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Abstract

A combinatory system (or equivalently the set of its basic combinators) is called combinatori-

ally complete for a functional system, if any member of the latter can be defined by an entity

of the former system. In this paper the decision problem of combinatory completeness for

finite sets of proper combinators is studied for three subsystems of the pure lambda calculus.

Precise characterizations of proper combinator bases for the linear and the affine λ-calculus

are given, and the respective decision problems are shown to be decidable. Furthermore, it is

determined which extensions with proper combinators of bases for the linear λ-calculus are

combinatorially complete for the λI-calculus.

Capsule Review

Let X be a set of combinators (closed lambda terms) closed under application. Such a set is

called a subsystem of λ, the untyped lambda calculus. A subset B ⊆ X is called complete for

X if every element of X can be written as an applicative combination of elements of B.

The following subsystems are treated: λA (the affine lambda calculus), λI (the λI calculus)

and λL (the linear lambda calculus). In these subsystems the number of (free) occurrences

of x in M in context λx.M is always ≤1, ≥1 or =1, respectively. We have λA∪λI = λ and

λA∩λI = λL.

A proper combinator is of the form λ~x.M with M built up from the ~x using application

only. The following results are proved.

1. In λA it is decidable whether a finite set B of proper combinators is complete.

2. In λL it is decidable whether a finite set B of proper combinators is complete.

3. Given a complete set B for λL it can be characterized which finite extensions with proper

combinators make B complete for the subsystem λI.

Note that the third result is different from the first two. Statman (1986) has proved that

completeness is undecidable for subsets B ⊆ λI consisting of normal terms, hence for sets of

combinators in general. The decidability problem for sets of proper combinators remains open.

The proof in this paper uses an ingenious translation of problems concerning completeness to

linear Diophantine equations over the natural numbers. The latter problems are known to be

decidable, as proved by Gauss. As an application it is shown that the set {λx.x, λxyzu.y(zu)x}
is complete for λL but {λxyz.x, λxyzuvw.vw(ux)y} is not complete for λA.
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1 Introduction

The first combinator bases for the lambda calculus were introduced by Schönfinkel

(1924) and Curry (1929), who proved combinatory completeness by exhibition of

abstraction algorithms which transform lambda terms into equivalent combinatory

terms of the respective systems. In general, a combinatory system (or equivalently

the set of its basic combinators) is called combinatorially complete for a functional

system, such as the lambda calculus, if any member of the latter can be defined by

an entity of the former system. A finite set of combinators which is combinatorially

complete is called a basis for the corresponding functional system. Up to now, many

bases are known for the pure lambda calculus (see Barendregt (1981), Abdali (1976)

and Turner (1979)), as well as for many of its subsystems (see Barendregt (1981),

Hindley (1989) and Trigg et al. (1994)). One interesting problem is the decision

problem of combinatory completeness for finite sets of combinators: given a finite

set of combinators, decide if it forms a basis for the lambda calculus or one of its

subsystems. One knows already that this problem is undecidable for the pure lambda

calculus (see Statman, 1986); moreover, his proof can easily be adapted to show the

same result for the λI-calculus. On the other hand, many necessary conditions for

finite sets of proper combinators forming a basis have been given by Craig in Curry

and Feys (1958), as well as by Statman (1986).

In this paper we study the decision problem for finite sets of proper combinators

for three subsystems of the pure lambda calculus: the linear λ-calculus, the affine λ-

calculus and Church’s original λI-calculus. All these systems have their own interest,

in particular because of their relation to propositional calculus via type-assignment.

In fact, their type schemes form respectively the positive implicational linear, affine

and relevance logic (see Hindley (1989), Fitch (1936), Meredith and Prior (1963) and

Anderson and Belnap (1975)). The relationship between the four calculi is illustrated

in Fig.1, where each calculus is written down together with one of its bases. Here,

an arrow between two calculi that is adorned with a combinator X means that the

source calculus is a proper subsystem of the target calculus, and the former can be

extended to the latter by extension of any of its bases with the combinator X.

In section 2 we define some basic concepts that will be used in the rest of the

paper. In sections 3 and 4 we give precise characterizations of proper combinator

bases respectively for the linear and the affine λ-calculus and thereby show that the

corresponding decision problems are decidable. Furthermore, the proofs of these

results, which for reason of length and readability are postponed to the appendix,

are constructive in the following sense: given a (linear or affine) lambda term M and

a basis of proper combinators Σ for the corresponding calculus, one can, following

the proof of completeness for Σ, define M in terms of a combination of elements of

Σ. In section 5 we determine which extensions with proper combinators of bases for

the linear λ-calculus are combinatorially complete for the λI-calculus. Throughout

we shall assume the reader is familiar with the basic concepts of lambda calculus,

as well as combinatory logic, which can all be found in Barendregt (1981).
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Fig. 1.

2 Basic concepts

A lambda term M is called linear if, for each subterm λx.N, the variable x occurs

exactly once in N, while all free variables of M occur free only once. If for each

subterm λx.N the variable x occurs at most once in N, then M is affine. By

combinator we mean a closed term, which is called proper if the term Z in the

corresponding reduction rule Mx1 . . . xn ≥1 Z is an applicative term and contains

no constants and no other variables than x1, . . . , xn. Then M is a linear (resp. affine)

combinator if every variable x1, . . . , xn occurs exactly (resp. at most) once in Z . Let

S = {0, 1}∗ be the set of finite, possibly empty, sequences of 0’s and 1’s. From now

on we denote by α, β, γ, etc. the elements of S, while a and b stand for either 0 or

1. When a is 0, then a is 1, and vice versa.

Definition 2.1

Consider two occurrences of applicative terms X and Y . If ε and · are respectively

the empty sequence and the concatenation operation, then the position of Y in X is

denoted by p(Y ,X) ∈ S ∪ {⊗} and is defined as follows:

• p(Y , Y ) = ε ;

• p(Y ,UV ) = 0 · p(Y ,U) if the occurrence of Y is in U;

• p(Y ,UV ) = 1 · p(Y , V ) if the occurrence of Y is in V ;

• p(Y ,X) = ⊗ if the occurrence of Y is not in X.

To obtain an alternative and more helpful representation for applicative terms

and proper combinators, we introduce the notion of A-domain. We call the readers’

attention on the fact that A-domains are very similar to tree-domains which can be

used to represent ‘totally’ labelled trees as described in Guessarian (1981).
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Definition 2.2

An applicative domain (A-domain) is a finite subset A ⊆ S such that

(a) A 6= ∅;
(b) α ∈ A ∧ αβ ∈ A ⇒ β = ε;

(c) αaβ ∈ A ⇒ ∃γ ∈ S : αaγ ∈ A.

If A is an A-domain, let A(α) denote

A(α) = {β : αβ ∈ A}.

Note that A(α) is an A-domain whenever A(α) 6= ∅. Let V and C be respectively the

sets of variables and constants of our calculus. Then, any applicative term X can

be represented by a unique function tX : AX −→ V∪C, where AX is an A-domain

and for all α ∈ AX there is p(tX(α), X) = α. Conversely, any such function represents

one and only one term X. This becomes obvious when we represent, for instance,

the term X = x(By)z as in Fig. 2.
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Fig. 2.

Then, AX = {00, 010, 011, 1} and tX is given by tX(00) = x, tX(010) = B, tX(011) =

y and tX(1) = z.

Definition 2.3

Let AX and AY be A-domains and consider the functions tX : AX −→ V∪ C and

tY : AY −→V∪C. Then tY is a subterm of tX at position α if and only if

AX(α) = AY ∧ ∀β ∈ AY . tX(αβ) = tY (β).

Definition 2.4

If tY is a subterm of tX at position α, then the substitution of tY in tX by another

term tZ is given by t : A −→V∪C, where

A = (AX \ AX(α)) ∪ {αβ : β ∈ AZ}

and

t(γ) =

{
tX(γ) for γ ∈ AX \ AX(α)

tZ (γ′) for γ = αγ′ ∈ {αβ : β ∈ AZ}.

Now consider a linear (or affine) proper combinator M with reduction rule

Mx0 . . . xn ≥1 Z, (1)
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and let

α0 = p(xn, Z)

α1 = p(xn−1, Z)
...

αn = p(x0, Z).

(2)

Note that it makes sense to speak of ‘the’ position of xi in Z , since M is linear (resp.

affine), and thus xi has exactly (resp. at most) one occurrence in Z .

We now investigate the effect on tX and tY , when X reduces to Y by one

application of the reduction rule for M. That is when Y is X where some subterm

of the form MX0 . . . Xn is substituted by Z ′ = Z[X0/x0, . . . , Xn/xn]. Then there is

α ∈ S such that tMX0 ...Xn is a subterm of tX at position α. Hence tM is a subterm

of tX at position α 0 . . . 0︸ ︷︷ ︸
n+1

and for 0 ≤ i ≤ n each tXi is a subterm of tX at position

α 0 . . . 0︸ ︷︷ ︸
i

1. On the other hand, each tXi is a subterm of tZ ′ at position αi whenever

αi 6= ⊗. Thus tXi is a subterm of tY at position ααi whenever αi 6= ⊗. We conclude

that tY : AY −→V∪C is given by

AY = (AX \ AX(α)) ∪ AY (α)

where

AY (α) = {ααiβ : αi 6= ⊗ ∧ α 0 . . . 0︸ ︷︷ ︸
i

1β ∈ AX ∧ 0 ≤ i ≤ n}

and

tY (γ) =

 tX(γ) for γ ∈ AX \ AX(α)

tX(α 0 . . . 0︸ ︷︷ ︸
i

1β) for γ = ααiβ ∈ AY (α).

Conversely, a term Y expands to another term X, i.e. Y ≤1 X, using (1), if and only

if there is α ∈ S such that for all αi 6= ⊗, 0 ≤ i ≤ n, the set AY (ααi) is non-empty;

hence an A-domain. Then one can obtain X from Y , or equivalently tX from tY ,

substituting in AY every sequence of the form ααiβ by α 0 . . . 0︸ ︷︷ ︸
i

1β, for αi 6= ⊗, but

maintaining the function value for these arguments. Furthermore, one has to add

the sequence α 0 . . . 0︸ ︷︷ ︸
n+1

with image M to the domain, as well as for all αi = ⊗ the

elements of some set {α 0 . . . 0︸ ︷︷ ︸
i

1β : β ∈ Bi}, where Bi is any A-domain. The function

values for these sequences may be chosen arbitrarily in V∪C.

Thus, expanding terms corresponds essentially to the substitution of substrings by

strings of the form 0 . . . 01. To stress this fact we will use the following representation
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for a linear (affine) proper combinator as in (1) and α0, . . . , αn defined in (2):

ψ(M) =


α0 ⇐1 1

...

αn ⇐1 0 . . . 0︸ ︷︷ ︸
n

1.

This representation can be extended to sets of combinators:

ψ(Σ) = {ψ(M) | M ∈ Σ}.

Example

The set ψ({B,C, I, K}) consists of

ψ(B) =


11 ⇐1 1

10 ⇐1 01

0 ⇐1 001

ψ(C) =


01 ⇐1 1

1 ⇐1 01

00 ⇐1 001

ψ(I) = {ε ⇐1 1 and ψ(K) =

{
⊗ ⇐1 1

ε ⇐1 01

It is well known that to be a basis for one of the lambda (sub-)systems in Fig. 1, it is

sufficient for a set Σ to define all proper combinators of that system (in fact, defining

the elements of the bases in Fig. 1 would be enough). As an example, consider

the combinator N with reduction rule Nxyz ≥1 y(zx). Then N can be defined by

B(CB)(CI) since:

y(zx) ≤1 y(Izx) ≤1 y(CIxz) ≤1 By(CIx)z ≤1 CB(CIx)yz ≤1 B(CB)(CI)xyz

z: 10 ⇐1 101 ⇐1 11 ⇐1 1 ⇐1 1 ⇐1 1

y: 0 ⇐1 0 ⇐1 0 ⇐1 001 ⇐1 01 ⇐1 01

x: 11 ⇐1 11 ⇐1 101 ⇐1 011 ⇐1 0011 ⇐1 001

I: 100 ⇐1 1001 ⇐1 0101 ⇐1 00101 ⇐1 00011

C: 1000 ⇐1 0100 ⇐1 00100 ⇐1 00010

B: 000 ⇐1 0001 ⇐1 000011

C: 0000 ⇐1 000010

B: 00000

Note, for instance, that the last column has been obtained from the previous one by

expansion with ψ(B) at position 00. Indeed, all sequences of the form 00 · 11 ·β have

been substituted by 00 · 1 · β, all sequences 00 · 10 · β by 00 · 01 · β and all 00 · 0 · β by

00 · 001 ·β. Furthermore, a sequence 00 · 000 with function value B has been created.

In general, a set of combinators Σ defines a linear (resp. affine) proper combinator

N with reduction rule Nx0 . . . xn ≥1 X if and only if there is a finite sequence

X ≤1 Z0xn ≤1 Z1xn−1xn ≤1 . . . ≤1 Znx0 . . . xn

such that each Zi for 0 ≤ i ≤ n is an applicative term containing only combinators

in Σ and variables in {x0, . . . , xn−i−1}. Hence it is easy to see that Σ is a basis for

https://doi.org/10.1017/S0956796897002888 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002888


On combinatory complete sets of proper combinators 599

the linear (resp. affine) λ-calculus if and only if any applicative term X, with (at

most) one occurrence of a variable x, can be expanded with combinators in Σ

to another term of the form Z0x such that x does not occur in Z0. This means

that tX : AX −→ V ∪ C is expandable by means of the rules in ψ(Σ) to some

tZ : AZ −→ V∪ C, such that t−1
Z (x) = {1}, i.e. Z = Z0x. In particular, one should

be able to rewrite the position α = p(x,X) to 1, by means of the lines of the rules

in ψ(Σ), i.e. successively substituting subsequences in α, which are on the left-side

of a line in a rule ψ(M) by the right-side of the same line. This provides us with a

necessary condition for a set of proper combinators to form a basis for the linear

(resp. affine) lambda calculus. The condition is also sufficient, as will be shown in

the appendix. In consequence of this property, and abusing the notation, from now

on we will use the word ‘rule’ to denote the combinator rules ψ(M) as well as the

lines they contain. Furthermore, we write Σ : α⇐ β if β is obtained by rewriting α

a finite number of times with (lines of) rules in ψ(Σ).

Lemma 2.5

Let Σ be a proper combinator basis for the linear (or affine) lambda calculus. Then

Σ : α⇐ 1 for any α ∈ S (resp. α ∈ S ∪ {⊗}).

3 Bases for the linear λ-calculus

It is well known that the set {I, C, B} is a basis for the linear λ-calculus, i.e. every

linear λ-term M can be defined by a combination of I , C and B. In the following we

will give necessary and sufficient conditions for a (finite) set of proper combinators

to be complete. We begin by recalling some useful results that are due to W. Craig

and which can be found in Curry and Feys (1958).

Definition 3.1

Consider any proper combinator M and its reduction rule

Mx1 . . . xn ≥1 Z.

The combinator M has cancellative effect if at least one variable xi does not occur

in Z . If Z = xi with 1 ≤ i ≤ n, then M is called a selector. We shall say that M has

a compositive effect if and only if Z contains parentheses.

Theorem 3.2 (Craig)

1. Let X be a combination of proper combinators none of which is a selector.

Then X is not a selector.

2. Let X be a combination of proper combinators none of which has any

compositive effect, and let X be proper. Then X has no compositive effect.

3. Let X be a combination of proper combinators none of which has any

cancellative effect, and let X be proper. Then X has no cancellative effect.

Since I is the only linear selector it becomes obvious that every complete set Σ

of proper combinators for the linear λ-calculus must contain I as well as at least

one combinator with compositive effect. On the other hand, no combinator with a

cancellative effect is linear. Now we shall determine some necessary conditions on
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the rules in ψ(Σ). From Lemma 2.5 we know that Σ : 01 ⇐ 1, i.e. there is a finite

sequence

01 = β1 ⇐1 . . .⇐1 βn = 1 (3)

where each step results from one application of a rule in ψ(Σ). Since each βi+1 is

obtained from βi by substitution of a subsequence in βi by a sequence of the form

0 . . . 01, it is easy to see that all βi end with an 1 for 1 ≤ i ≤ n. Thus, a rule of the

form α1⇐1 1 with α ∈ {0, 1}+ was applied at least once.

Lemma 3.3

If Σ is combinatorially complete for the linear λ-calculus, then ∃α ∈ {0, 1}+ such

that α1⇐1 1 ∈ ψ(Σ).

For α ∈ S let ]0(α) and ]1(α) denote respectively the number of 0’s and the

number of 1’s in α. Then we conclude the following from Σ : 01⇐ 1.

Lemma 3.4

If Σ is combinatorially complete for the linear λ-calculus, then ∃γ ∈ {0, 1}+ such

that ]0(γ) > 0 and γ ⇐1 1 ∈ ψ(Σ).

Definition 3.5

Let Σ be a finite set of linear proper combinators and let n be the number of lines

of rules in ψ(Σ). For every rule αi ⇐1 0 . . . 0︸ ︷︷ ︸
di

1 in ψ(Σ), 1 ≤ i ≤ n let pi = ]0(αi)− di.

The diophantine equation of Σ is defined by

n∑
1

pixi = 1.

Example

The diophantine equation of Σ = {I, C, B} is

x− y − z = 1

with solution x = 1 and y = z = 0. The coefficients of x and y result, respectively,

from the first and the second rule in ψ(C) while the coefficient of z results from the

third rule in ψ(B).

Note that there is a direct correspondence between the coefficients p1, . . . , pn and

the rules in ψ(Σ), which we will, for the moment, denote by ϕ1, . . . , ϕn. In fact, each

pi represents the number of 0’s that are consumed by one application of ϕi. Consider

once more the sequence (3) and for each ϕi let ai be the number of times that this

rule was applied. It is obvious that xi = ai, 1 ≤ i ≤ n, is a solution of the diophantine

equation of Σ:

Lemma 3.6

If Σ is combinatorially complete for the linear λ-calculus, then its diophantine

equation
n∑
1

pixi = 1 (4)

admits at least one solution (a1, . . . , an) ∈ Nn
0.
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Lemmas 3.3, 3.4 and 3.6 together with Theorem 3.2 provide the basis for the

“only-if” part of the following theorem. The proof for the fact that the enumerated

conditions are also sufficient for a set Σ being a basis, can be found in the appendix.

Theorem 3.7

Let Σ be a finite set of linear proper combinators. Then Σ is a basis for the linear

λ-calculus if and only if the following conditions are satisfied:

1. I ∈ Σ;

2. Σ contains at least one combinator with compositive effect;

3. ∃α ∈ {0, 1}+ such that α1⇐1 1 ∈ ψ(Σ);

4. ∃γ ∈ {0, 1}+ such that ]0(γ) > 0 and γ ⇐1 1 ∈ ψ(Σ);

5. the diophantine equation of Σ

n∑
1

pixi = 1 (5)

is solvable.

Algorithms to solve (systems of) linear diophantine equations over the naturals

are known since the beginning of this century (see Stanley (1983)), hence we conclude

the following:

Corollary 3.8

Combinatory completeness for the linear λ-calculus is decidable for finite sets of

proper combinators.

Example

Consider the set Σ = {I, A}, where A is defined by

Axyzu ≥1 y(zu)x

Then ψ(Σ) contains the following rules:

ψ(I) = {ε ⇐1 1

ψ(A) =


011 ⇐1 1

010 ⇐1 01

00 ⇐1 001

1 ⇐1 0001

and the diophantine equation of Σ is

x+ y − 3z = 1

with solution x = 1 and y = z = 0. It is easy to verify that Σ satisfies all conditions

of Theorem 3.7, and hence it is a basis for the linear λ-calculus.
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4 The affine λ-calculus

In this section we obtain a similar result to Theorem 3.7 for the affine λ-calculus.

From now on let Σ be a finite set of affine proper combinators, then Σ = Σ0 ∪ ΣT ,

where ΣT = {T1, . . . , Tt} contains all selectors in Σ.

Suppose none of the selectors in ΣT has reduction rule Tx1 . . . xn ≥1 xn. This

implies that ψ(Σ) contains no rule of the form ε ⇐1 1. From Lemma 2.5 we know

that Σ : 01 ⇐ 1, if Σ is a basis. Thus, at some point a sequence beginning with 0

must rewrite in one step to 1:

Lemma 4.1

If no selector in Σ has reduction rule Tx1 . . . xn ≥1 xn, then ∃α ∈ {0, 1}∗ such that

0α⇐1 1 ∈ ψ(Σ).

Obviously, Lemmas 3.3, 3.4 and 3.6 in the previous section are also valid for any

affine basis Σ, but since Lemma 3.6 is not strong enough to guarantee completeness,

we define the diophantine equations of a set of affine proper combinators in a

manner to control the consumption of both 0’s and 1’s during the application of the

rules in ψ(Σ).

Definition 4.2

• For each rule in ψ(Σ) of the form 0 . . . 0︸ ︷︷ ︸
ui≥0

1 ⇐1 0 . . . 0︸ ︷︷ ︸
vi≥0

1 let ti = ui − vi for

1 ≤ i ≤ m (here m denotes the number of rules of this form in ψ(Σ)). Then we

define the equation eq(Σ) by
m∑
i

tizi = 1.

• Consider all rules of the form αi1⇐1 βi in ψ(Σ0) with ]1(αi) ≥ 1 for 1 ≤ i ≤ l.
Let p0

i = ]0(αi)−]0(βi) and p1
i = ]1(αi). For all other rules of the form αi ⇐1 βi

in ψ(Σ0) with αi 6= ⊗ and 1 ≤ i ≤ k, take q0
i = ]0(αi)−]0(βi) and q1

i = ]1(αi)−1.

Moreover, suppose that ψ(ΣT ) contains t rules of the form ε ⇐1 0 . . . 0︸ ︷︷ ︸
di≥0

1 for

1 ≤ i ≤ t, corresponding, respectively, to the selectors T1, . . . , Tt. Then we

define the system Eq(Σ) as follows.

Eq(Σ) =

{ ∑l
1 p

0
i xi +

∑k
1 q

0
i yi −

∑t
1 dini = 1,∑l

1 p
1
i xi +

∑k
1 q

1
i yi −

∑t
1 ni = 0.

Consider once more the sequence

β0 = 01⇐1 . . .⇐1 1 = βn, (6)

and recall that the coefficients in eq(Σ) and Eq(Σ) correspond to rules in ψ(Σ): the

coefficients in eq(Σ) and in the first equation of Eq(Σ) represent the number of

0’s that are consumed during one application of the corresponding rule, while the

coefficients in the second equation of Eq(Σ) stand for the number of 1’s that are

consumed. Suppose that in equation (6) only rules of the form 0 . . . 01 ⇐1 0 . . . 01

were used. Let zi be the number of times that each corresponding rule was applied.

Then (z1, . . . , zm) is a solution of eq(Σ), since in 01⇐ 1 exactly one 0 was consumed.
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Otherwise, at least one βi, with 1 ≤ i ≤ (n− 1), contains more than one 1. Thus, a

rule of the form α1 ⇐1 β, with ]1(α) ≥ 1, was applied in (6) at least once. Now let

xi (resp. yi and ni) be the number of times that the corresponding rule was applied.

Then (x1, . . . , xl , y1, . . . , yk, n1, . . . , nt) ∈ Nl+k+t
0 is a solution of Eq(Σ) with xi > 0 for

some i ∈ {1, . . . l}, since 1 contains one 0 less than and as many 1’s as 01. We

conclude the following:

Lemma 4.3

If Σ is combinatorially complete for the affine λ-calculus, then

• eq(Σ) admits a solution (z1, . . . , zm) ∈ Nm
0

or

• Eq(Σ) admits a solution (x1, . . . , xl , y1, . . . , yk, n1, . . . , nt) ∈ Nl+k+t
0

with xi > 0 for some i ∈ {1, . . . , l}.

As in the previous section, Theorem 3.2 together with Lemmas 3.3, 3.4 4.1 and 4.3,

provides us with necessary and sufficient conditions for a finite set of affine proper

combinators to be complete for the affine lambda calculus.

Theorem 4.4

Let Σ be a finite set of affine proper combinators. Then Σ is a basis for the affine

λ-calculus if and only if the following conditions are satisfied:

1. Σ contains at least one selector;

2. Σ contains at least one combinator with compositive effect;

3. Σ contains at least one combinator with cancellative effect;

4. if no selector in Σ has reduction rule Tx1 . . . xn ≥1 xn, then ∃α ∈ {0, 1}∗ such

that 0α⇐1 1 ∈ ψ(Σ);

5. ∃β ∈ {0, 1}+ such that β1⇐1 1 ∈ ψ(Σ);

6. ∃γ ∈ {0, 1}+ such that ]0(γ) > 0 and γ ⇐1 1 ∈ ψ(Σ);

7. the equation eq(Σ) has a solution (z1, . . . , zm) ∈ Nm
0 or Eq(Σ) has a solution

(x1, . . . , xl , y1, . . . , yk, n1, . . . , nt) ∈ Nl+k+t
0 with xi > 0 for some i ∈ {1, . . . , l}.

Corollary 4.5

Combinatory completeness for the affine λ-calculus is decidable for finite sets of

proper combinators.

Example

Consider the set Σ = {K2, A}, where K2 and A are defined by

K2xyz ≥1 x and Axyzuvw ≥1 vw(ux)y.

Then ψ(Σ) contains the rules

ψ(K2) =


⊗ ⇐1 1

⊗ ⇐1 01

ε ⇐1 001

ψ(A) =



001 ⇐1 1

000 ⇐1 01

010 ⇐1 001

⊗ ⇐1 0001

1 ⇐1 00001

011 ⇐1 000001
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which satisfy conditions 1–6 of Theorem 4.4. Nevertheless, {K2, A} is no basis for

the affine λ-calculus, since neither

eq(Σ) : 2z1 − 4z2 = 1

nor

Eq(Σ) :

{
−4x + 2y1 + 2y2 − 4y4 − 2n = 1

x − y2 − n = 0

admit solutions over the naturals.

5 An extension to the λI-calculus

In the following we address the problem of extending sets of proper combinators

that are complete for the linear λ-calculus to bases of the λI-calculus1. Again, a result

from W. Craig (in Curry and Feys, 1958) provides us with a necessary property.

Definition 5.1

A proper combinator M with reduction rule Mx1 . . . xn ≥1 Z is called a duplicator

if at least one variable xi, 1 ≤ i ≤ n, occurs more than once in Z . We say that M is

a 2-duplicator if one variable occurs exactly twice in Z .

Theorem 5.2 (Craig)

Let X be a combination of proper combinators none of which has any duplicative

effect, and let X be proper. Then X has no duplicative effect.

Thus, for a set of proper combinators to be complete for the λI-calculus, it has to

contain at least one combinator with duplicative effect. In fact, it is easy to see that

any basis for λI has to contain a 2-duplicator, since no combinator with cancellative

effect is a λI-term.

Lemma 5.3

For m, n, k ≥ 0 let p be the least positive integer such that

m+ k + p+ 3 ≥ n+ k + 2,

and consider the linear combinator

C∗ = λx1 . . . xm+k+p+3.(xm+2 . . . xm+k+p+2x2 . . . xm+1xm+k+p+3x1).

Then there are a, b ≥ 0 such that for any term X one has

C∗z I . . . I︸ ︷︷ ︸
m

(C∗z I . . . I︸ ︷︷ ︸
n

) I . . . I︸ ︷︷ ︸
k

X I . . . I︸ ︷︷ ︸
p

≥ X I . . . I︸ ︷︷ ︸
a

z I . . . I︸ ︷︷ ︸
b

z.

1 A similar result (Theorem 1. in Statman, 1986) exists for extending bases of the affine
λ-calculus to bases of the pure λ-calculus.
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Proof

There is

C∗x1 . . . xm+k+p+3 ≥1 xm+2 . . . xm+k+p+2x2 . . . xm+1xm+k+p+3x1, (7)

thus

C∗z I . . . I︸ ︷︷ ︸
m

(C∗z I . . . I︸ ︷︷ ︸
n

) I . . . I︸ ︷︷ ︸
k

X I . . . I︸ ︷︷ ︸
p

≥1 C∗z I . . . I︸ ︷︷ ︸
n

I . . . I︸ ︷︷ ︸
k

X I . . . I︸ ︷︷ ︸
p−1

I . . . I︸ ︷︷ ︸
m

Iz

≥1 I . . . IX I . . . I︸ ︷︷ ︸
a

z I . . . I︸ ︷︷ ︸
b

z

≥ X I . . . I︸ ︷︷ ︸
a

z I . . . I︸ ︷︷ ︸
b

z.

The last reduction steps use the reduction rule for I , whereas the first two reduction

steps follow by application of equation (7). For the second step, note that

1. C∗ has arity m+ k + p+ 3;

2. the first occurrence of z in C∗z I . . . I︸ ︷︷ ︸
n

I . . . I︸ ︷︷ ︸
k

X I . . . I︸ ︷︷ ︸
p−1

I . . . I︸ ︷︷ ︸
m

Iz is the first term

after C∗, i.e. corresponds to x1;

3. the subterm X corresponds to xn+k+2 and is an argument of C∗, since

m+ k + p+ 3 ≥ n+ k + 2;

4. the second occurrence of z is the (n + k + p + m + 3)th term after C∗, hence

it does not correspond to an argument of C∗ unless n = 0. In this case this

occurrence of z would correspond to the last argument of C∗.

Now it is easy to conclude that after the second reduction step one has X on the

left of both occurrences of z, that one occurrence of z is in the last position of the

term and all other subterms are occurrences of the identity combinator I .

Theorem 5.4

Let Σ be a basis for the linear λ-calculus. Then Σ∪Γ is complete for the λI-calculus

if and only if Γ contains a 2-duplicator.

Proof

First suppose that Σ ∪ Γ is complete for the λI-calculus. Then the combinator

W∗x ≥ xx should be definable by Σ∪Γ, which, on the other hand, must not contain

any combinator with cancellative effect. Thus, there must be at least one 2-duplicator

in Γ, since there is no duplicator in Σ.

Now let D ∈ Γ be a 2-duplicator with reduction rule Dx1 . . . z . . . xd ≥1 Z , such

that the variable z occurs exactly twice in Z . Then there are integers m, n, k ≥ 0 such

that

D I . . . IzI . . . I︸ ︷︷ ︸
d

≥ z I . . . I︸ ︷︷ ︸
m

(z I . . . I︸ ︷︷ ︸
n

) I . . . I︸ ︷︷ ︸
k

(8)

Consider a proper λI-combinator M with reduction rule

Mx1 . . . xN ≥1 X,
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where X is a combination of x1, . . . , xN in which each xi, 1 ≤ i ≤ N, occurs at least

once. Then, M is definable by Σ ∪ Γ if and only if there is a sequence

X = X0 ≤ X1xN ≤ . . . ≤ XNx1 . . . xN

such that each Xj , 1 ≤ j ≤ N, is a combination over {x1, . . . , xN−j} ∪ Σ ∪ Γ.

If xN occurs exactly once in X = X0, then the existence of X1 is guaranteed, since

Σ is a basis for the linear λ-calculus. Otherwise, suppose that xN occurs t ≥ 2 times

in X. We will show that there is a combination X1 over {x1, . . . , xN} ∪ Σ ∪ Γ such

that X ≤ X1xN , where xN occurs t− 2 times in X1. Then, repeating the process to

X1xN , i.e. X1xN ≤ X2xN with t− 3 occurrences of xN in X2, one eventually obtains

X ≤ X1xN ≤ X2xN ≤ . . . ≤ Xt−1xN = X1xN

where X1 is a combination over {x1, . . . , xN−1} ∪ Σ ∪ Γ.

Now, let xN have t ≥ 2 occurrences in X. Then, one can expand X with combi-

nators in Σ such that

X ≤ I . . . I︸ ︷︷ ︸
a+b

X

≤ X ′ I . . . I︸ ︷︷ ︸
a

xN I . . . I︸ ︷︷ ︸
b

xN.

Furthermore, one has by equation (8), and since C∗ is definable by Σ,

X ′ I . . . I︸ ︷︷ ︸
a

xN I . . . I︸ ︷︷ ︸
b

xN ≤ C∗xN I . . . I︸ ︷︷ ︸
m

(C∗xN I . . . I︸ ︷︷ ︸
n

) I . . . I︸ ︷︷ ︸
k

X ′ I . . . I︸ ︷︷ ︸
p

≤ DI . . . I(C∗xN)I . . . IX I . . . I︸ ︷︷ ︸
p

≤ X1xN.

It remains to repeat the process to xN−1, . . . , x1.

6 Appendix

6.1 Preliminaries

As noted in section 2, a finite set of linear (resp. affine) proper combinators Σ is

complete for the linear (resp. affine) lambda calculus if for any term X and any

variable x the function tX : AX −→ V ∪ C is expandable with rules ψ(M) ∈ ψ(Σ)

to tZ : AZ −→ V ∪ C such that t−1
Z (x) = {1}. In particular, α = p(x,X) can be

rewritten to 1 by means of the lines of the rules in ψ(Σ), i.e. Σ : α⇐ 1. We will show

now that, due to the obligatory presence of selectors in Σ, this condition is sufficient,

i.e. if Σ : α ⇐ 1, then tX expands with rules in ψ(Σ) to some function tZ such that

t−1
Z (x) = {1}.

Lemma 6.1
Let T be a selector, M a linear or affine proper combinator with

ψ(M) =


α0 ⇐1 1

...

αn ⇐1 0 . . . 0︸ ︷︷ ︸
n

1
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and consider an applicative term X such that p(x,X) = α ∈ S ∪ {⊗}. If some line

of ψ(M) applies to α at position β, then it is possible to expand tX : AX −→V∪C
a finite number of times with ψ(T ) to tX̃ : AX̃ −→V∪C such that p(x, X̃) = α and

tX̃ is expandable with ψ(M) at position β.

Proof

We show the result for α = βαiγ, since the proof for α = ⊗ is very similar. The result

is trivial for n = 0. Thus consider n ≥ 1.

For every selector T one has

ψ(T ) =



⊗ ⇐1 1
...

ε ⇐1 0 . . . 0︸ ︷︷ ︸
d≥0

1

...

⊗ ⇐1 0 . . . 0︸ ︷︷ ︸
N

1

and whenever ε⇐1 0 . . . 01 ∈ ψ(T ′), then T ′ is itself a selector.

Hence suppose that αi = a1 . . . as, with s ≥ 1 and a1, . . . , as ∈ {0, 1}. Consider

any αj 6= αi,⊗. If βαjγj ∈ AX , we are done. Otherwise αj = a1 . . . aq−1aqb1 . . . bt,

where q ∈ {1, . . . , s} and t ≥ 0. On the other hand, there is at least one posi-

tion βa1 . . . aq−1aqb1 . . . bt′ ∈ AX , with 0 ≤ t′ < t. Thus, expanding tX at position

βa1 . . . aq−1aqb1 . . . bt′ with ψ(T ), we obtain positions βa1 . . . aq−1aqb1 . . . bt′ 0 . . . 0︸ ︷︷ ︸
u≥0

1,

for u ∈ {0, . . . , N}, as well as one position βa1 . . . aq−1aqb1 . . . bt′ 0 . . . 0︸ ︷︷ ︸
N+1

. Obviously,

either one of these positions is of the form βαjγj , for some γj ∈ {0, 1}∗, and we

are done, or otherwise one of these positions is a prefix of βαj and repeating the

process to it, one eventually obtains an argument with position βαjγj . Note that the

previous method can be applied to αj 6= αi in arbitrary order without destroying the

existence of positions that have been created previously.

Corollary 6.2

A finite set of linear (resp. affine) proper combinators Σ is a basis for the linear

(resp. affine) λ-calculus if and only if Σ : α⇐ 1 for any α ∈ S (resp. α ∈ S∪ {⊗}).

6.2 Proof of Theorem 3.7

Proof

Due to Theorem 3.2 and Lemmas 3.3, 3.4 and 3.6, it remains to show that conditions

1–5 guarantee the completeness of Σ.

By Corollary 6.2, and since ε⇐1 1 ∈ ψ(Σ), it is sufficient to prove that Σ : α⇐ 1

for all α ∈ {0, 1}+. We begin to show that

∃k0 ≥ 0 : k ≥ k0 implies 0 . . . 0︸ ︷︷ ︸
k

0 ⇐ 0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸∑
ai
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where (a1, . . . , an) is a solution of
∑n

1 pixi = 1. This follows from the fact that for each

p ∈ {p1, . . . , pn} ψ(Σ) contains a rule of the form γp ⇐1 0 . . . 0︸ ︷︷ ︸
d

1 with ]0(γp) = d+ p.

Thus, choosing k sufficiently big, and using whenever necessary the rule ε⇐1 1, one

has

0 . . . 0︸ ︷︷ ︸
k

0⇐ 0 . . . 0︸ ︷︷ ︸
k−(d+p)+1

γp ⇐ 0 . . . 0︸ ︷︷ ︸
k−p

01⇐ . . .⇐ 0 . . . 0︸ ︷︷ ︸
k−pa

0 1 . . . 1︸ ︷︷ ︸
a

and applying ai times each rule γpi ⇐1 0 . . . 0︸ ︷︷ ︸
di

1 the result follows from
∑
piai = 1.

For the rest of the proof we will distinguish between two cases:

(1) ∃n ≥ 2 : 1 . . . 1︸ ︷︷ ︸
n

⇐1 1 ∈ ψ(Σ).

Since ε ⇐1 1 ∈ ψ(Σ) implies Σ : αβ ⇐1 α1β for all α, β ∈ S, it is easy to

conclude that any sequence of 1’s rewrites to 1. Now, it is sufficient to show

that 0 rewrites to a finite sequence of 1’s: Due to the fact that the left-sides of

the rules in any ψ(M) form an A-domain and since 1 . . . 1︸ ︷︷ ︸
n≥2

⇐1 1 ∈ ψ(Σ), there

are

α1 ∈ {0, 01, 011, . . .}
α2 ∈ {10, 101, 1011, . . .}

...

αn ∈ {1 . . . 1︸ ︷︷ ︸
n−1

0, 1 . . . 1︸ ︷︷ ︸
n−1

01, 1 . . . 1︸ ︷︷ ︸
n−1

011, . . .}

such that

αi ⇐1 0 . . . 0︸ ︷︷ ︸
di≥1

1 ∈ ψ(Σ)

and di 6= dj , for i 6= j. Since n ≥ 2, there is at least one rule α ⇐1 0 . . . 0︸ ︷︷ ︸
d

1,

α ∈ {α1, . . . , αn} in ψ(Σ) such that ]0(α) = 1 and d ≥ 2. Using ε ⇐1 1 and

α⇐1 0 . . . 0︸ ︷︷ ︸
d

1 one obtains

0⇐ α⇐ 0 . . . 0︸ ︷︷ ︸
d−1

01⇐ 0 . . . 0︸ ︷︷ ︸
d−1

α1⇐ 0 . . . 0︸ ︷︷ ︸
d−1

0 . . . 0︸ ︷︷ ︸
d−1

011⇐ . . .⇐ 0 . . . 0︸ ︷︷ ︸
k

01 . . . 1

where k is the least multiple of (d− 1) and p = ]0(γ) greater than or equal to

k0, where γ is as in condition 4. Then,

0 . . . 0︸ ︷︷ ︸
k

01 . . . 1⇐ 0 . . . 0︸ ︷︷ ︸
k

1 . . . 1⇐ 0 . . . 0︸ ︷︷ ︸
k−p

1 . . . 1⇐ . . .⇐ 1 . . . 1.

(2) ∀n ≥ 2 1 . . . 1︸ ︷︷ ︸
n

⇐1 1 6∈ ψ(Σ).

Obviously, this implies that ]0(α) = s ≥ 1 for α as in condition 3. Hence, there

are ñ, d ≥ 1 such that

1 . . . 1︸ ︷︷ ︸
ñ

⇐1 0 . . . 0︸ ︷︷ ︸
d

1 ∈ ψ(Σ) (9)
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Thus,

0⇐ 0 1 . . . 1︸ ︷︷ ︸
ñ

⇐ 0 . . . 0︸ ︷︷ ︸
d

01⇐ 0 . . . 0︸ ︷︷ ︸
k

01 . . . 1⇐ 0 . . . 0︸ ︷︷ ︸
k

1 . . . 1⇐ 1 . . . 1

where k is the least multiple of d and s that is greater than or equal to k0. It

remains to show that 1 . . . 1︸ ︷︷ ︸
y

⇐ 1, ∀y ≥ 1. If ñ ≥ 2, then

1 . . . 1 ⇐ 1 . . . 1︸ ︷︷ ︸
m(ñ−1)s

1 ⇐ 0 . . . 0︸ ︷︷ ︸
mds

1 ⇐ 0 . . . 0︸ ︷︷ ︸
(md−1)s

α1

⇐ 0 . . . 0︸ ︷︷ ︸
(md−1)s

1 ⇐ 1

where m(ñ− 1)s ≥ y− 1 is a multiple of ñ− 1 and s. Finally, suppose ñ = 1 for

all rules as in (9). Then we conclude from condition 3 that there is a rule of

the form 1 ⇐1 0 . . . 0︸ ︷︷ ︸
d≥1

1 ∈ ψ(Σ). On the other hand, Σ contains a compositor.

Hence there is at least one rule of the form β11 ⇐1 0 . . . 0︸ ︷︷ ︸
c≥0

1 in ψ(Σ), and

consequently ]0(β) = e ≥ 1. Let f = e− c. Then,

1 . . . 1︸ ︷︷ ︸
y

⇐ 1 . . . 1︸ ︷︷ ︸
m1s+1

⇐ 0 . . . 0︸ ︷︷ ︸
m2sd

1 . . . 1︸ ︷︷ ︸
m1s+1

⇐ 0 . . . 0︸ ︷︷ ︸
m2sd−e

β11 1 . . . 1︸ ︷︷ ︸
m1s−1

⇐ 0 . . . 0︸ ︷︷ ︸
m2sd−f

1 . . . 1︸ ︷︷ ︸
m1s

⇐ 0 . . . 0︸ ︷︷ ︸
(m2d−m1f)s

1 ⇐ 1

where m1s ≥ y − 1 is a multiple of s and where m2sd is a multiple of s and d

such that m2sd ≥ e and m2d ≥ m1f.

6.3 Proof of Theorem 4.4

Proof

The ‘only-if ’ part of this proof is provided by Theorem 3.2, together with Lemmas 3.3,

3.4, 4.1 and 4.3. It remains to prove that any sequence in S ∪ {⊗} rewrites to 1.

Since Σ contains a combinator with cancellative effect, there is at least one rule of

the form ⊗ ⇐1 0 . . . 01 in ψ(Σ). Thus, it really suffices to show that any sequence in

S rewrites to 1. We will divide the proof into two parts:

Σ : ε⇐ 1

If Σ contains a selector T with reduction rule Tx1 . . . xn ≥1 xn, then ε⇐1 1 ∈ ψ(Σ)

and we are done. Otherwise we begin by proving some properties of Σ.

P1 ∃m ≥ 1 such that 1⇐ 0 . . . 0︸ ︷︷ ︸
m

1:

From 0α ⇐1 1 ∈ ψ(Σ) (Condition 4) we conclude that 1 . . . 1︸ ︷︷ ︸
p≥1

⇐1 0 . . . 0︸ ︷︷ ︸
q≥1

1 ∈

ψ(Σ). Condition 1 guarantees that there is some selector in ψ(Σ). Since we
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already excluded selectors with reduction rules Tx1 . . . xn ≥ xn, ψ(Σ) contains

the rule ε⇐1 0 . . . 0︸ ︷︷ ︸
≥1

1. From now on let d ≥ 1 denote the number of 0’s in the

right-side of that rule. Then,

1⇐1 0 . . . 0︸ ︷︷ ︸
d

11⇐1 . . .⇐1 0 . . . 0︸ ︷︷ ︸
d(p−1)

1 . . . 1︸ ︷︷ ︸
p

⇐1 0 . . . 0︸ ︷︷ ︸
d(p−1)+q

1.

From q ≥ 1 we conclude that there is m ≥ 1 such that Σ : 1⇐ 0 . . . 0︸ ︷︷ ︸
m

1.

P2 ∀α ∈ S ∃p ≥ 0 such that 1⇐ 0 . . . 0︸ ︷︷ ︸
p

α1:

This property follows from ε⇐1 0 . . . 0︸ ︷︷ ︸
d≥1

1 and 1⇐ 0 . . . 0︸ ︷︷ ︸
m≥1

1.

P3 ∃k0 ≥ 0 : k ≥ k0 implies 0 . . . 0︸ ︷︷ ︸
k+1

1⇐ 0 . . . 0︸ ︷︷ ︸
k

1:

If eq(Σ) has a solution (z1, . . . , zm), then the result is trivial, since for a suffi-

ciently big number of 0’s on the left we can apply, one after another each rule

0 . . . 0︸ ︷︷ ︸
ui

1⇐1 0 . . . 0︸ ︷︷ ︸
vi

1 exactly zi times to 0 . . . 0︸ ︷︷ ︸
k+1

1 obtaining 0 . . . 0︸ ︷︷ ︸
k

1.

Otherwise let (x1, . . . , xl , y1, . . . , yk, n1, . . . , nt) ∈ Nl+k+t
0 be a solution of Eq(Σ)

with at least one coefficient x > 0 which corresponds to a rule of the form

α1 ⇐1 β where ]1(α) ≥ 1. Now let Γ be the multi-set containing for every

i ∈ {1, . . . , l}, xi occurrences of the corresponding rule αi1 ⇐1 β, for every

i ∈ {1, . . . , k}, yi occurrences of the corresponding rule αi ⇐1 βi as well as for

i ∈ {1, . . . , t} ni occurrences of ε⇐1 0 . . . 0︸ ︷︷ ︸
di≥1

1.

Note that we have the result above, if we can apply the rules in Γ (each

exactly one time) to a sequence γ1 of the form 0 . . . 01, containing a sufficient

number of 0’s, and obtain another sequence γ2, which has necessarily an

1 in the last position. Then γ2 is of the form 0 . . . 01 and contains exactly

one 0 less than γ1. In fact, we do not have to be concerned about other

occurrences of 1’s in γ2 or about the number of 0’s, since that is guaranteed

by (x1, . . . , xl , y1, . . . , yk, n1, . . . , nt) being a solution of Eq(Σ).

Now let Γ+ be a copy of Γ where some occurrences of ε, 0 and 1 in the left-side

of rules are negatively or positively marked: every 1 that does not occur in the

last position is marked positively, while every 0 in the last position as well as

every ε is marked negatively (Ex.: ε− ⇐1 0 . . . 01, 01+1+1+00− ⇐1 0 . . . 01 and

1+01⇐1 0 . . . 01). It is important to note that Γ+ contains as many positively

as negatively marked symbols: for every occurrence of a rule δ ⇐ 0 . . . 01 in Γ+

the number of positive symbols minus the number of negative symbols equals

exactly the corresponding coefficient for that rule in the second equation of

Eq(Σ). Thus the result follows from
∑l

1 p
1
i xi +

∑k
1 q

1
i yi −

∑t
1 ni = 0.

We now show that, given a sequence γ2 of the form 0 . . . 01 with a sufficient

number of 0’s, one can obtain another sequence γ1 with an 1 in the last position,

substituting one after another right-sides of rules in Γ+ by left-sides, and using

each rule exactly once. As (x1, . . . , xl , y1, . . . , yk, n1, . . . , nt) is a solution of Eq(Σ)
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we conclude then that γ1 is of the form 0 . . . 01 with exactly one 0 more than γ2,

and obviously γ1 ⇐ γ2. Thus, consider γ2 = 0 . . . 01 with a sufficient number of

0’s on the left. First expand γ2 with all unmarked rules in Γ+, i.e. rules of the

form 0 . . . 01⇐1 0 . . . 01. Next substitute in the result 0 . . . 0 0 . . . 0︸ ︷︷ ︸
c

1 by 0 . . . 0α1,

where α1⇐1 0 . . . 0︸ ︷︷ ︸
c

1, with ]1(α) ≥ 1, is a rule in Γ+ (the existence of this rule

follows from x > 0). The resulting sequence contains at least one positively

marked 1, i.e. it is of the form 0 . . . 01+β11. Now apply, one-by-one, and always

to the most-left 1+ the remaining rules of the form β21⇐1 0 . . . 01, substituting

0 . . . 01+β11 by 0 . . . 0β21+β11. Next do the same with the rules of the form

γ20− ⇐1 0 . . . 01 and ]1(γ2) ≥ 1. Here a sequence of the form 0 . . . 01+γ11 is

extended to 0 . . . 0γ20γ11 (i.e. a positive symbol is destroyed by a negative one).

Finally, repeat the process with the remaining rules which are now of the form

0 . . . 00− ⇐1 0 . . . 01 or ε− ⇐1 0 . . . 01. Since Γ+ contained in the beginning as

much positively as negatively marked symbols and since we applied the rules

of Γ+ in such an order that after the first application of α1 ⇐1 0 . . . 0︸ ︷︷ ︸
c

1 and

until there are only negatively marked rules left, the remaining rules contain

always more negative than positive symbols, the process stops exactly when

all rules are used and produces a sequence of the form 0 . . . 01.

Using the properties above, we now show Σ : ε⇐ 1:

• First suppose that 0α1 ⇐1 1 ∈ ψ(Σ) for some α ∈ S. If 0α1 = 0 . . . 0︸ ︷︷ ︸
q

1, let vq

be the least multiple of q greater than or equal to k0. Then,

ε ⇐1 0 . . . 0︸ ︷︷ ︸
d≥1

1
P1⇐ 0 . . . 0︸ ︷︷ ︸

t≥vq

1
P3⇐ 0 . . . 0︸ ︷︷ ︸

vq

1 ⇐1 0 . . . 0︸ ︷︷ ︸
(v−1)q

1

⇐1 . . . ⇐1 1.

Otherwise ]1(α) ≥ 1, i.e. 0α1 = 0 . . . 0︸ ︷︷ ︸
q≥1

1β1. Let vq be the smallest multiple of q

greater or equal to k0. Then,

ε ⇐1 0 . . . 0︸ ︷︷ ︸
d≥1

1
P2⇐ 0 . . . 01 β1β1 . . . β1︸ ︷︷ ︸

v
P1⇐ 0 . . . 0︸ ︷︷ ︸

t≥vq

1 β1β1 . . . β1︸ ︷︷ ︸
v

P3⇐ 0 . . . 0︸ ︷︷ ︸
vq

1 β1β1 . . . β1︸ ︷︷ ︸
v

⇐1 0 . . . 0︸ ︷︷ ︸
(v−1)q

1 β1β1 . . . β1︸ ︷︷ ︸
v−1

⇐1 . . .⇐1 1.

• Now suppose that there is no rule of the form 0α1 ⇐1 1 in ψ(Σ). Then

we conclude from conditions 4 and 5 that ψ(Σ) contains rules of the form

1β1 ⇐1 1 and 0α0 ⇐1 1 (including 0 ⇐1 1) with α, β ∈ S. If α contains at

least one 1, i.e. 0α0 = 0 . . . 0︸ ︷︷ ︸
q≥1

1γ0, let vq be the least multiple of q which is

https://doi.org/10.1017/S0956796897002888 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002888


612 S. Broda and L. Damas

greater or equal to k0. Then,

ε ⇐1 0 . . . 0︸ ︷︷ ︸
d≥1

1
P2⇐ 0 . . . 01 γ0 . . . γ0︸ ︷︷ ︸

v

β1

P1⇐ 0 . . . 0︸ ︷︷ ︸
t≥vq

1 γ0 . . . γ0︸ ︷︷ ︸
v

β1
P3⇐ 0 . . . 0︸ ︷︷ ︸

vq

1 γ0 . . . γ0︸ ︷︷ ︸
v

β1

⇐1 0 . . . 0︸ ︷︷ ︸
(v−1)q

1 γ0 . . . γ0︸ ︷︷ ︸
v−1

β1 ⇐1 . . . ⇐1 1β1⇐1 1.

• Finally, consider 1β1 ⇐1 1 and 0 . . . 0︸ ︷︷ ︸
n≥1

⇐1 1 in ψ(Σ). Let q = (]1(β) + 1) · n+

]0(β). Applying 0 . . . 0︸ ︷︷ ︸
n≥1

⇐1 1 in the right positions ]1(β) + 1 times, one has

0 . . . 0︸ ︷︷ ︸
q

1⇐1 1 0 . . . 0︸ ︷︷ ︸
q−n

1⇐1 . . .⇐1 1β1⇐1 1.

Hence, we proceed as in the first case.

∀α ∈ {0, 1}+ Σ : α⇐ 1

This part is identical to the proof of Theorem 3.7, but uses P3 instead of ∃k0 ≥ 0 :

k ≥ k0 implies 0 . . . 0︸ ︷︷ ︸
k

0 ⇐ 0 . . . 0︸ ︷︷ ︸
k

1 . . . 1︸ ︷︷ ︸∑
ai

.
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