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Abstract. Consider a simple Lie algebra g and g ⊂ g a Levi subalgebra. Two
irreducible g-modules yield isomorphic inductions to g when their highest weights
coincide up to conjugation by an element of the Weyl group W of g which is also a
Dynkin diagram automorphism of g. In this paper, we study the converse problem:
given two irreducible g-modules of highest weight μ and ν whose inductions to g

are isomorphic, can we conclude that μ and ν are conjugate under the action of an
element of W which is also a Dynkin diagram automorphism of g ? We conjecture this
is true in general. We prove this conjecture in type A and, for the other root systems,
in various situations providing μ and ν satisfy additional hypotheses. Our result can
be interpreted as an analogue for branching coefficients of the main result of Rajan [6]
on tensor product multiplicities.

2010 Mathematics Subject Classification. 05E05, 05E10, 17B20, 17B22.

1. Introduction. Let g be a simple Lie algebra over � and g be a Levi subalgebra
with the same Cartan subalgebra so that g and g have the same integral weight lattice
(all weights considered in this paper are integral). Let μ and ν be two dominant integral
weights for g. Denote by V (μ) and V (ν) the associated highest weight g-modules. Let
V (μ) ↑g

g
and V (ν) ↑g

g
be the g-modules obtained by induction from g. When μ and ν

are conjugate by an element of the Weyl group W of g which is also a Dynkin diagram
automorphism of g, the modules V (μ) ↑g

g
and V (ν) ↑g

g
are isomorphic; see Proposition

4.4. In this paper, we address the following question: assume V (μ) ↑g

g
and V (ν) ↑g

g
are

isomorphic, can we conclude that μ and ν are conjugate by an element of the Weyl
group W of g which is also a Dynkin diagram automorphism of g ? We conjecture that
this is true in general and we prove the conjecture in type A and in various other cases;
see Theorem 7.4.

It is interesting to reformulate the problem in terms of the (infinite) matrix M =
(mλ

μ) with columns and rows labelled respectively by the dominant weights λ of g

and by the dominant weights μ of g. Here mλ
μ denotes the branching coefficient

corresponding to the multiplicity of the irreducible highest weight g-module V (λ) in
V (μ) ↑g

g
(or equivalently the multiplicity of V (μ) in the restriction of V (λ) to g). We

then ask if two rows of the matrix M can be equal. Note that two distinct columns of
M labelled by λ and � cannot coincide since this would imply V (λ) � V (�). Indeed,

https://doi.org/10.1017/S0017089515000142 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089515000142


188 JÉRÉMIE GUILHOT AND CÉDRIC LECOUVEY

both modules would then have the same weight decomposition and therefore the same
character.

We can also address a similar question for tensor product multiplicities. The
corresponding matrix, say C, has columns and rows labelled by dominant weights of g

and k-tuples (μ(1), . . . , μ(k)) of such dominant weights. The coefficients cλ
μ(1),...,μ(k) is then

the multiplicity of V (λ) in V (μ(1)) ⊗ · · · ⊗ V (μ(k)). It was proved by Rajan in [6] (see
also [8] for a shorter proof and an extension to the case of Kac–Moody algebras)
that two rows of C are equal if and only if the associated k-tuples of dominant
weights coincide up to permutation. It is also easy to see that if the columns of
C labelled by λ and κ coincide, then λ = κ (take (μ(1), . . . , μ(k)) = (λ, 0, . . . , 0) and
(μ(1), . . . , μ(k)) = (κ, 0, . . . , 0)).

Finally, one can also consider the decomposition matrix D associated to the
modular representation theory of the symmetric group in characteristic p. Its columns
and rows are indexed by p-restricted partitions and partitions of n, respectively. The
study of possible identical rows and columns was considered by Wildon in [9]: the
columns of D are distinct and its rows can only coincide in characteristic 2 when the
underlying partitions are conjugate.

In the present paper, we prove that two rows of the matrix M corresponding to
weights conjugate by an element of the Weyl group W of g which is also a Dynkin
diagram automorphism of g coincide. We conjecture that the converse is true and
prove this conjecture in various cases (see Theorem 7.4). We believe that the study of
the matrix M is more complicated than that of the matrix C for two main reasons.
First, there could exist infinitely many nonzero coefficients in a row of M (this is not
the case for C). Second, the possible transformations relating the labels corresponding
to identical rows in M are more complicated than in the case of the matrix C where
they simply correspond to permutations of the k-tuples of dominant weights.

The paper is organised as follows. Section 2 is devoted to some classical background
on representation theory of Lie algebras. In Section 3, we study the relationships
between the roots, the weights and the Weyl chambers of g and g. More precisely, we
study the set of elements in W which stabilise the positive roots of g. In Section 4, we
formulate our conjecture in terms of equality of distinguish functions in the character
ring of g. This permits in Sections 5 and 6 to prove our conjecture when μ and ν satisfy
some technical conditions; see Corollary 5.5 and Proposition 6.4 Finally, in Section 7,
we prove the conjecture in the case g = gln using the main result of Rajan [6]. This also
allows us to establish the conjecture when g is a classical Lie algebra of type Bn, Cn or
Dn and when g= gln.

2. Background on Lie algebras. This section is a recollection of classical result on
representation theory of Lie algebras. We refer to [1] and [3] for a detailed exposition.
Let g be a simple Lie algebra over � with triangular decomposition

g =
⊕
α∈R+

gα ⊕ h ⊕
⊕
α∈R+

g−α,

so that h is the Cartan subalgebra of g and R+ its set of positive roots. The root system
R = R+ 	 (−R+) of g is realised in a real Euclidean space E with inner product (·, ·).
For any α ∈ R, we write α∨ = 2α

(α,α) for its coroot. Let S ⊂ R+ be the subset of simple
roots. The set P of integral weights for g satisfies (β, α∨) ∈ � for any β ∈ P and α ∈ R.
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We write P+ = {β ∈ P | (β, α∨) ≥ 0 for all α ∈ S} for the cone of dominant weights
of g. Let W be the Weyl group of g generated by the reflections sα with α ∈ R+ (or
equivalently by the simple reflections sα with α ∈ S). Set C = {x ∈ E | (x, α∨) > 0 for
all α ∈ S} and cl(C) = {x ∈ E | (x, α∨) ≥ 0 for all α ∈ S}. For any w ∈ W , we set

Cw = w−1(C), cl(Cw) = w−1(cl(C)) and Pw
+ = P ∩ cl(Cw).

Each set w−1(S) can be chosen as a set of simple roots for R, the corresponding set of
positive roots is then Rw

+ = w−1(R+). Given w ∈ W , we define the dominance order
≤w on P by the following relation: γ ≤w β if and only if β − γ decomposes as a sum
of roots in Rw

+. When w = 1, we simply write ≤ for the order ≤1.
Now, consider a subset of simple roots S ⊂ S. Write R ⊂ R for the parabolic

root system generated by S and R+ = R ∩ R+ the corresponding set of positive
roots. Let g ⊂ g be the Levi subalgebra of g with set of positive roots R+ and triangular
decomposition

g=
⊕
α∈R+

gα ⊕ h ⊕
⊕
α∈R+

g−α.

In particular, g and g have the same Cartan subalgebra. The algebras g and g have the
same integral weight lattice P. Therefore, the weight decomposition of any g-module
is compatible with the weight decomposition of its restriction as a g-module. The Weyl
group W of g is generated by the simple reflections sα with α ∈ S. Denote by P+ ⊂ P
the set of dominant integral weights of g. We shall also need the partial order � on P
defined by the following relation: γ � β if and only if β − γ decomposes as a sum of
roots in R+.

EXAMPLE 2.1. Consider g = sp12. We have P =
n⊕

i=1
�ei,

R+ = {ei − ej | 1 ≤ i < j ≤ 6} ∪ {ei + ej | 1 < i < j ≤ 6} ∪ {2ei | 1 ≤ i ≤ 6},

and

P+ = {x = (x1, . . . , x6) ∈ �6 | x1 ≥ · · · ≥ x6 ≥ 0}.

The Levi subalgebra g ⊂ g such that

R+ = {e1 − e2, e1 − e3, e2 − e3} ∪ {e4 ± e5, e4 ± e6, e5 ± e6} ∪ {2e4, 2e5, 2e6},

is then isomorphic to gl3 ⊕ sp6.

Given λ ∈ P+, we denote by V (λ) the finite dimensional irreducible representation
of g with highest weight λ. Let sλ be the character of V (λ). This is an element of the
group algebra �[P] with basis {eβ | β ∈ P}. More precisely

sλ =
∑
μ∈P

dim V (λ)μeμ,

where V (λ)μ is the weight space in V (λ) corresponding to μ. Set � = �[P]W . We then
have sλ ∈ �, that is sλ is symmetric under the action of W . We also recall the Weyl
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character formula

sλ =
∑

w∈W ε(w)ew(λ+ρ)−ρ∏
α∈R+ (1 − e−α)

where ρ = 1
2

∑
α∈R+ α. Note that, for any w ∈ W and β ∈ P, we have sw(β) = ε(w)sw◦β

where ◦ is the dot action of the Weyl group defined by w ◦ β = w(β + ρ) − ρ.
Using the restriction of V (λ) to g we define the branching coefficients mλ

μ by

sλ =
∑
μ∈P+

mλ
μsμ,

where sμ is the character of the irreducible representation V (μ) of g of highest weight
μ. We introduce the partition function P defined by

∏
α∈R+\R+

1
1 − eα

=
∑
β∈P

P(β)eβ.

Then, the branching coefficient mλ
μ can be computed in term of P using the Weyl

character formula (see Corollary 8.2.1 in [3, p. 357]) .

THEOREM 2.2. Let λ ∈ P+ and μ ∈ P+. Then

mλ
μ =

∑
w∈W

ε(w)P(w(λ + ρ) − μ − ρ),

where ε is the sign representation of W.

3. Dominant weights of g and Weyl chambers. This section is devoted to study
the relationship between the various subsets of roots and weights we have defined. To
this end, we introduce the following subset which will play an important role in this
paper:

U = {u ∈ W | u(R+) ⊂ R+}.

PROPOSITION 3.1. We have

(1)

P+ =
⋃
u∈U

u−1(P+).

(2)

R+ =
⋂
u∈U

u−1(R+).

(3) Each element w in W admits a unique decomposition under the form w = uw with
u ∈ U and w ∈ W.
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Proof. We prove 1. Let λ ∈ P+ and u ∈ U . For all α ∈ R+, we have

(u−1(λ), α∨) = (λ, u(α)∨) ≥ 0,

since λ ∈ P+ and u(α) ∈ R+. It follows that u−1(λ) ∈ P+ and
⋃

u∈U u−1(P+) ⊂ P+.
Next, let γ ∈ P+. There exists u′ ∈ W such that u′(γ ) ∈ P+. Let α ∈ R+. Then

(γ, α) = (u′(γ ), u′(α)) ≥ 0. If the inequality is strict then we have u′(α) ∈ R+. We set

R>0 := {β ∈ R | (u′(γ ), β) > 0} ⊂ R+,

R0 := {β ∈ R | (u′(γ ), β) = 0},
R0,+ := {β ∈ R+ | (u′(γ ), β) = 0}, R0,− = −R0,+.

Note that, R0 is a subroot system of R and that the simple system associated to R0,+
consists simply of R0,+ ∩ S. Also, since u(γ ) ∈ P+, we have R+ = R>0 ∪ R0,+. Let
W0 = 〈sβ | β ∈ R0〉. The group W0 then acts on R and stabilises both R0 and R>0.
Since all the roots in R0 are orthogonal to u′(γ ), we have vu′(γ ) = u′(γ ) ∈ P+ for
all v ∈ W0. Now, let u be the element of minimal length in the coset W0u′. By the
previous argument, we have u′(γ ) ∈ P+. Let us show that u ∈ U . Let α ∈ R+. First if
u′(α) ∈ R>0, then so is u(α) since W0 stabilises R>0 and we are done in this case since
u(α) ∈ R>0 ⊂ R+. Second, if u′(α) ∈ R0, then so is u(α). Let δ ∈ R0,+ ∩ S. Since u is of
minimal length, we have �(sδu) > �(u) (here � is the length function) and this implies
that u−1(δ) ∈ R+ (see for example [4, Section 1.6]). It follows that u−1(β) is positive
for all β ∈ R0,+. Therefore, we cannot have u(α) = −β ∈ R0,− with β ∈ R0,+, since this
would imply that u−1(β) = −α ∈ R−. We have shown that u(α) ∈ R+ in both cases,
that is u ∈ U as required.

We prove 2. By definition of U, we have R+ ⊂ ⋂
u∈U u−1(R+). Assume α ∈⋂

u∈U u−1(R+). We then have u(α) ∈ R+ for any u ∈ U . Consider γ ∈ P+. By assertion
1, there exists u ∈ U such that γ ∈ u−1(P+). We thus have (γ, α∨) = (u(γ ), u(α)∨) ≥ 0
for any γ ∈ P+. This implies that α is a positive root of R+.

We prove 3. Recall that the stabiliser of ρ under W is {1}. Consider w ∈ W . There
exists w ∈ W such that w(w−1ρ) ∈ P+. By assertion 1, there exists u ∈ U such that
uw(w−1ρ) ∈ P+. Since ρ is the unique element of the orbit Wρ in P+, we must have
w = uw. Now, assume that there exist u1, u2 ∈ U and w1, w2 ∈ W such that u1w1 =
u2w2. We have u2 = u1w with w = w1w

−1
2 ∈ W . If w �= 1, there exists α ∈ R+ such that

w(α) = −β with β ∈ R+. Then (ρ, u2(α)∨) = −(ρ, u1(β)∨) < 0 since u1(β) ∈ R+. This
contradicts the hypothesis u2(α) ∈ R+. hence w = 1, that is w1 = w2 and u1 = u2. �

Denote by E the �-vector space generated by the roots in R+. Then, we have
E ∩ R+ = R+; see [4, Section 1.10]. We will make frequent use of this fact in the rest
of the paper. It is important to notice that this holds because we assumed that S ⊂ S.

LEMMA 3.2. Let u ∈ U. Then, u(ρ) = ρ if and only if u(R+) = R+.

Proof. Assume that there exists α ∈ R+ such that u(α) /∈ R+. Then, since u(α) ∈ R+
we have u(α) /∈ E. It follows that there exists a simple root αj /∈ R+ such that u(α) ≥ αj.
On the one hand, since u(R+) ⊂ R+, we see that u(ρ) ≥ αj. We also know that ρ ∈ E.
Therefore, the root αj appears (with a positive coefficient) in the decomposition of
u(ρ) − ρ in the basis S. We get that u(ρ) �= ρ as required. The converse is trivial. �

LEMMA 3.3. Let u ∈ U be such that u(ρ) �= ρ. Then, u(ρ) ≮ ρ.
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Proof. Since u(R+) �= R+, arguing as in the proof of the previous lemma, we know
that there exists a simple root αj /∈ E such that αj appears with a positive coefficient in
the decomposition of u(ρ) − ρ in the basis S. Hence, we cannot have u(ρ) < ρ. �

LEMMA 3.4. Let γ, γ ′ ∈ P be such that γ ≤R+ γ ′. Then, we have u(γ ) ≤R+ u(γ ′) for
all u ∈ U.

Proof. By definition γ ≥R+ γ ′ implies that γ − γ ′ is a sum of roots in R+. Since,
u(R+) ⊂ R+ we see that u(γ − γ ′) is a sum of roots in R+. Hence, u(γ − γ ′) = u(γ ) −
u(γ ′) ≥R+ 0 as required. �

LEMMA 3.5. Let γ ∈ P be such that γ /∈ P+. Then, we have u(γ ) /∈ P+ for all u ∈ U.

Proof. Since γ /∈ P+, there exists α ∈ R+ such that (γ, α∨) < 0. It follows that

(u(γ ), u(α)∨) = (γ, α∨) < 0.

Since u(α) ∈ R+, this implies that u(γ ) /∈ P+. �

4. Induced characters.

4.1. The functions Hμ. Given μ ∈ P+, write Hμ := char(V (μ) ↑g

g
) for the induced

character of V (μ) from g to g. We then have

Hμ :=
∑
λ∈P+

mλ
μsλ.

Observe there can exist infinitely many weights λ such that mλ
μ �= 0. When g = h is

reduced to the Cartan subalgebra, we have R+ = ∅ and we set mλ
μ = Kλ,μ = dim V (λ)μ

so that

hμ :=
∑
λ∈P+

Kλ,μsλ. (1)

Also when g = g, we have Hμ = sμ. So the function Hμ interpolates between the
functions hμ and sμ. Since Kλ,μ = Kλ,w(μ) for any w ∈ W , we have hμ = hw(μ) (for
the usual action of W on P). Moreover, Kμ,μ = 1 and Kλ,μ �= 0 if and only if λ ≥ μ

(i.e. λ − μ decomposes as a sum of simple roots). The sets {sλ | λ ∈ P+} and {hλ | λ ∈
P+} are bases of � and the corresponding transition matrix is unitriangular for the
order ≤.

We now define two �-linear maps H and S by

H :
{

�[P] → �

eβ �→ hβ
and S :

{
�[P] → �

eβ �→ sβ
.

Set

 =
∏

α∈R+

(1 − eα)
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PROPOSITION 4.1. The maps H and S satisfy the relations

S(eβ) = H(eβ) and H(eβ) = S(−1eβ),

for any β ∈ P. Therefore, S = H ◦  and H = S ◦ −1 (by writing for short  and −1

for the multiplication by  and −1 in �[[P]]).

Proof. The partition function P is defined by

−1 =
∏

α∈R+

1
1 − eα

=
∑
γ∈P

P(γ )eγ ,

and we have by definition hβ = ∑
λ Kλ,βsλ where Kλ,β = ∑

w ε(w)P(w ◦ λ − β). This
gives

S(−1eβ) =
∑
γ∈P

P(γ )sβ+γ .

Let γ ∈ P. Then either sβ+γ = 0 or there exists λ ∈ P+ and w ∈ W such that w−1 ◦
(β + γ ) = λ, that is γ = w ◦ λ − β. This yields sβ+γ = ε(w)sλ and in turn we obtain

S(−1eβ) =
∑
λ∈P+

∑
w∈W

ε(w)P(w ◦ λ − β)sλ =
∑
λ∈P+

Kλ,βsλ = hβ,

as desired. Note that, we have for any U ∈ �[P], H(U) = S(−1U). Then if we set
U = eβ , we get the relation H(eβ) = S(eβ), as required. �

Define the �-linear map

H :
{

�[P] → �

eμ �→ Hμ
.

Set

 =
∏

α∈R+\R+

(1 − eα) and � =
∏

α∈R+

(1 − eα),

PROPOSITION 4.2.

(1) The maps H and S satisfy the relation

H(eμ) = S(
−1

eμ),

for any μ ∈ P. We write for short H = S ◦ 
−1

.
(2) We have H(eμ) = H(�eμ).

Proof. The first assertion is proved as in the previous proof by replacing the
partition function P by P . For the second one, we combine the first part with the
previous proposition. �

We have, using the Weyl character formula for g:

� =
∏

α∈R+

(1 − eα) =
∑
w∈W

ε(w)eρ−w(ρ),
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where ρ is the half sum of positive roots of g. By the second assertion of the previous
proposition, we get for all μ ∈ P

Hμ = H(eμ) =
∑
w∈W

ε(w)hμ+ρ−w(ρ).

4.2. Irreducible components of R. Now, assume the reductive Lie algebra g

decomposes in the form

g= g1 ⊕ g2 ⊕ · · · ⊕ gr,

where each gk, k = 1, . . . , r is a Lie subalgebra of g with irreducible root system
Rk ⊂ R and R = ⊔r

k=1 R(k). We also assume that we have P = P(1) ⊕ · · · ⊕ P(r) where
P(k) is the weight lattice of gk. In particular, each weight μ ∈ P+ decomposes in the
form μ = μ(1) + · · · + μ(r) with μ(k) ∈ P(k)

+ . We then have additional properties for the
functions Hμ we shall need in Section 7.1. For instance

� =
∏

α∈R+

(1 − eα) =
r∏

k=1

∏
α∈R(k)

+

(1 − eα),

and

Hμ =
r∏

k=1

∏
α∈R(k)

+

(1 − eα)hμ(1)+···+μ(r) .

Combining (1) and Proposition 4.1 (for each root system Rk), we get for any k =
1, . . . , r ∏

α∈R(k)
+

(1 − eα)hμ(1)+···+μ(r) =
∑

λ(k)∈P(k)
+

K−1
λ(k),μ(k) hμ(1)+···λ(k)+···+μ(r) ,

where the coefficients K−1
λ(k),μ(k) are those of the inverse matrix of (Kλ(k),μ(k) )

λ(k),μ(k)∈P(k)
+

. By
an easy induction, we obtain

Hμ =
∑

λ(1)∈P(k)
+

· · ·
∑

λ(r)∈P(r)
+

K−1
λ(1),μ(1) · · · K−1

λ(r),μ(r) hλ(1)+···+λ(r) . (2)

4.3. The conjecture. We start with an easy observation.

LEMMA 4.3. Consider u ∈ W. Then the two following statements are equivalent :

(1) u(R+) = R+
(2) u is a Dynkin diagram automorphism of g

Proof. When u is a Dynkin diagram automorphism of g, we clearly have u(R+) =
R+. Now, assume u(R+) = R+. Then, we have u(R) = R and u is an automorphism
of the root system R. It is known (see [7]) that Aut(R) = W � Aut(�) where � is the
Dynkin diagram of R i.e. Aut(R) is the semidirect product of W (which is normal
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in Aut(R)) with Aut(�). Since, u(R+) = R+ the element u belongs in fact in Aut(�)
(otherwise u would send at least a positive root of R+ on a negative root). �

PROPOSITION 4.4. Let μ, ν ∈ P+. Assume that there exists u ∈ W such that
u(R+) = R+ and ν = u(μ) (or equivalently, μ and ν are conjugate by a Dynkin diagram
automorphism of g lying in the Weyl group of g). Then, Hμ = Hν .

Proof. With the previous notation, we have

Hμ = H
( ∏

α∈R+

(1 − eα)eμ

)
and Hν = H

( ∏
α∈R+

(1 − eα)eν

)
.

Since u(R+) = R+, we see that u(ρ) = ρ and that uWu−1 = W (indeed, usαu−1 = suα

for all α ∈ R). Therefore
∏

α∈R+

(1 − eα)eν =
∑
w∈W

ε(w)eν+ρ−w(ρ) =
∑
w∈W

ε(w)eu(μ)+u(ρ)−uw(u−1(ρ))

=
∑
w∈W

ε(w)eu(μ+ρ−w(ρ)).

It follows that

Hν = H
( ∑

w∈W

ε(w)eu(μ+ρ−w(ρ))
)

=
∑
w∈W

ε(w)hu(μ+ρ−w(ρ)) =
∑
w∈W

ε(w)hμ+ρ−w(ρ) = Hμ,

since hw(β) = hβ for any w ∈ W . �
We conjecture that the converse is true:

CONJECTURE 4.5. Consider μ, ν ∈ P+. Then, we have Hμ = Hν if and only if there
exists u in W such that u(R+) = R+ and ν = u(μ) or equivalently, μ and ν are conjugate
by a Dynkin diagram automorphism of g lying in the Weyl group of g.

5. Triangular decomposition of Hμ.

5.1. Decomposition on the h-basis. Let μ ∈ P+ and let w ∈ U be such that μ ∈
cl(Cw). Recall that Rw

+ = w−1(R+). Since w ∈ U , we have w(R+) ⊂ R+ which in turn
implies that R+ ⊂ Rw

+. It follows that � is finer than ≤w, that is α � β =⇒ α ≤w β for
all α, β ∈ P.

PROPOSITION 5.1. Let w ∈ U. We have for all μ ∈ P+

Hμ = hμ +
∑
λ∈Pw+
μ<wλ

aλ,μhλ,

where for any λ ∈ Pw
+

aλ,μ =
∑
w∈W

μ+ρ−w(ρ)∈Wλ

ε(w).
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Proof. Since � is finer than ≤w, we have

Hμ = hμ +
∑

w∈W\{1}
ε(w)hμ+ρ−w(ρ) with μ <w μ + ρ − w(ρ) for w �= 1.

Now for each w �= 1, the orbit of each γ = μ + ρ − w(ρ) intersects Pw
+ at one point (say

λ) and we can use the relations hw(γ ) = hγ for any w ∈ W . Moreover, we then have γ �w

λ. We thus obtain μ <w μ + ρ − w(ρ) �w λ which gives the unitriangularity of the
decomposition. The coefficients aλ,μ are then obtained by gathering the contributions
in hλ for each λ ∈ Pw

+. �
REMARK 5.2.

(1) For g =g, the coefficients aλ,μ are the entries of the inverse matrix K−1 where
K = (Kλ,μ)λ,μ∈P+ . In type A, K is the Kostka matrix. Obtaining a combinatorial
formula for the coefficients of K−1 is already a nontrivial problem (see [2] and the
references therein). As far as we are aware, no such description for the coefficients of
K−1 exists for other root systems (and thus also for the coefficients aλ,μ associated
to a general Levi subalgebra).

(2) We can also deduce from Propositions 3.1 and 5.1 that for any u ∈ U , the set
{Hλ | λ ∈ Pu

+} is a basis of �.

5.2. Consequences.

PROPOSITION 5.3. Let μ and ν be dominant weights in P+ such that Hμ = Hν . Then,
there exists τ ∈ W such that τ (ν) = μ. In particular, if μ and ν belong to the same closed
Weyl chamber for g, we have τ = 1 and μ = ν.

Proof. Assume that μ belongs to P
w

+ and ν belongs to P
w′

+ with w,w′ in U .
Let τ ∈ W be such that w′ = wτ . We then have Rw′

+ = τ−1(Rw
+) and Pw′

+ = τ−1(Pw
+).

Moreover, μ <w γ if and only if τ−1(μ) <w′ τ−1(γ ). On the one hand, using
Proposition 5.1, we get

Hν = hν +
∑

λ∈Pw′
+

ν<w′λ

aλ,νhλ = hν +
∑
λ∈Pw+

τ (ν)<wλ

aτ−1(λ),νhτ−1(λ).

Since hw(β) = hβ for all w ∈ W and β ∈ P, this can be rewritten under the form

Hν = hν +
∑
λ∈Pw+

τ (ν)<wλ

aτ−1(λ),νhλ.

On the other hand, we have

Hμ = hμ +
∑
λ∈Pw+
μ<wλ

aλ,μhλ.

So, Hν = Hμ implies that hτ (ν) = hμ by comparing the indices of the basis vectors of
{hλ | λ ∈ Pw

+} which are minimal for the order ≤w. Hence, μ = τ (ν) as desired. �
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REMARK 5.4. If Hμ = H0 (i.e. we have ν = 0), then μ = 0 since μ and 0 always
belong to the same closed Weyl chamber.

For any weight μ ∈ P+, define the set

Eμ = {μ + ρ − w(ρ) | w ∈ W}.

Since the stabiliser of ρ under the action of W is {1}, the cardinality of Eμ is equal
to that of W . The following corollary shows that the conjecture holds when each of
the sets Eμ and Eν is contained in a closed Weyl chamber. This happens in particular
when μ and ν are sufficiently far from the walls of the Weyl chambers in which they
appear.

COROLLARY 5.5. Let μ and ν be two dominant weights in P+. Assume that there exist
w ∈ W such that Eμ ⊂ Pw

+ and w′ ∈ W such that Eν ⊂ Pw′
+ . Then, Hμ = Hν implies that

ν = τ (μ) and τ (R+) = R+ where τ = w−1w′.

Proof. All the elements of Eμ belong to Pw
+. They thus belong to distinct W -orbits.

Hence, the decomposition of Hμ in the basis {hλ | λ ∈ Pw
+} is

Hμ = hμ +
∑

w∈W\{1}
ε(w)hμ+ρ−w(ρ).

Similarly, the elements of Eν belong to distinct W -orbits. Hence, the decomposition of
Hν in the basis {hλ | λ ∈ Pw′

+ } is

Hν = hν +
∑

w′∈W\{1}
ε(w′)hν+ρ−w′(ρ).

Since Hν = Hμ, we see that there exists τ ∈ W such that τ (ν) = μ by the previous
proposition. Further, we know that τ is such that Pw′

+ = τ−1(Pw
+) thus we have τ (Eν) =

Eμ. Let α ∈ R+ and w = sα. Then, w(ρ) − ρ = α and we see that there exists an
element w′ ∈ W such that τ (ν + α) = μ + ρ − w′(ρ). In turn, this implies τ (α) = ρ −
w′(ρ) as τ (ν) = μ and τ (α) is a sum of positive roots in R+. But τ (α) also lies in
R, hence τ (α) ∈ R+; see Section 3. We have shown that τ maps R+ onto itself as
expected. �

6. The functions Mμ. We now give an equivalent formulation of our problem in
terms of parabolic analogues of monomial functions.

6.1. Decomposition on the monomial functions. For any weight γ ∈ P, set mγ =∑
w∈W ew(γ ) so that mγ is the image of eγ by the symmetrisation operator

M :
{

�[P] → �[P]W

eγ �→ mγ
.

Note that, our function mγ slightly differs from the usual monomial function mγ =
1

|Wγ |
∑

w∈W ew(γ ) where Wγ is the stabiliser of γ under the action of W . We clearly have
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mw(γ ) = mγ for any w ∈ W . Also, {mλ | λ ∈ Pw
+} is a basis of �. Given μ ∈ P, set

Mμ := M(
∏

α∈R+

(1 − eα)eμ) =
∑
w∈W

ε(w)mμ+ρ−w(ρ).

LEMMA 6.1.

(1) We have

Mμ =
∑
λ∈P+

aλ,μmλ with aλ,μ =
∑
w∈W

μ+ρ−w(ρ)∈Wλ

ε(w).

(2) Consider μ, ν ∈ P+. Then, Hμ = Hν if and only if Mμ = Mν .

Proof. Assertion 1 follows from the identity mw(γ ) = mγ for any γ ∈ P and any
w ∈ W . By Proposition 5.1, the coefficients of the expansion of Mμ on the basis
{mλ | λ ∈ P+} are the same as those appearing in the expansion of Hμ on the basis
{hλ | λ ∈ Pw

+}. Assertion 2 follows. �

6.2. A simple expression for the functions Mλ. For any γ ∈ P, set

aγ =
∑
w∈W

ε(w)ew(γ ).

We thus have aw(γ ) = ε(w)aγ and w(aγ ) = ε(w)aγ for any w ∈ W and aw0(ρ) = ε(w0)aρ

where w0 is the element of maximal length in W .

PROPOSITION 6.2. Let μ ∈ P+.

(1) We have

Mμ = ε(w0)
∑
u∈U

u(aμ+ρaρ).

(2) Let � be the unique element lying in {u(μ + 2ρ) | u ∈ U} ∩ P+. Then, we have

Mμ = ε(w0)e� +
∑
γ∈P
γ<�

bλ,μeγ .

Proof. We prove (1). We have

Mμ =
∑
w∈W

ε(w)mμ+ρ−w(ρ) =
∑
w∈W

w

⎛
⎝eμ+ρ

∑
w∈W

ε(w)e−w(ρ)

⎞
⎠ .

This gives

Mμ =
∑
w∈W

w
(
eμ+ρa−ρ

) = ε(w0)
∑
w∈W

w
(
eμ+ρaρ

) = ε(w0)
∑
u∈U

u

⎛
⎝∑

w∈W

w
(
eμ+ρaρ

)⎞⎠ ,
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by using Assertion 3 of Proposition 3.1. Hence

Mμ = ε(w0)
∑
u∈U

u

⎛
⎝ ∑

w∈W

ew(μ+ρ)w(aρ)

⎞
⎠

= ε(w0)
∑
u∈U

u

⎛
⎝aρ

∑
w∈W

ε(w)ew(μ+ρ)

⎞
⎠

= ε(w0)
∑
u∈U

u(aμ+ρaρ),

since aw(ρ) = ε(w)aρ.

We prove (2). The monomials eμ+ρ and eρ are the monomials of highest weight
(with respect to ≤R+) appearing in the expression of aμ+ρ and aρ , respectively. It follows
that the monomial eμ+2ρ is of highest weight among those appearing in aμ+ρaρ . Thus,
using (1) we get an expression of the form

Mμ = ε(w0)
∑
u∈U

u

⎛
⎝eμ+2ρ +

∑
ν<R+μ+2ρ

�eν

⎞
⎠ .

By Lemma 3.4, ν <R+ μ + 2ρ implies that u(ν) < u(μ + 2ρ). Finally, the maximal
weight with respect to ≤ in the set {u(μ + 2ρ) | u ∈ U} is the unique element � lying
in {u(μ + 2ρ) | u ∈ U} ∩ P+. Therefore, we have

Mμ = ε(w0)e� +
∑
γ∈P
γ<�

bλ,μeγ ,

as required. �

6.3. Proof of the conjecture for μ + 2ρ dominant.

LEMMA 6.3. Let μ ∈ P+ be such that μ + 2ρ belongs to P+. Then μ ∈ P+.

Proof. For any simple root αi ∈ S, we have (μ + 2ρ, α∨
i ) ≥ 0 since μ + 2ρ ∈ P+.

Also for any simple root αi ∈ S, we have (μ, α∨
i ) ≥ 0 since μ ∈ P+. Now consider αj ∈

S \ S. Since 2ρ decomposes as a sum of simple roots in S, we must have (2ρ, α∨
j ) ≤ 0.

Indeed for any αi ∈ S, (αi, α
∨
j ) = 0 or is negative since distinct simple roots are always

at an angle greater than π/2. Therefore, (μ, α∨
j ) ≥ (μ + 2ρ, α∨

j ) ≥ 0. �

PROPOSITION 6.4. Let μ, ν ∈ P+ be such that Hμ = Hν and assume that μ + 2ρ ∈
P+. Then, there exists v ∈ U such that ν = v(μ) and v(R+) = R+.

Proof. By the previous lemma, we see that μ ∈ P+. Let v ∈ U be such that ν ∈ Pv
+.

Then by (the proof of) Proposition 5.3, we know that v(ν) = μ. Next Lemma 6.1 implies
that Mμ = Mν and, in particular, Mμ and Mν have the same maximal monomial with
respect to <. Hence

{u(μ + 2ρ) | u ∈ U} ∩ P+ = {u(v−1(μ) + 2ρ) | u ∈ U} ∩ P+.
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But μ + 2ρ ∈ P+ so we have {u(v−1(μ) + 2ρ) | u ∈ U} ∩ P+ = {μ + 2ρ}. Hence, there
exists u ∈ U such that u(v−1(μ) + 2ρ) = μ + 2ρ. We have

μ + 2ρ = u(v−1(μ) + 2ρ)
�

u−1(μ + 2ρ) = v−1(μ) + 2ρ

�
vu−1(μ + 2ρ) = μ + 2v(ρ)

�
vu−1(μ + 2ρ) − (μ + 2ρ) = 2(v(ρ) − ρ).

Since μ + 2ρ ∈ P+, we have vu−1(μ + 2ρ) − (μ + 2ρ) ≤ 0. Hence v(ρ) ≤ ρ. By
Lemma 3.3, this implies that v(ρ) = ρ. Finally by Lemma 3.2, we have v(R+) = R+. �

REMARK 6.5. We will see in the next section (Remark 7.2) that we can have μ and
ν in the same W -orbit, μ + 2ρ and ν + 2ρ in the same W -orbit but Hμ �= Hν . So, the
hypothesis μ + 2ρ ∈ P+ is crucial in the above proposition.

7. The classical Lie algebras.

7.1. Proof of the conjecture for gln. We now prove our conjecture in type A. We
shall work in fact with gln rather than sln. The main tool is a duality result between the
branching coefficients mλ

μ and some generalised Littlewood–Richardson coefficients
together with the main result of [6]. Each partition λ = (λ1 ≥ · · · ≥ λd ≥ 0) with d ≤ n
can be regarded as a dominant weight of gln by adding n − d coordinates equal to 0.
We will use this convention in this section. For any partition μ = (μ1 ≥ · · · ≥ μd), we
have in fact

sμ =
∑

λ=(λ1≥···≥λd≥0)

K−1
λ,μhλ, (3)

that is, the coefficients appearing in the expansion of sμ on the h-basis are inverse
Kostka numbers indexed by pairs (λ,μ) of partitions with at most d nonzero parts.
When g = gln, the h-functions have also an additional property (which does not hold for
the other root systems). Consider β = (β1, . . . , βn) ∈ �n

≥0, then hβ = hβ1 × · · · × hβn .
Recall that the dominant weights of gln can be regarded as non-increasing

sequences of integers (possibly negative) with length n. We will realise g = glm1
⊕

· · · ⊕ glmr
as the subalgebra of glm of block matrices with block sizes m1, . . . , mr.

Now, consider μ ∈ P such that μ = μ(1) + · · · + μ(r) where μ(k) ∈ P(k)
+ as in Section

4.2. Then, each μ(k) is a non-increasing sequence of integers of length mk. We will
assume temporary that the coordinates of μ are nonnegative so that each μ(k) is a
partition with mk parts. We then have according to (2)

Hμ =
∑

λ(1)∈P(1)
+

· · ·
∑

λ(r)∈P(r)
+

K−1
λ(1),μ(1) · · · K−1

λ(r),μ(r) hλ(1)+···+λ(r) ,
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where each λ(k) is a partition. In particular, we have hλ(1)+···+λ(r) = hλ(1) × · · · × hλ(r) which
yields

Hμ =
k∏

i=1

⎛
⎜⎝ ∑

λ(k)∈P(k)
+

K−1
λ(k),μ(k) hλ(k)

⎞
⎟⎠ .

Finally by using (3), we obtain

Hμ =
k∏

i=1

sμ(k) .

We can now prove our conjecture for induced representations of gln

PROPOSITION 7.1. Consider μ and ν any dominant weights of g. Assume Hμ = Hν .
Then, there exists a permutation σ of {1, . . . , n} such that σ (R+) = R+.

Proof. By Theorem 2.2, we have mλ
μ = ∑

σ∈Sn
ε(σ )P(σ (λ + ρ) − μ − ρ). Set δ =

(1, . . . , 1) ∈ �n. Since δ is fixed by Sn, we have for any nonnegative integer a, mμ+aδ
λ+aδ =

mμ
λ . Observe also that P+ is invariant by translation by δ. Therefore

Hμ+δa =
∑
ν∈P+

mμ+aδ
ν sν =

∑
λ∈P+

mμ+aδ
λ+aδ sλ+aδ =

∑
λ∈P+

mμ
λ sλ+aδ,

by setting ν = λ + aδ in the leftmost sum. So, Hμ = Hν if and only if Hμ+aδ = Hν+aδ.
We can now choose a sufficiently large so that μ ∈ �n

>0 and ν ∈ �n
>0. Decompose

μ = μ(1) + · · · + μ(r) and ν = ν(1) + · · · + ν(r) as in Section 4.2. For any k = 1, . . . , r,
set δk = (1, . . . , 1) ∈ �mk . The similar decompositions of μ + aδ and ν + aδ verify
(μ + aδ)(k) = μ(k) + aδ(k) and (ν + aδ)(k) = ν(k) + aδ(k) for any k = 1, . . . , r. We thus
obtain

k∏
i=1

sμ(k)+aδ(k) =
k∏

i=1

sν(k)+aδ(k) .

Now by the main result of [6], since the partitions μ(k) + aδ(k) and ν(k) + aδ(k) appearing
above have positive parts, we know that the set of partitions

{μ(k) + aδ(k), k = 1, . . . r} and {ν(k) + aδ(k), k = 1, . . . r},

should coincide. There, thus exists a permutation τ ∈ Sr such that μ(k) + aδ(k) =
ν(τ (k)) + aδ(τ (k)). The permutation τ preserves the lengths of the partitions (recall the
partitions considered here have positive parts) so mk = mτ (k) and δ(k) = δ(τ (k)) for any
k = 1, . . . , r. We obtain μ(k) = ν(τ (k)). For any k = 1, . . . , r, set Ik = {mk−1 + 1, . . . , mk}
(with m0 = 0}. Then, Ik and Iτ (k) have the same cardinality because mk = mτ (k).
Let σ ∈ Sn be such that σ (mk−1 + j) = mτ (k)−1 + j for any j ∈ {1, . . . , k} and any
k ∈ {1, . . . , r}. Then, σ is a Dynkin diagram automorphism of g. We have σ (μ) = ν

and σ (R+) = R+ as desired. �
REMARK 7.2. Observe that we can have μ and ν in the same W -orbit, μ + 2ρ and

ν + 2ρ in the same W -orbit but Hμ �= Hν . Consider for example g = gl4 ⊕ gl2 in gl6
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and μ = (5, 2, 2, 1 | 4, 3) and ν = (5, 4, 3, 1 | 2, 2). We have 2ρ = (3, 1,−1,−3 | 1,−1)
so μ + 2ρ = (8, 3, 1,−2 | 5, 2) and ν + 2ρ = (8, 5, 2,−2 | 3, 1) belong to the same W -
orbit. By the previous proposition, we have Hμ �= Hν . We cannot apply Proposition
6.4 since neither μ + 2ρ or ν + 2ρ belong to P+.

7.2. Polarisation. Assume g = so2n+1, sp2n or so2n and g = gln. Each dominant
weight μ ∈ P+ defines a pair of partitions (μ+, μ−) of length ≤ n obtained by ordering
decreasingly the positive and negative coordinates of μ, respectively. Recall also that
to each partition λ of length ≤ n corresponds a dominant weight of P+. The branching
coefficients mλ

μ were obtained by Littlewood (see [5]). They can be expressed in terms
of the Littlewood–Richardson coefficients as follows :

mλ
μ =

⎧⎪⎨
⎪⎩

∑
γ,δ cγ

μ+,μ−cλ
γ,δ for g = so2n+1,∑

γ,δ cγ
μ+,μ−cλ

γ,2δ for g = sp2n,∑
γ,δ cγ

μ+,μ−cλ
γ,(2δ)∗ for g = so2n,

where γ and δ runs over the set of partitions with length ≤ n and (2δ)∗ is the conjugate
partition of 2δ.

PROPOSITION 7.3. Conjecture 4.5 is true for g = so2n+1, sp2n or so2n and g = gln.

Proof. Consider μ and ν in P+ such that Hμ = Hν . We have mλ
μ = mλ

ν for any
λ ∈ P+. For any partition λ, write |λ| the size of λ, that is the sum of its parts. Observe
first that mλ

μ = 0 when |λ| < |μ+| + |μ−|. Also, when |λ| = |μ+| + |μ−| in the above
branching coefficients, we get δ = ∅, γ = λ and mλ

μ = cλ
μ+,μ−for g = so2n+1, sp2n or

so2n.
Assume |μ+| + |μ−| < |ν+| + |ν−|. Then for λ = μ+ + μ−, we have mλ

μ = cλ
μ+,μ− =

1 whereas mλ
ν = 0 since |λ| = |μ+| + |μ−| < |ν+| + |ν−|. So we obtain a contradiction.

Similarly, we cannot have |μ+| + |μ−| > |ν+| + |ν−|. Therefore |μ+| + |μ−| = |ν+| +
|ν−|. Then for any λ such that |λ| = |μ+| + |μ−| = |ν+| + |ν−|, we have cλ

μ+,μ− = cλ
ν+,ν− .

By the main result of [6], we obtain the equality of sets {μ+, μ−} = {ν+, ν−}. When μ+ =
ν+ and μ− = ν−, we have μ = ν and the conjecture holds. When μ+ = ν− and μ− = ν+,

we have μ = −w0ν where w0 is the longest element of W that is, the permutation of
{1, . . . , n} such that w0(k) = n − k + 1. Since −w0 ∈ W and −w0(R+) = R+ we are
done. �

We now summarise our results.

THEOREM 7.4. Consider μ, ν ∈ P+.

(1) When μ and ν are conjugate under the action of a Dynkin diagram automorphism
of g lying in W, we have Hμ = Hν .

(2) Conversely, if we assume Hμ = Hν, then μ and ν are conjugate under the action of
a Dynkin diagram automorphism lying in W when one of the following hypotheses
is satisfied.
• μ and ν belong to the same Weyl chamber of g (in which case μ = ν),
• the sets Eμ = {μ + ρ − w(ρ) | w ∈ W} and Eν = {ν + ρ − w(ρ) | w ∈ W} are

entirely contained in a Weyl chamber,
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• μ + 2ρ or ν + 2ρ belongs to P+,
• g = gln,
• g = so2n+1, sp2n or so2n and g = gln.
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