional S restricted to M
G,K
1 .

Proof The set M
G,K
1 is precisely the set of G̃-invariant metrics with fixed volume

element on G̃/H̃.

The volume condition for the metric (3.2) takes the form

(4.2)

s∏

i=1

xdi

i ·
∏

1≤i< j≤s+t

x
d(i, j)

(i, j) = constant .

By using Proposition 4.5 the problem of searching for Ad(K)-invariant Einstein

metrics on G/H reduces to a Lagrange-type problem for the scalar curvature func-

tional S under the constraint (4.2).

5 Jensen’s Metrics

As a first simple illustration of Proposition 4.5, we will show that Jensen’s metrics

[11] can be obtained on the Stiefel manifold SO(k1 + k2)/SO(k2) (k1 ≥ 2). We apply

Proposition 4.3, formula (4.1) for s = 1 and t = 1. Then the scalar curvature reduces

to

S =

k1(k1 − 1)(k1 − 2)

8(n − 2)

1

x1
+

1

2

k1k2

x12
− 1

8(n − 2)
k1k2(k1 − 1)

x1

x12
2
.

The volume condition (4.2) is V = xd1

1 xd12

12 = constant. By use of the Lagrange

method we obtain the equation (k1−2)x2
12−2(k1 +k2−2)x1x12 +(k2 +k1 −1)x2

1 = 0.
If k1 = 2, the above equation has a unique solution x12 =

k2+1
2k2

x1. If k1 > 2, the

equation has two solutions,

x12 =

k1 + k2 − 2 ±
√

(k1 + k2 − 2)2 − (k1 − 2)(k1 + k2 − 1)

k1 − 2
x1.

These solutions are SO(k1 + k2) × SO(k1)-invariant Einstein metrics on

SO(k1 + k2)/SO(k2), and were found by G. Jensen [11].

6 New Examples of Einstein Metrics

Let t = 1 and k1 = k2 = · · · = ks = k (s ≥ 2), ks+1 = l. Then n = sk + l.

We will investigate SO(sk + l) × (SO(k))s-invariant Einstein metrics on the space

SO(sk + l)/SO(l) (s ≥ 2). If we choose L ′
= (SO(k))s, then by Lemma 3.2 the set

of SO(n) × (SO(k))s-invariant metrics depends on (s2 + 3s)/2 parameters, which

makes the problem difficult for big values of s.

However, if we choose L ′
= NSO(sk)((SO(k))s), the normalizer of (SO(k))s in

SO(sk), (this is an extension of (SO(k))s by a discrete subgroup), then the number

of parameters of the corresponding SO(n) × L-invariant metrics reduces to three.

More precisely, the following lemma holds.

https://doi.org/10.4153/CJM-2009-056-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-056-2


Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups 1209

Lemma 6.1 If L ′ is chosen as above, and K = L ′ × H ′, where H ′
= SO(l), then

we have a decomposition of p into a sum of Ad(K)-invariant and Ad(K)-irreducible

submodules

(6.1) p = p̃1 ⊕ p̃2 ⊕ p̃3,

where p̃1 =

⊕s
i=1 pi , p̃2 =

⊕
1≤i< j≤s p(i, j), and p̃3 =

⊕s
i=1 p(i,s+1) (cf. (3.1)). The

submodules p̃1, p̃2, and p̃3 are pairwise inequivalent; therefore any Ad(K)-invariant

inner product of p is given by

(6.2) ( · , · ) = x · 〈 · , · 〉|ep1
+ y · 〈 · , · 〉|ep2

+ z · 〈 · , · 〉|ep3
.

Proof For any 1 ≤ i < j ≤ s any two of the submodules pi and p j are interchanged

by Ad(a), for some a ∈ L. Similarly, any two of p(i,s+1) and p( j,s+1) (1 ≤ i, j ≤ s) are

interchanged, and any two of p(i, j) and p(i ′, j ′) (1 ≤ i < j ≤ s, 1 ≤ i ′ < j ′ ≤ s).

Therefore decomposition (6.1) follows. The other statements are obvious.

Next, we compute the scalar curvature for metric (6.2).

Proposition 6.2 The scalar curvature S of an Ad(K)-invariant metric (6.2) has the

form

(6.3)
8(n − 2)

sk
· S = (k − 1)(k − 2) · 1

x
+ (s − 1)k((s + 2)k − 4) · 1

y

+ 4(ks + l − 2)l · 1
z

−
(

(s − 1)k(k − 1) · x

y2
+ (k − 1)l · x

z2
+ (s − 1)kl · y

z2

)

with volume condition xsk(k−1)/2 ys(s−1)k2/2zskl
= constant.

Proof Metric (6.2) is a special case of metric (3.2) for which the scalar curvature was

obtained in Proposition 4.3. We apply these expressions for t = 1, k1 = · · · = ks = k,

ks+1 = l, and xa = x (1 ≤ a ≤ s), xa,b = y (1 ≤ a < b ≤ s), xa,s+1 = z (1 ≤ a ≤ s) to

obtain

s∑

a=1

ka(ka − 1)(ka − 2)

8(n − 2)
· 1

xa
=

sk(k − 1)(k − 2)

8(n − 2)
· 1

x
,

∑

1≤a<b≤s+t

kakb

x(a,b)

=

∑

1≤a<b≤s

kakb

x(a,b)

+
∑

1≤a≤s,b=s+1

kakb

x(a,b)

=

s(s − 1)k2

2
· 1

y
+ skl · 1

z
,

∑

1≤a≤s
a+1≤b≤s+t

kakb(ka − 1)
xa

x2
(a,b)

=

∑

1≤a<b≤s

kakb(ka − 1)
xa

x2
(a,b)

+
∑

1≤a≤s
b=s+1

kakb(ka − 1)
xa

x2
(a,b)

=

s(s − 1)k2(k − 1)

2
· x

y2
+ sk(k − 1)l · x

z2
,
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∑

1≤a<b≤s

kakb(kb − 1)
xb

x2
(a,b)

=

s(s − 1)k2(k − 1)

2
· x

y2
;

∑

1≤a<b<c≤s+t

kakbkc

( x(a,b)

x(a,c)x(b,c)

+
x(a,c)

x(a,b)x(b,c)

+
x(b,c)

x(a,b)x(a,c)

)

=

∑

1≤a<b<c≤s

kakbkc

( x(a,b)

x(a,c)x(b,c)

+
x(a,c)

x(a,b)x(b,c)

+
x(b,c)

x(a,b)x(a,c)

)

+
∑

1≤a<b≤s,c=s+1

kakbkc

( x(a,b)

x(a,c)x(b,c)

+
x(a,c)

x(a,b)x(b,c)

+
x(b,c)

x(a,b)x(a,c)

)

=

s(s − 1)(s − 2)k3

2
· 1

y
+

s(s − 1)k2l

2
·
( y

z2
+

2

y

)
.

Therefore, equation (6.3) is obtained. The dimensions of p̃1, p̃2 and p̃3 are sk(k−1)
2

,
s(s−1)k2

2
, and skl, respectively, so the volume condition is obtained, and the proof is

complete.

In order to find the critical points of the scalar curvature S for the above two cases,

note that 8(n−2)
sk

· S and the volume are functions of the form

F(x, y, z) =

a

x
+

b

y
+

c

z
− d

x

y2
− e

x

z2
− f

y

z2
, G(x, y, z) = xp yqzr,

where the constant a, b, c, d, e, f , p, q, and r are positive, and

d =

pb − qa

q + 2p
, f =

qe

p
.

We need to consider the following problem: find all the critical points (with posi-

tive coordinates) of F(x, y, z) under the constraint G(x, y, z) = constant. This is a

Lagrange-type problem.

Lemma 6.3 The critical points of the function F(x, y, z) with positive x, y, z under the

constraint G(x, y, z) = constant satisfy the following equations:

(i) If x = y, then r(a + d)z2 − pcxz + e(2p + 2q + r)x2
= 0;

(ii) If x 6= y, then

x =

aqyz2

p f y2 + d(q + 2p)z2

and

(2d(q + 2p) + bq)drz4 − (q + 2p)cdqyz3 + (2d(r + q)(q + 2p)

+ (r + 2p)aq) f y2z2 − c f pqy3z + (r + 2q) f 2 py4
= 0.

If in addition d(q + 2p) > aq, then y > x.
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Proof It is easy to see that the problem reduces to the following system:

(6.4)





q
(
−a

x
− d

x

y2
− e

x

z2

)
= p

(
− b

y
+ 2d

x

y2
− f

y

z2

)
,

r
(
−a

x
− d

x

y2
− e

x

z2

)
= p

(
− c

z
+ 2e

x

z2
+ 2 f

y

z2

)
.

From the first equation of (6.4) we get:

p f
y − x

z2
=

aq(y − x)
(

y − d(q+2p)
aq

x
)

xy2
.

If x = y, we easily obtain that r(a + d)z2 − pcxz + e(2p + 2q + r)x2
= 0. Note that

solutions to this equation correspond to Jensen’s metrics (see Section 5). If x 6= y, we

obtain

x =

aqyz2

p f y2 + d(q + 2p)z2
,

which implies that x > 0 for any z > 0, y > 0. If x 6= y, then

y

x
>

d(q + 2p)

aq
,

therefore, if d(q + 2p) > aq, then y > x.

Substituting the above expression for x in the second equation of (6.4), we obtain

the Einstein equation

(2d(q + 2p) + bq)drz4 − (q + 2p)cdqyz3 + (2d(r + q)(q + 2p)

+ (r + 2p)aq) f y2z2 − c f pqy3z + (r + 2q) f 2 py4
= 0.

Let

(6.5) P(u) = (2d(q + 2p) + bq)dru4 − (q + 2p)cdqu3 + (2d(r + q)(q + 2p)

+ (r + 2p)aq) f u2 − c f pqu + (r + 2q) f 2 p.

It is clear that the equation P(z/y) = 0 is equivalent to the last one of Lemma 6.3.

The following simple lemma will be used for the proof of the main theorems.

Lemma 6.4 If P(1) < 0, then equation P(u) = 0 has at least two positive solutions.

Proof It is evident from the facts that P(0) = (r + 2q) f 2 p > 0 and P(u) → +∞
when u → +∞.
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7 Proof of the Main Results

Proof of Theorem 1.1 We apply Lemma 6.3 for values of a, b, c, d, e, f , p, q, and r

taken from Proposition 6.2. If x = y, then obviously one gets Jensen’s metrics as

discussed in Section 5. If x 6= y, then for the polynomial (6.5) it is that

P(1) =
1
2
s2k4l(k − 1)(s − 1)2(sk2 − skl + k − 2 − l2 + 2l).

It it easy to check that sk2 − skl + k− 2− l2 + 2l < 0 for l > k, k, s ≥ 2, thus P(1) < 0.

By Lemma 6.4 the equation P(u) = 0 has at least two positive solutions, so we obtain

at least two new invariant Einstein metrics. Since in this case d(q + 2p) > aq, then

y > x for these new metrics.

Proof of Theorem 1.2 Fix a positive integer p and choose positive integers n, l such

that n−l has at least p different prime factors a1, a2, . . . , ap with ai < l (i = 1, . . . , p).

Take k any of the ai ’s, and positive integer s so that n− l = sk. For this choice of k, l, s

we use Theorem 1.1, and obtain that the homogenous space SO(n)/SO(l) admits at

least two SO(n) × (SO(k))s-invariant Einstein metrics that are not invariant under

the group SO(n) × SO(n − l), that is, they are not Jensen’s metrics. It is easy to see

that for different choices of k = ai we obtain pairwise different metrics (because they

have different full motion groups). Therefore, we obtain at least 2p pairwise different

SO(n)-invariant Einstein metrics on the Stiefel manifold SO(n)/SO(l).

It would be an interesting problem to investigate the nature of the invariant Ein-

stein metrics of given volume on the space SO(n)/SO(l) (see Theorem 1.1), as crit-

ical points of the scalar curvature functional curvature S, for instance, by analysing

the Hessian of S at the critical points. Of course, this would require having explicit

solutions of the algebraic systems of equations obtained from the Einstein equation.

Another interesting problem is to find metrics with maximal and minimal values of

the scalar curvature S among all SO(n)-invariant Einstein metrics of fixed volume

on the spaces SO(n)/SO(l).
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