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1. Introduction

In this paper we study the differential geometry of hypersurfaces in hyperbolic space
from a contact viewpoint as an application of singularity theory. There are several articles
[9,12–15] concerning the contact of submanifolds in Euclidean space with hyperplanes or
hyperspheres. Such hypersurfaces are known as totally umbilic hypersurfaces in Euclidean
space. A singular point of the Gauss map of a hypersurface (i.e. a parabolic point) is
a point at which the tangent hyperplane has degenerate contact with the hypersurface
(cf. [2, 3, 9]). Therefore, we might say that the theory of singularities for Gauss maps
describes the contact of hypersurfaces with hyperplanes. For the contact of hypersurfaces
with hyperspheres, the evolute of a hypersurface plays a role similar to that of a Gauss
map.

On the other hand, the basic notions and tools for the study of the differential geometry
of hypersurfaces in hyperbolic space has recently been established in [6–8]. The hyper-
bolic Gauss indicatrix of a hypersurface in hyperbolic space has been explicitly described
and the contact of hypersurfaces with hyperhorospheres has been systematically studied
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as an application of singularity theory to the hyperbolic Gauss indicatrix. In hyperbolic
space there are four kinds of totally umbilic hypersurfaces (cf. § 2). The hyperhorosphere
is one of the totally umbilic hypersurfaces in hyperbolic space. We have already stud-
ied the contact of hypersurfaces with hyperhorospheres in [6]. Therefore, we study the
contact of hypersurfaces with totally umbilic hypersurfaces other than hyperhorospheres
in this paper. In § 2 we review the basic notions and concepts in hyperbolic differen-
tial geometry on hypersurfaces. We adopt the model of hyperbolic space in Minkowski
space, which is quite natural for the study of hypersurfaces from the contact viewpoint.
We introduce the notion of hyperbolic (respectively, de Sitter) evolutes of hypersurfaces
whose singularities describe the contact of hypersurfaces with hyperspheres (respectively,
equidistant hyperplanes) in § 3. We also introduce the notion of timelike ridge points
(respectively, spacelike ridge points) at which the hypersurface has Ak�3-type contact
with a hypersphere (respectively, an equidistant hyperplane). The ridges of surfaces in
Euclidean 3-space were originally introduced by Porteous [15] as the sets of points at
which the surface has a higher-order contact with some of their focal spheres. It is deeply
related to the singularities of the distance-squared function on the surface. We define the
analogous notion of hypersurfaces in hyperbolic space. For the study of their geometric
meanings, we investigate hyperbolic timelike (respectively, spacelike) height functions on
hypersurfaces. In § 4 we show that the hyperbolic (respectively, de Sitter) evolute of a
hypersurface is a caustic of a certain Lagrangian submanifold in the cotangent bundle
of the hyperbolic n-space whose generating family is the hyperbolic timelike (respec-
tively, spacelike) height function. In § 5 we apply the theory of Lagrangian singularities
and interpret a singularity of a hyperbolic (respectively, de Sitter) evolute as describing
not only the contact of the hypersurface with a hypersphere (respectively, equidistant
hyperplane) but also the contact of the hypersurface with a family of hypersurfaces
(respectively, equidistant hyperplanes). This study leads us to the osculating spherical
(respectively, equidistant planar) foliations. In § 6 we study generic properties, and we
give a classification for n = 3 in § 7.

We shall assume throughout the paper that all the maps and manifolds are C∞ unless
the contrary is explicitly stated.

2. Basic concepts and notions

In this section we review basic notions and concepts on the differential geometry of
hypersurfaces in hyperbolic space. We adopt the model of hyperbolic space in Minkowski
space.

Let Rn+1 = {(x0, x1, . . . , xn) | xi ∈ R (i = 0, 1, . . . , n)} be an (n + 1)-dimensional vec-
tor space. For any vectors x = (x0, x1, . . . , xn), y = (y0, y1, . . . , yn) in Rn+1, the
pseudo-scalar product of x and y is defined to be 〈x,y〉 = −x0y0 +

∑n
i=1 xiyi. We

call (Rn+1, 〈·, ·〉) the (n + 1)-dimensional Minkowski space. We use R
n+1
1 instead of

(Rn+1, 〈·, ·〉).
We say that a vector x ∈ R

n+1
1 \{0} is spacelike, lightlike or timelike if 〈x,x〉 > 0, = 0

or < 0, respectively. The norm of the vector x ∈ Rn+1 is defined by ‖x‖ =
√

|〈x,x〉|. For
any vector v ∈ Rn+1 and a real number c, we define the hyperplane with pseudo-normal
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v by
HP(v, c) = {x ∈ R

n+1
1 | 〈x,v〉 = c}.

We call HP(v, c) a spacelike hyperplane, a timelike hyperplane or a lightlike hyperplane
when v is timelike, spacelike or lightlike, respectively.

We now define the hyperbolic n-space by

Hn
+(−1) = {x ∈ R

n+1
1 | 〈x,x〉 = −1, x0 > 0}

and the de Sitter n-space by

Sn
1 = {x ∈ R

n+1
1 | 〈x,x〉 = 1}.

We also define Hn
−(−1) = {x ∈ R

n+1
1 | 〈x,x〉 = −1, x0 < 0}.

For any a1,a2, . . . ,an ∈ R
n+1
1 , we define a vector a1 ∧ a2 ∧ · · · ∧ an by

a1 ∧ a2 ∧ · · · ∧ an =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−e1 e2 · · · en+1

a1
0 a1

1 · · · a1
n

a2
0 a2

1 · · · a2
n

...
... · · ·

...

an
0 an

1 · · · an
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where e1, e2, . . . ,en+1 is the canonical basis of R
n+1
1 and ai = (ai

0, a
i
1, . . . , a

i
n). We can

easily check that
〈a,a1 ∧ a2 ∧ · · · ∧ an〉 = det(a,a1, . . . ,an),

so that a1 ∧ a2 ∧ · · · ∧ an is pseudo-orthogonal to any ai (i = 1, . . . , n).
We also define a set LCc = {x ∈ R

n+1
1 | 〈x − c,x − c〉 = 0}, which is called a closed

lightcone with the vertex c. We define

LC∗
+ = {x = (x0, x1 . . . xn) ∈ LC0 | x0 > 0}

and we call it the future lightcone at the origin. If x = (x0, x1, . . . , xn) is a non-zero
lightlike vector, then x0 �= 0. Therefore, we have

x̃ =
(

1,
x1

x0
, . . . ,

xn

x0

)
∈ Sn−1

+ = {x = (x0, x1, . . . , xn) | 〈x,x〉 = 0, x0 = 1}.

Here, we call Sn−1
+ the lightcone (n − 1)-sphere.

Let x : U → Hn
+(−1) be an embedding, where U ⊂ Rn−1 is an open subset. We define

M = x(U) and identify M and U by the embedding x.
For any p = x(u) ∈ M ⊂ Hn

+(−1), we have 〈x(u),x(u)〉 = −1. It follows that

〈xui(u),x(u)〉 = 0 (i = 1, 2, . . . , n − 1),

where u = (u1, u2, . . . , un−1) and xui(u) = ∂x/∂ui(u) = (x0ui(u), x1ui(u), . . . , xnui(u)).
Hence the tangent space of M at p is

TpM = 〈xu1(u),xu2(u), . . . ,xun−1(u)〉R.
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Let NpM be the normal space of M at p = x(u) in R
n+1
1 , then NpM is a Lorentz plane.

Define a spacelike unit vector

e(u) =
x(u) ∧ xu1(u) ∧ · · · ∧ xun−1(u)

‖x(u) ∧ xu1(u) ∧ · · · ∧ xun−1(u)‖ ∈ S1(NpM ∩ TpH
n
+(−1)).

Since x(u) ∈ NpM , we have
NpM = 〈x(u), e(u)〉R.

A map E : U → Sn
1 defined by E(u) = e(u) is called the de Sitter Gauss indicatrix

of x(U) = M . We construct an extrinsic differential geometry on x by using the unit
normal e as the unit normal of a hypersurface in Euclidean space. In this case, the
de Sitter Gauss indicatrix of a hypersurface plays a role similar to that of the Gauss
map for a hypersurface in Euclidean space. We can easily show that Dve ∈ TpM for any
p = x(u0) ∈ M and v ∈ TpM . Here Dv denotes the covariant derivative with respect to
the tangent vector v.

We call the linear transformation Ap = −dE : TpM → TpM the (de Sitter) shape
operator of M = x(U) at p = x(u0). We denote the eigenvalue of Ap by κp, which
we call a (de Sitter) principal curvature. We call the eigenvector of Ap the (de Sitter)
principal direction. By definition, κp is a (de Sitter) principal curvature if and only if
det(Ap − κpI) = 0. We now define the notion of (de Sitter) Gauss–Kronecker curvatures
as follows. The (de Sitter) Gauss–Kronecker curvature of M = x(U) at p = x(u0) is
defined to be Kd(u0) = detAp.

We say that a point p = x(u0) ∈ M is an umbilic point if Ap = kp idTpM . We
also say that M is totally umbilic if all points of M are umbilic. A hypersurface given
by the intersection of Hn

+(−1) and a spacelike hyperplane, a timelike hyperplane or a
lightlike hyperplane is, respectively, called a hypersphere, an equidistant hyperplane or a
hyperhorosphere. Moreover, if the hypersurface is given by the intersection of Hn

+(−1) and
a timelike hyperplane through the origin of R

n+1
1 , the equidistant hyperplane is simply

called a hyperplane. Then the following proposition is a well-known result.

Proposition 2.1. Suppose that M = x(U) is totally umbilic, then κ(p) is constant κ.
Under this condition, we have the following classification.

(1) Suppose that κ2 �= 1.

(a) If κ �= 0 and κ2 < 1, then M is part of an equidistant hyperplane.

(b) If κ �= 0 and κ2 > 1, then M is part of a hypersphere.

(c) If κ = 0, then M is part of a hyperplane.

(2) If κ2 = 1, then M is part of a hyperhorosphere.

Since xui (i = 1, . . . , n−1) are spacelike vectors, we induce the Riemannian metric (first
fundamental form) ds2 =

∑n−1
i=1 gijduiduj on M = x(U), where gij(u) = 〈xui

(u),xuj
(u)〉

for any u ∈ U . We define the de Sitter second fundamental invariant by hij(u) =
〈−Eui(u),xuj (u)〉 for any u ∈ U . By arguments similar to those of differential geometry
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on hypersurfaces in Euclidean space, we can show that the de Sitter Gauss–Kronecker
curvature is given by

Kd =
det(hij)
det(gαβ)

.

For a hypersurface x : U → Hn
+(−1), we say that a point u0 ∈ U or p = x(u0) is

a (de Sitter) flat point if hij(u0) = 0 for all i, j. Therefore, p = x(u0) is a (de Sitter)
flat point if and only if p is an umbilic point with the vanishing (de Sitter) principal
curvature.

We now introduce the notion of evolutes of hypersurfaces in hyperbolic space. We say
that a point p = x(u0) ∈ M is a horoparabolic point if one of the de Sitter principal
curvatures satisfies the condition that κ2(u0) = 1. For a hypersurface x : U → Hn

+(−1),
we define the total evolute of x(U) = M by

TE±
M =

{
± κ(u)√

|κ2(u) − 1|

(
x(u) +

1
κ(u)

e(u)
) ∣∣∣∣ κ(u) is a de Sitter principal

curvature at p = x(u), u ∈ U

}
.

For a hypersurface as above, we have the following decomposition of the total evolute:

TE±
M (u) = HE±

M ∪ SE±
M ,

where

HE±
M =

{
± κ(u)√

|κ2(u) − 1|

(
x(u) +

1
κ(u)

e(u)
) ∣∣∣∣ κ(u) is a de Sitter principal

curvature with κ2(u) > 1 at p = x(u), u ∈ U

}
,

and

SE±
M =

{
± κ(u)√

|κ2(u) − 1|

(
x(u) +

1
κ(u)

e(u)
) ∣∣∣∣ κ(u) is a de Sitter principal

curvature with κ2(u) < 1 at p = x(u), u ∈ U

}
.

We can show that HE±
M ⊂ Hn

+(−1) ∪ Hn
−(−1) and SE±

M ⊂ Sn
1 . If x ∈ Hn

−(−1), then
−x ∈ Hn

+(−1). It follows that HE+
M ⊂ Hn

+(−1) or HE−
M ⊂ Hn

+(−1). We consider the
component of HE±

M located on Hn
+(−1). Therefore, we call HE±

M (respectively, SE±
M ) the

hyperbolic evolute (respectively, de Sitter evolute) of x(U) = M .
We define a smooth mapping HE±

κ : U → Hn
+(−1) by

HE±
κ (u) = ± κ(u)√

|κ2(u) − 1|

(
x(u) +

1
κ(u)

e(u)
)

,

where we fix a de Sitter principal curvature κ(u) on U at u with κ2(u) > 1. We can also
define a smooth mapping SE±

κ : U → Sn
1 in a similar way with κ2(u) < 1. We have the

following proposition.
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Proposition 2.2. Let M = x(U) be a hypersurface in Hn
+(−1) without horoparabolic

points or de Sitter flat points.

(A) The following are equivalent.

(1) M is totally umbilic with κ2 > 1.

(2) HE±
M is a point in Hn

+(−1).

(3) M is part of a hypersphere.

(B) The following are equivalent.

(1) M is totally umbilic with 0 < κ2 < 1.

(2) SE±
M is a point in Sn

1 .

(3) M is part of an equidistant hyperplane.

Proof. (A) We assume that condition (1) holds. Then the (de Sitter) principal cur-
vature κ(u) = κ is constant and κ2 > 1. Therefore, we have

∂HE±
κ

∂ui
(u) = ± κ√

κ2 − 1

(
xui(u) +

1
κ

eui(u)
)

for any u ∈ U . By the definition of the (de Sitter) principal curvature, −eui
= κxui

for
i = 1, . . . , n− 1. It follows that ∂ HE±

κ /∂ui(u) = 0 for i = 1, . . . , n− 1. We conclude that
HE±

κ (u) is a point. Conversely, for any u ∈ U and a de Sitter principal curvature κ(u),
we assume that

HE±
κ (u) = ± κ(u)√

κ2(u) − 1

(
x(u) +

1
κ(u)

e(u)
)

is a point. We calculate that

∂HE±
κ

∂ui
(u) =

∓κui
(u)

(κ2(u) − 1)3/2

(
x(u) +

1
κ(u)

e(u)
)

± κ(u)√
κ2(u) − 1

(
xui(u) − κui(u)

κ2(u)
e(u) +

1
κ(u)

eui(u)
)

.

Since
eui ∈ 〈xu1 , . . . ,xun−1〉R and {x,xu1 , . . . ,xun−1 , e}

are linearly independent,

∂ HE±
κ /∂ui(u) = 0 if and only if κi(u) = 0 for i = 1, . . . , n − 1.

Therefore, κ(u) = κ is constant and κ2 > 1. Moreover, we assume that there exists
another (de Sitter) principal curvature κ̄. Since HE±

κ (u) = HE±
κ̄ (u) is a point, we have

κ = κ̄. This means that M is totally umbilic.
Since a hypersphere is totally umbilic, conditions (1) and (3) are equivalent by Propo-

sition 2.1. This completes the proof of (A).
The proof of (B) is also given by straightforward calculations like those for the proof

of (A). �
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3. Height functions

In this section we consider two kinds of families of height functions on a hypersurface
in hyperbolic space in order to describe the hyperbolic and the de Sitter evolute of a
hypersurface.

For this purpose we need some concepts and results in the theory of unfoldings of
function germs. We give a brief review of the theory in the appendix.

We now define two families of functions

HT : U × (Hn
+(−1) \ M) → R

by HT(u, v) = 〈x(u),v〉 and
HS : U × Sn

1 → R

by HS(u, v) = 〈x(u),v〉. We call HT (respectively, HS) a hyperbolic timelike height
function (respectively, hyperbolic spacelike height function) on x : U → Hn

+(−1). We
define hT

v (u) = HT(u, v) (respectively, hS
v(u) = HS(u, v)). The following proposition is a

standard result.

Proposition 3.1. Let x : U → Hn
+(−1) be a hypersurface. Then

(1) (∂hT
v /∂ui)(u) = 0 (i = 1, . . . , n − 1) if and only if there exist real numbers λ, µ

such that v = λx(u) + µe(u), λ2 − µ2 = 1; and

(2) (∂hS
v/∂ui)(u) = 0 (i = 1, . . . , n−1) if and only if there exist real numbers λ, µ such

that v = λx(u) + µe(u), λ2 − µ2 = −1.

Since v /∈ M , we have that µ �= 0 in case (1). By Proposition 3.1, we can detect both
of the catastrophe sets (cf. the appendix) of HT and HS as follows:

C(HT) = {(u, v) ∈ U × (Hn
+(−1) \ M) | v = λx(u) + µe(u)},

C(HS) = {(u, v) ∈ U × Sn
1 | v = λx(u) + µe(u)}.

We also calculate that

∂2HT

∂ui∂uj
(u, v) = 〈xuiuj

(u),v〉 = −λgij + µhij

on C(HT) and

∂2HS

∂ui∂uj
(u, v) = 〈xuiuj (u),v〉 = −λgij + µhij

on C(HS).
Therefore,

det(H(hT
v )(u)) = det(∂2HT/∂ui∂uj)(u, v) = 0

(respectively, det(H(hS
v)(u)) = 0) if and only if κ(u) = λ/µ is a de Sitter principal

curvature. Since v ∈ Hn
+(−1) (respectively, v ∈ Sn

1 ) and κ(u) = λ/µ is a de Sitter
principal curvature with κ2(u) > 1 (respectively, κ2(u) < 1), we have

BHT = HE+
M ∪ HE−

M (respectively, BHS = SE+
M ∪ SE−

M ).
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Proposition 3.2. We assume that p = x(u0) is not a de Sitter flat point of x(U) = M ,
then we have the following assertions.

(1) p is an umbilic point with κ2(p) > 1 if and only if there exists v0 ∈ Hn
+(−1) \ M

such that u0 is a singular point of hT
v0

and rankH(hT
v0

)(u0) = 0.

(2) p is an umbilic point with 0 < κ2(p) < 1 if and only if there exists v0 ∈ Sn
1 such

that u0 is a singular point of hS
v0

and rankH(hS
v0

)(u0) = 0.

Proof. (1) Since p is an umbilic point, Ap = κp idTpM . There exists an orthogonal
matrix Q such that tQ((h)j

i )Q = κpI. Hence, we may consider the case (h)j
i = κpI, so

that (hij) = κp(gij). Then we put v0 = λx(u0) + µe(u0) ∈ Hn
+(−1) \ M , where

λ = ± κp(u0)√
κ2

p(u0) − 1
, µ = ± 1√

κ2
p(u0) − 1

.

In this case the Hessian matrix

H(hT
v0

)(u0) = (−λgij + µhij) = (−λ + µκp(u0))(gij) = 0.

On the other hand, if −λgij + µhij = 0 for all i, j, then (hij) = κp(gij) (κp = λ/µ).
This is equivalent to the condition ((h)j

i ) = κpI.
The proof of (2) is also given by direct calculation similar to (1). �

We say that u0 is a timelike ridge point (respectively, spacelike ridge point) if hT
v

(respectively, hS
v) has the Ak�3-type singular point at u0, where v ∈ BHT (respectively,

v ∈ BHS).
For a function germ f : (Rn−1, ũ0) → R, f has Ak-type singular point at ũ0 if f is

R+-equivalent to the germ uk+1
1 ± u2

2 ± · · · ± u2
n−1. We say that two function germs

fi : (Rn−1, ũi) → R (i = 1, 2) are R+-equivalent if there exists a diffeomorphism germ
Φ : (Rn−1, ũ1) → (Rn−1, ũ2) and a real number c such that f2 ◦ Φ(u) = f2(u) + c.

We now consider the geometric meaning of timelike ridge points. Let F : Hn
+(−1) → R

be a submersion and let x : U → Hn
+(−1) be a hypersurface. We say that x and F−1(0)

have a corank-r contact at p0 = x(u0) if the Hessian of the function g(u) = F ◦ x(u) has
corank r at u0. We also say that x and F−1(0) have an Ak-type contact at p0 = x(u0)
if the function g(u) = F ◦ x(u) has the Ak-type singularity at u0. By definition, if x

and F−1(0) have an Ak-type contact at p0 = x(u0), then these have a corank-1 contact.
For any r ∈ R and a0 ∈ Hn

+(−1) (respectively, a0 ∈ Sn
1 ), we consider a function F :

Hn
+(−1) → R defined by F (u) = 〈u,a0〉 − r. We define

PSn−1(a0, r) = F−1(0) = {u ∈ Hn
+(−1) | 〈u,a0〉 = r}.

It follows that PSn−1(a0, r) is a hypersphere (respectively, equidistant hyperplane) with
centre a0 if a0 is in Hn

+(−1) (respectively, Sn
1 ).

We put a0 = HE±
κ (u0) (respectively, a0 = SE±

κ (u0)) and

r0 = ∓ κ(u0)√
|κ2(u0) − 1|

,
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where we fix a de Sitter principal curvature κ(u) on U at u0. We then have the following
simple proposition.

Proposition 3.3. With the above notation, there exists an integer � with 1 � � � n−1
such that x(U) = M and PSn−1(a0, r0) have corank-� contact at u0.

In the above proposition, PSn−1(a0, r0) is called an osculating hypersphere (respec-
tively, osculating equidistant hyperplane) of M = x(U) if a0 ∈ Hn

+(−1) (respectively,
a0 ∈ Sn

1 ). We also call a0 the centre of de Sitter principal curvature κ(u0). By Proposi-
tion 3.2, x(U) = M and the osculating hypersphere (respectively, equidistant hyperplane)
has corank-(n − 1) contact at an umbilic point. Therefore, the hyperbolic (respectively,
de Sitter) ridge point is not an umbilic point.

By the general theory of unfoldings of function germs, the bifurcation set BF is non-
singular at the origin if and only if the function f = F | Rn × {0} has the A2-type
singularity (i.e. the fold-type singularity). Therefore, we have the following proposition.

Proposition 3.4. With the same notation as in the previous proposition, the total
evolute TE±

M is non-singular at a0 = TE±
κ (u0) if and only if x(U) = M and PSn−1(a0, r0)

have A2-type contact at u0.
Here, TE±

κ (u0) = HE±
κ (u0) if a0 ∈ Hn

+(−1) and TE±
κ (u0) = SE±

κ (u0) if a0 ∈ Sn
1 .

4. Evolutes as caustics

In this section we naturally interpret the hyperbolic (de Sitter) evolute of hypersurface in
hyperbolic space as a caustic in the framework of symplectic geometry and consider the
geometric meaning of singularities. In the appendix we give a brief survey of the theory
of Lagrangian singularities. For notions and basic results on the theory of Lagrangian
singularities, please refer to the appendix.

For a hypersurface x : U → Hn
+(−1), we consider the hyperbolic timelike height

function HT and the hyperbolic spacelike height function HS (cf. § 3). We have the
following propositions.

Proposition 4.1. Both the hyperbolic timelike height function HT : U×Hn
+(−1) → R

and the hyperbolic spacelike height function HS : U × Sn
1 → R on x are Morse families.

Proof. First we consider the hyperbolic timelike height function.
For any v = (v0, v1 . . . , vn) ∈ Hn

+(−1), we have v0 =
√

v2
1 + · · · + v2

n + 1, so that

HT(u, v) = −x0(u)
√

v2
1 + · · · + v2

n + 1 + x1(u)v1 + · · · + xn(u)vn,

where x(u) = (x0(u), . . . , xn(u)). We will prove that the mapping

∆HT =
(

∂HT

∂u1
, . . . ,

∂HT

∂un−1

)
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is non-singular at any point. The Jacobian matrix of ∆HT is given as follows:

⎛
⎜⎜⎜⎜⎝

〈xu1u1 ,v〉 · · · 〈xu1un−1 ,v〉
...

...
...

〈xun−1u1 ,v〉 · · · 〈xun−1un−1 ,v〉

−x0u1

v1

v0
+ x1u1 · · · −x0u1

vn

v0
+ xnu1

...
...

...

−x0un−1

v1

v0
+ x1un−1 · · · −x0un−1

vn

v0
+ xnun−1

⎞
⎟⎟⎟⎟⎠ ,

where xuiuj
= ∂2x/∂ui∂uj(u). We will show that the rank of the matrix

X =

⎛
⎜⎜⎜⎜⎝

−x0u1

v1

v0
+ x1u1 · · · −x0u1

vn

v0
+ xnu1

...
...

...

−x0un−1

v1

v0
+ x1un−1 · · · −x0un−1

vn

v0
+ xnun−1

⎞
⎟⎟⎟⎟⎠

is n − 1 at (u, v) ∈ C(HT). It is enough to show that the rank of the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−x0
v1

v0
+ x1 · · · −x0

vn

v0
+ xn

−x0u1

v1

v0
+ x1u1 · · · −x0u1

vn

v0
+ xnu1

...
...

...

−x0un−1

v1

v0
+ x1un−1 · · · −x0un−1

vn

v0
+ xnun−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is n at (u, v) ∈ C(HT). We define

ai =

⎛
⎜⎜⎜⎜⎝

xi

xiu1

...
xiun−1

⎞
⎟⎟⎟⎟⎠

for i = 0, . . . , n.
Then we have

A =
(

−a0
v1

v0
+ a1, . . . ,−a0

vn

v0
+ an

)

and

det A =
v0

v0
det(a1, . . . ,an) − v1

v0
det(a0,a2, . . . ,an) − · · · − vn

v0
det(a1, . . . ,an−1,a0).
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On the other hand, we have

x ∧ xu1 ∧ · · · ∧ xun−1

= (− det(a1, . . . ,an),− det(a0,a2, . . . ,an), . . . , (−1)n det(a0, . . . ,an−1)).

Therefore, we have

det A =
〈(

v0

v0
, . . . ,

vn

v0

)
,x ∧ xu1 ∧ · · · ∧ xun−1

〉

=
1
v0

〈λx + µe, ‖x ∧ xu1 ∧ · · · ∧ xun−1‖e〉

=
1
v0

‖x ∧ xu1 ∧ · · · ∧ xun−1‖µ �= 0

for (u, v) ∈ C(HT).
Next we consider the hyperbolic spacelike height function. The proof is also given

by direct calculation but a bit more carefully than in the previous case. We use the
same notation as in the previous case (e.g. x and ai, etc.). For any v ∈ Sn

1 , we have
−v2

0 + v2
1 + · · · + v2

n = 1. Without loss of the generality we might assume that vn �= 0.
We have

vn = ±
√

1 + v2
0 − v2

1 − · · · − v2
n−1,

so that

HS(u, v) = −x0(u)v0 + x1(u)v1 + · · · + xn−1(u)vn−1 ± xn(u)
√

1 + v2
0 − v2

1 − · · · − v2
n−1.

We also prove that the mapping

∆HS =
(

∂HS

∂u1
, . . . ,

∂HS

∂un−1

)

is non-singular at any point. The Jacobian matrix of ∆HS is given as follows:

⎛
⎜⎜⎜⎜⎝

〈xu1u1 ,v〉 · · · 〈xu1un−1 ,v〉
...

...
...

〈xun−1u1 ,v〉 · · · 〈xun−1un−1 ,v〉

−x0u1 + xnu1

v0

vn
· · · xn−1u1 − xnu1

vn−1

vn
...

...
...

−x0un−1 + xnun−1

v0

vn
· · · xn−1un−1 − xnun−1

vn−1

vn

⎞
⎟⎟⎟⎟⎠ .

https://doi.org/10.1017/S0013091503000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000312


142 S. Izumiya, D. Pei and M. Takahashi

We will also show that the rank of the matrix

X̃ =

⎛
⎜⎜⎜⎜⎝

−x0u1 + xnu1

v0

vn
x1u1 − xnu1

v1

vn
· · · xn−1u1 − xnu1

vn−1

vn
...

...
...

...

−x0un−1 + xnun−1

v0

vn
x1un−1 − xnun−1

v1

vn
· · · xn−1un−1 − xnun−1

vn−1

vn

⎞
⎟⎟⎟⎟⎠

is n − 1 at (u, v) ∈ C(HS). It can be proved that the rank of the matrix

Ã =
(

−a0 + an
v0

vn
,a1 − an

v1

vn
, . . . ,an−1 − an

vn−1

vn

)

is n at (u, v) ∈ C(HS).
Therefore, we have

det Ã = (−1)n−1
{

v0

vn
det(a1, . . . ,an) − v1

vn
det(a0,a2, . . . ,an)

+ · · · + (−1)n vn

vn
det(a0, . . . ,an−1)

}

= (−1)n−1
〈(

v0

vn
, . . . ,

vn

vn

)
,x ∧ xu1 · · · ∧ xun−1

〉

=
(−1)n−1

vn
〈λx + µe, ‖x ∧ xu1 ∧ · · · ∧ xun−1‖e〉

=
(−1)n−1

vn
‖x ∧ xu1 ∧ · · · ∧ xun−1‖µ �= 0

for (u, v) ∈ C(HS). This completes the proof of the proposition. �

By the method for constructing the Lagrangian immersion germ from the Morse family
(see the appendix), we can define a Lagrangian immersion germ whose generating family
is the hyperbolic timelike height function or the hyperbolic spacelike height function of
M = x(U) as follows.

For a hypersurface x : U → Hn
+(−1), x(u) = (x0(u), . . . , xn(u)), we define a smooth

mapping
L(HT) : C(HT) → T ∗Hn

+(−1)

by

L(HT)(u, v) =
(

v,−x0(u)
v1

v0
+ x1(u), . . . ,−x0(u)

vn

v0
+ xn(u)

)
,

where v = (v0, . . . , vn) ∈ Hn
+(−1) and v0 =

√
v2
1 + · · · + v2

n + 1. Here we have used the
triviality of the cotangent bundle T ∗Hn

+(−1). For the de Sitter space Sn
1 , we consider

the local coordinate Ui = {v = (v0, . . . , vn) ∈ Sn
1 | vi �= 0}. Since T ∗Sn

1 | Ui is a trivial
bundle, we define a map

Li(HS) : C(HS) → T ∗Sn
1 | Ui (i = 0, 1, . . . , n)
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by

Li(HS)(u, v)

=
(

v,−x0(u) + xi(u)
v0

vi
, x1(u) − xi(u)

v1

vi
, . . . ,

̂
xi(u) − xi(u)

vi

vi
, . . . , xn(u) − xi(u)

vn

vi

)
,

where v = (v0, . . . , vn) ∈ Sn
1 and we define (x0, . . . , x̂i, . . . , xn) as a point in n-dimensional

space such that the ith component xi is removed. We can show that if Ui ∩ Uj �= ∅ for
i �= j, then Li(HS) and Lj(HS) are Lagrangian equivalent such that the corresponding
Lagrangian equivalence is given by the local coordinate change of Sn

1 and the Lagrangian
lift of it. Indeed, we define the local coordinate change of Sn

1 for i < j; ϕij : Ui → Uj , by

ϕij(v0, . . . , v̂i, . . . , vn)

=
(
v0, . . . , vi =

√
1 + v2

0 − v2
1 − · · · − v̂2

i − · · · − v2
n, . . . , v̂j , . . . , vn

)
,

and ϕ̃ij : T ∗Sn
1 → T ∗Sn

1 are Lagrangian lifts of ϕij that are defined by ϕ̃ij(ξ) = (ϕ−1
ij∗)

∗ξ.
Then ϕ̃ij are symplectic diffeomorphism germs (cf. [1]). Also we define diffeomor-
phism germs σ̂ij : U × Ui → U × Uj by σ̂ij(u, v) = (u, ϕij(v)) and σij = σ̂ij |C(HS), then
ϕ̃ij ◦ Li(HS) = Lj(HS) ◦ σij and ϕij ◦ π = π ◦ ϕ̃ij . Therefore, we can define a global
Lagrangian immersion: L(HS) : C(HS) → T ∗Sn

1 .
By definition, we have the following corollary of the above proposition.

Corollary 4.2. With the above notation, L(HT) (respectively, L(HS)) is a Lagrangian
immersion such that the hyperbolic timelike height function HT : U × Hn

+(−1) → R

(respectively, hyperbolic spacelike height function HS : U × Sn
1 → R) of x is a gener-

ating family of L(HT) (respectively, L(HS)).

Therefore, we have the Lagrangian immersion L(HT) (respectively, L(HS)) whose
caustic is the hyperbolic evolute (respectively, de Sitter evolute) of x. We call L(HT)
(respectively, L(HS)) theLagrangian lift of the hyperbolic evolute (respectively, de Sitter
evolute) of x.

5. Contact with families of hyperspheres and equidistant hyperplanes

Before we start to consider the contact between a hypersurface and a family of hyper-
spheres or equidistant hyperplanes, we briefly describe the theory of contact with folia-
tions. Montaldi [13] considered that the relationship between the contact of subman-
ifolds and singularity type (more precisely, the K-class; cf. [11]) of maps. Here we
consider the relationship between the contact of submanifolds with foliations and the
R+-class of functions. Let Xi (i = 1, 2) be submanifolds of Rn with dimX1 = dimX2,
let gi : (Xi, x̄i) → (Rn, ȳi) be immersion germs, and let fi : (Rn, ȳi) → (R, 0) be submer-
sion germs. For a submersion germ f : (Rn, 0) → (R, 0), we let Ff be the regular foliation
defined by f , i.e. Ff = {f−1(c) | c ∈ (R, 0)}. We say that the contact of X1 with the regu-
lar foliation Ff1 at ȳ1 is the same type as the contact of X2 with the regular foliation Ff2
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at ȳ2 if there is a diffeomorphism germ Φ : (Rn, ȳ1) → (Rn, ȳ2) such that Φ(X1) = X2

and Φ(Y1(c)) = Y2(c), where Yi(c) = f−1
i (c) for each c ∈ (R, 0). In this case we write

K(X1,Ff1 ; ȳ1) = K(X2,Ff2 ; ȳ2). It is clear that in the definition Rn could be replaced
by any manifold. We apply the method of Goryunov [5] to the case for R+-equivalences
among function germs, so that we have the following.

Proposition 5.1 (see the appendix in [5]). Let Xi(i = 1, 2) be submanifolds of
Rn with dim X1 = dimX2 = n − 1 (i.e. hypersurfaces), let gi : (Xi, x̄i) → (Rn, ȳi) be
immersion germs, and let fi : (Rn, ȳi) → (R, 0) be submersion germs. We assume that
x̄i are singularities of function germs fi ◦ gi : (Xi, x̄i) → (R, 0). Then K(X1,Ff1 ; ȳ1) =
K(X2,Ff2 ; ȳ2) if and only if f1 ◦ g1 and f2 ◦ g2 are R+-equivalent.

On the other hand, Golubitsky and Guillemin [4] have given an algebraic charac-
terization for the R+-equivalence among function germs. We denote by C∞

0 (X) the
set of function germs (X, 0) → R. Let Jf be the Jacobian ideal in C∞

0 (X) (i.e. Jf =
〈∂f/∂x1, . . . , ∂f/∂xn〉C∞

0 (X)). Let Rk(f) = C∞
0 (X)/Jk

f and let f̄ be the image of f in
this local ring. We say that f satisfies the Milnor Condition if dimR R1(f) < ∞.

Proposition 5.2 (see Proposition 4.1 in [4]). Let f and g be germs of functions at
0 in X satisfying the Milnor Condition with ∂f/∂xi(0) = ∂g/∂xi(0) = 0 (i = 1, . . . , n).
Then f and g are R+-equivalent if

(1) the rank and signature of the Hessians H(f)(0) and H(g)(0) are equal; and

(2) there is an isomorphism γ : R2(f) → R2(g) such that γ(f̄) = ḡ.

We consider a function HT : Hn
+(−1)×(Hn

+(−1)\M) → R defined by HT(x,v) = 〈x,v〉.
For any v0 ∈ Hn

+(−1) \ M , we define hT
v0

(x) = HT(x,v0) and we have a hypersphere

(hT
v0

)−1(λ) = HP(v0, λ) ∩ Hn
+(−1) = PSn−1(v0, λ).

It is easy to show that hT
v0

is a submersion. For any ū0 ∈ U , we consider a timelike vector
(i.e. in hyperbolic n-space) v0 = λx(ū0) + µe(ū0) ∈ Hn

+(−1), then we have

h
T
v0

◦ x(ū0) = H ◦ (x × idHn
+(−1))(ū0,v0) = λ,

and
∂hT

v0
◦ x

∂ui
(ū0) =

∂HT

∂ui
(ū0,v0) = 0,

for i = 1, . . . , n − 1. This means that the hypersphere (hT
v0

)−1(λ) = PSn−1(v0, λ) is tan-
gent to M = x(U) at p = x(ū0). In this case we call p = x(ū0) and PSn−1(v0, λ) a tangent
hypersphere with the centre v0. However, there are infinitely many tangent hyperspheres
at a general point p = x(ū0) depending on the real number λ. If v0 is a point of the hyper-
bolic evolute, the tangent hypersphere with the centre v0 is called the osculating hyper-
sphere at p = x(ū0), which is uniquely determined. Let xi : (U, ūi) → (Hn

+(−1),xi(ūi))
(i = 1, 2) be hypersurface germs. We consider hyperbolic timelike height functions
HT

i : (U × Hn
+(−1), (ūi,vi)) → R of xi, where vi are points of hyperbolic evolutes

of xi, respectively. We define hT
i,vi

(u) = HT
i (u, vi), then we have hT

i,vi
(u) = hT

vi
◦ xi(u).

Then we have the following theorem.
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Theorem 5.3. Let
xi : (U, ūi) → (Hn

+(−1),xi(ūi))

be hypersurface germs such that the corresponding Lagrangian immersion germs

L(HT
i ) : (C(HT

i ), (ūi,vi)) → (T ∗Hn
+(−1), z̄i)

are Lagrangian stable, where vi are centres of the osculating hyperspheres of xi, respec-
tively. Then the following conditions are equivalent.

(1) K(x1(U),FhT
v1

; x(ū1)) = K(x2(U),FhT
v2

; x(ū2)).

(2) hT
1,v1

and hT
2,v2

are R+-equivalent.

(3) HT
1 and HT

2 are P–R+-equivalent.

(4) L(HT
1 ) and L(HT

2 ) are Lagrangian equivalent.

(5) (a) The rank and signature of the H(hT
1,v1

)(ū1) and H(hT
2,v2

)(ū2) are equal.

(b) There is an isomorphism γ : R2(hT
1,v1

) → R2(hT
2,v2

) such that γ(hT
1,v1

) = hT
2,v2

.

Proof. By Proposition 5.1, condition (1) is equivalent to condition (2). Since both of
L(HT

i ) are Lagrangian stable, both of HT
i are R+-versal unfoldings of hT

i,vi
, respectively.

By the uniqueness theorem on the R+-versal unfolding of a function germ, condition (2)
is equivalent to condition (3). By Proposition A 3, condition (3) is equivalent to condi-
tion (4). It also follows from Proposition A 3 that both of hT

i satisfy the Milnor Condition.
Therefore, we can apply Proposition 5.2 to our situation, so that condition (2) is equiv-
alent to condition (5). This completes the proof. �

We remark that if L(HT
1 ) and L(HT

2 ) are Lagrangian equivalent, then the correspond-
ing hyperbolic evolutes are diffeomorphic. Since the hyperbolic evolute of a hypersurface
x(U) = M is considered to be the caustic of L(HT), the above theorem gives a symplec-
tic interpretation for the contact of hypersurfaces with a family of hyperspheres (cf. the
appendix).

Similarly, we can construct the osculating equidistant hyperplane of a hypersurface x :
U → Hn

+(−1) by using a function HS : Hn
+(−1) × Sn

1 → R defined by HS(x,v) = 〈x,v〉.
For any v0 ∈ Sn

1 , we also define hS
v0

(x) = HS(x,v0) and we have hS
0,v0

(u) = hS
v0

◦ x(u).
Then we have the following theorem.

Theorem 5.4. Let
xi : (U, ūi) → (Hn

+(−1),xi(ūi))

be hypersurface germs such that the corresponding Lagrangian immersion germs

L(HS
i ) : (C(HT

i ), (ūi,vi)) → (T ∗Hn
+(−1), z̄i)

are Lagrangian stable, where vi are centres of osculating equidistant hyperplanes of xi,
respectively. Then the following conditions are equivalent.
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(1) K(x1(U),FhS
v1

; x(ū1)) = K(x2(U),FhS
v2

; x(ū2)).

(2) hS
1,v1

and hS
2,v2

are R+-equivalent.

(3) HS
1 and HS

2 are P–R+-equivalent.

(4) L(HS
1 ) and L(HS

2 ) are Lagrangian equivalent.

(5) (a) The rank and signature of the H(hS
1,v1

)(ū1) and H(hS
2,v2

)(ū2) are equal.

(b) There is an isomorphism γ : R2(hS
1,v1

) → R2(hS
2,v2

) such that γ(hS
1,v1

) = hS
2,v2

.

The proof follows by direct analogy with the proof for Theorem 5.3 so we omit it.

6. Generic properties

In this section we consider generic properties of hypersurfaces in Hn
+(−1). The main tool

is a kind of transversality theorem. We consider the space of embeddings Emb(U, Hn
+(−1))

with Whitney C∞-topology. We define two functions:

(a) HT : Hn
+(−1) × Hn

+(−1) → R; HT(u,v) = 〈u,v〉; and

(b) HS : Hn
+(−1) × Sn

1 → R; HS(u,v) = 〈u,v〉.

We claim that hT
v (respectively, HS

v) is a submersion for any v ∈ Hn
+(−1) (respec-

tively, v ∈ Sn
1 ), where hT

v (u) = HT(u,v) (respectively, hS
v(u) = HS(u,v)). For any

x ∈ Emb(U, Hn
+(−1)), we have HT = HT ◦ (x× idHn

+(−1)) and HS = HS ◦ (x× idSn
1
). We

also have the �-jet extensions

j�
1H

T : U × Hn
+(−1) → J�(U, R) (respectively, j�

1H
S : U × Sn

1 → J�(U, R))

defined by j�
1H

T(u, v) = j�hT
v (u) (respectively, j�

1H
S(u, v) = j�hS

v(u)). We consider the
trivialization J�(U, R) ≡ U × R × J�(n − 1, 1). For any submanifold Q ⊂ J�(n−1, 1), we
define Q̃ = U × R × Q. Then we have the following proposition as a corollary of Lemma 6
in Wassermann [16] (see also [14] and [10]).

Proposition 6.1. Let Q be a submanifold of J�(n − 1, 1). Then the set

TX
Q = {x ∈ Emb(U, Hn

+(−1)) | j�
1H

X is transversal to Q̃}

is a residual subset of Emb(U, Hn
+(−1)). If Q is a closed subset, then TQ is open.

Here, X is T or S.

In the case when n � 6, we have finitely many R-orbits in J�(n, 1) consisting of the jet
z = j�f(0) with dimR1(f) � n. Let Σ�

0(n, 1) be the union of R-orbits consisting of the
jet z = j�f(0) with dimR1(f) > n. It is known that Σ�

0(n, 1) is a semi-algebraic subset
of J�(n, 1) with codimΣ�

0(n, 1) > 2n + 1 for sufficiently large �. Therefore, we have a
stratification of (J�(n, 1) \ Σ�

0(n, 1)) ∪ Σ�
0(n, 1) by finitely many R-orbits in (J�(n, 1) \

Σ�
0(n, 1)) and semi-algebraic stratum of Σ�

0(n, 1) with codimension greater than 2n + 1.
By the above proposition, the appendix and the characterization of R+-versal unfolding
(cf. [1]), we have the following theorem.

https://doi.org/10.1017/S0013091503000312 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000312


Singularities of evolutes of hypersurfaces in hyperbolic space 147

Theorem 6.2. Suppose that n � 6, then there is an open dense subset O ⊂
Emb(U, Hn

+(−1)) such that for any x ∈ O, the germ of the Lagrangian lift of the hyper-
bolic (respectively, de Sitter) evolute of x at each point is Lagrangian stable.

7. Surfaces in hyperbolic 3-space

In this section we stick to the case when n = 3. Let x : U → H3
+(−1) be a surface,

HT : U ×H3
+(−1) → R be a hyperbolic timelike height function and HS : U ×S3

1 → R be
a hyperbolic spacelike height function. We consider the hyperbolic evolutes HE±

M (respec-
tively, de Sitter evolutes SE±

M ). In the case n = 3, if p0 = x(u0, v0) is not an umbilic point,
then hT

a0
(respectively, hS

a0
) has the Ak�2-type singularity at p0 by Proposition 3.2, where

a0 = HE±
M (u0, v0) (respectively, a0 = SE±

M (u0, v0)). Since HE±
M (respectively, SE±

M ) is
the bifurcation set of HT (respectively, HS), it is non-singular if and only if hT

a0
(respec-

tively, hS
a0

) has the A2-type singularity (i.e. the fold-type singularity) at p0. Therefore,
we have the following proposition.

Proposition 7.1.

(1) p0 = x(u0, v0) is a timelike ridge point if and only if p0 is a non-umbilic point and
the corresponding point a0 = HE±

M (u0, v0) is a singular point of HE±
M (u, v).

(2) p0 = x(u0, v0) is a spacelike ridge point if and only if p0 is a non-umbilic point and
the corresponding point a0 = SE±

M (u0, v0) is a singular point of SE±
M (u, v).

A line of de Sitter principal curvature on M is a curve which is everywhere tangent
to these de Sitter principal directions. Let x(t) = x(u(t), v(t)) be a regular curve on
x(U) = M and consider the corresponding curve on HE±

M (respectively, SE±
M ), which is

given by

a(t) = ± κ(t)√
|κ2(t) − 1|

(
x(u(t), v(t)) +

1
κ(t)

e(u(t), v(t))
)

,

where κ(u, v) is a corresponding de Sitter principal curvature with κ2(u, v) > 1 (respec-
tively, κ2(u, v) < 1) on U and κ(t) = κ(u(t), v(t)). We have the following characterization
of the ridge point.

Corollary 7.2. Let p0 = x(u0, v0) be a non-umbilic point of M . Then we have the
following assertions.

(1) We assume that κ2(t) > 1, in which case p0 = x(u(t0), v(t0)) is a timelike ridge
point if and only if there exists a line of de Sitter principal curvature x(t) =
x(u(t), v(t)) with p0 = x(u(t0), v(t0)) and κ̇(t0) = 0.

(2) We assume that κ2(t) < 1, in which case p0 = x(u(t0), v(t0)) is a spacelike ridge
point if and only if there exists a line of de Sitter principal curvature x(t) =
x(u(t), v(t)) with p0 = x(u(t0), v(t0)) and κ̇(t0) = 0.
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Proof. (1) Suppose that p0 = x(u(t0), v(t0)) is a timelike ridge point. By Proposi-
tion 7.1, there exists a regular curve x(t) = x(u(t), v(t)) with p0 = x(u(t0), v(t0)) and
ȧ(t0) = 0. We can calculate that

ȧ(t) = ± −κ̇(t)
(κ2(t) − 1)3/2

(
x(u(t), v(t)) +

1
κ(t)

e(u(t), v(t))
)

± κ(t)√
κ2(t) − 1

(
dx

dt
(u(t), v(t)) +

1
κ(t)

de

dt
(u(t), v(t)) − κ̇(t)

κ(t)2
e(u(t), v(t))

)
.

Since dx/dt + (1/κ) de/dt is a tangent vector and x, e are linearly independent normal
vectors, ȧ(t) = 0 if and only if κ̇(t) = 0 and dx/dt + (1/κ) de/dt = 0. Therefore, we
have κ̇(t0) = 0 and dx/dt(t0) + (1/κ) de/dt(t0) = 0. This means that the tangent vector
dx/dt(t0) gives a de Sitter principal direction at p0. We can choose the curve x(u(t), v(t))
as a line of de Sitter principal curvature with x(u(t0), v(t0)) = p0. The converse assertion
follows by straightforward calculations.

The proof of (2) is also given by similar arguments to those for the proof of (1). �

By Theorems 6.2 and A 2 and the classification of function germs under R+-
codimension less than or equal to 3, we have the following classification theorem.

Theorem 7.3. There exists an open dense subset O ⊂ Emb(U, H3
+(−1)) such that

for any x ∈ O, the corresponding Lagrangian immersion germ L(HT) at any point
((u0, v0),a0) ∈ U × (H3

+(−1) \ M) is Lagrangian equivalent to a Lagrangian immersion
germ L(F ) : (C(F ), 0) → T ∗R3 whose generating family F (u, v, q) (q = (q1, q2, q3) ∈ R3)
is one of the germs in the following list.

(1) u3 + v2 + q1u (fold).

(2) ±u4 + v2 + q1u + q2u
2 (±cusp).

(3) u5 + v2 + q1u + q2u
2 + q3u

3 (swallowtail).

(4) u3 − uv2 + q1u + q2v + q3(u2 + v2) (pyramid).

(5) u3 + v3 + q1u + q2v + q3uv (purse).

We also have exactly the same result for de Sitter evolutes. However, we only change
the notation in the above theorem; we omit the detailed statement for de Sitter evolutes
here.

We now apply Theorem 5.3 to the above classification theorem. Let F (u, v, q) be one
of the germs in the above list. We write f(u, v) = F (u, v, 0), then we define F(f) as the
singular foliation germ in (R2, 0) defined by f (i.e. {f−1(c)}c∈(R,0)). As a corollary of the
above classification theorem and Theorem 5.3, we have the following.

Corollary 7.4. There exists an open dense subset O ⊂ Emb(U, H3
+(−1)) such that

for any x ∈ O and any point ((u0, v0),a0) ∈ U × (H3
+(−1) \M), the osculating spherical

foliation germ (x−1(FhT
a0

), (u0, v0)) is diffeomorphic to a foliation germ (F(f), 0), where
F (u, v, q) is one of the germs in the list of Theorem 7.3.
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Figure 1. Generic osculating spherical foliation germs (n = 3).

We can draw the corresponding pictures of the foliation germs as in Figure 1.

8. Examples

In the last part of the paper, we give some examples and draw their pictures. Since we
only consider the local situation, we use the notion of the hyperbolic Monge (H-Monge)
form of a surface, which was introduced in [6]. Let f(u, v) be a function with f(0) = 0
and fu(0) = fv(0) = 0. Then we have a surface in H3

+(−1) defined by

xf (u, v) = (
√

f2(u, v) + u2 + v2 + 1, f(u, v), u, v).

We can easily calculate that e(0) = (0,−1, 0, 0). We call xf a hyperbolic Monge form
(briefly, H-Monge form). If the point xf (0, 0) = (1, 0, 0, 0) is umbilic with principal
curvature κ(0) = κ, the function f can be written in the form f(u, v) = (κ/2)(u2 + v2)+
g(u, v), where Hf(0) = 0. Under the assumption that 0 < κ2 �= 1, the centre of the
osculating sphere is given by a0 = (κ/

√
|κ2 − 1|)(1, 1/κ, 0, 0). Therefore, the osculating

spherical foliation is given by
{

(u, v)
∣∣∣∣ κ√

|κ2 − 1|

{
1
κ

f(u, v) +
√

f2(u, v) + u2 + v2 + 1
}

=
κ√

|κ2 − 1|
+ c

}
c∈(R,0)

.
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Figure 2. Osculating spherical foliation germs for examples (1)–(5).

For example, we consider the case where κ = 1
2 and the g(u, v) are given as follows.

(1) g(u, v) = 3(u3 − v2) (fold).

(2) g(u, v) = 3(±u4 + v2) (±cusp).

(3) g(u, v) = 3(u5 − v2) (swallowtail).

(4) g(u, v) = 3(u3 − uv2) (pyramid).

(5) g(u, v) = 3(u3 + v3) (purse).

Since κ = 1
2 , the centre of the osculating sphere is located on S3

1 and the total evolute
is the de Sitter evolute. It might be very hard to draw the picture of the de Sitter evolute
for each surface. However, we can easily draw the picture of the osculating spherical
foliation for each surface by using the package ImplicitPlot of Mathematica as in
Figure 2.

Appendix A. Lagrangian singularities and unfoldings of functions

In this section we give a brief review of the theory of Lagrangian singularities given
in [1]. We consider the cotangent bundle π : T ∗Rr → Rr over Rr. Let (u, p) =
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(u1, . . . , ur, p1, . . . , pr) be the canonical coordinate on T ∗Rr. Then the canonical sym-
plectic structure on T ∗Rr is given by the canonical 2-form ω =

∑r
i=1 dpi ∧ dui. Let

i : L → T ∗Rr be an immersion. We say that i is a Lagrangian immersion if dimL = r

and i∗ω = 0. In this case the critical value of π ◦ i is called the caustic of i : L → T ∗Rr

and it is denoted by CL. The main result in the theory of Lagrangian singularities
is to describe Lagrangian immersion germs by using families of function germs. Let
F : (Rn × Rr, (0,0)) → (R, 0) be an r-parameter unfolding of function germs. We call

C(F ) =
{

(x, u) ∈ (Rn × Rr, (0,0))
∣∣∣∣ ∂F

∂x1
(x, u) = · · · =

∂F

∂xn
(x, u) = 0

}
,

the catastrophe set of F and

BF =
{

u ∈ (Rr, 0)
∣∣∣∣ there exist (x, u) ∈ C(F ) such that rank

(
∂2F

∂xi∂xj
(x, u)

)
< n

}

the bifurcation set of F .
Let πr : (Rn × Rr, 0) → (Rr, 0) be the canonical projection, then we can easily show

that the bifurcation set of F is the critical value set of πr|C(F ). We say that F is a Morse
family if the map germ

∆F =
(

∂F

∂u1
, . . . ,

∂F

∂ur

)
: (Rn × Rr, 0) → (Rr, 0)

is non-singular, where (x, u) = (x1, . . . , xn, u1, . . . , ur) ∈ (Rn×Rr, 0). In this case we have
a smooth submanifold germ C(F ) ⊂ (Rn × Rr, 0) and a map germ L(F ) : (C(F ), 0) →
T ∗Rr defined by

L(F )(x, u) =
(

u,
∂F

∂u1
, . . . ,

∂F

∂ur

)
.

We can show that L(F ) is a Lagrangian immersion. Then we have the following funda-
mental theorem [1, p. 300].

Proposition A 1. All Lagrangian submanifold germs in T ∗Rr are constructed by the
above method.

Using the above notation, we call F a generating family of L(F ).
We define an equivalence relation among Lagrangian immersion germs. Let i : (L, x) →

(T ∗Rr, p) and i′ : (L′, x′) → (T ∗Rr, p′) be Lagrangian immersion germs. Then we
say that i and i′ are Lagrangian equivalent if there exist a diffeomorphism germ
σ : (L, x) → (L′, x′), a symplectic diffeomorphism germ τ : (T ∗Rr, p) → (T ∗Rr, p′),
and a diffeomorphism germ τ̄ : (Rr, π(p)) → (Rr, π(p′)) such that τ ◦ i = i′ ◦ σ and
π ◦ τ = τ̄ ◦π, where π : (T ∗Rr, p) → (Rr, π(p)) is the canonical projection and a symplec-
tic diffeomorphism germ is a diffeomorphism germ which preserves symplectic structure
on T ∗Rr. In this case, the caustic CL is diffeomorphic to the caustic CL′ by the diffeo-
morphism germ τ̄ .

A Lagrangian immersion germ into T ∗Rr at a point is said to be Lagrangian stable if
for every map with the given germ there is a neighbourhood in the space of Lagrangian
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immersions (in the Whitney C∞-topology) and a neighbourhood of the original point
such that each Lagrangian immersion belonging to the first neighbourhood has in the
second neighbourhood a point at which its germ is Lagrangian equivalent to the original
germ.

We can interpret the Lagrangian equivalence by using the notion of generating families.
We denote by Em the local ring of function germs (Rm, 0) → R with the unique maximal
ideal Mm = {h ∈ Em | h(0) = 0}. Let F, G : (Rn × Rr, 0) → (R, 0) be function germs.
We say that F and G are P–R+-equivalent if there exists a diffeomorphism germ Φ :
(Rn × Rr, 0) → (Rn × Rr, 0) of the form Φ(x, u) = (Φ1(x, u), φ(u)) and a function germ
h : (Rr, 0) → R such that G(x, u) = F (Φ(x, u)) + h(u). For any F1 ∈ Mn+r and F2 ∈
Mn′+r, F1, F2 are said to be stably P–R+-equivalent if they become P–R+-equivalent
after the addition to the arguments to xi of new arguments yi and to the functions Fi of
non-degenerate quadratic forms Qi in the new arguments (i.e. F1 + Q1 and F2 + Q2 are
P–R+-equivalent).

Let F : (Rn × Rr, 0) → (R, 0) be a function germ. We say that F is an R+-versal
deformation of f = F |Rn×{0} if

En = Jf +
〈

∂F

∂u1

∣∣∣∣Rn × {0}, . . . ,
∂F

∂ur

∣∣∣∣Rn × {0}
〉

R

+ 〈1〉R,

where

Jf =
〈

∂f

∂x1
, . . . ,

∂f

∂xn

〉
En

.

Theorem A 2. Let F1 ∈ Mn+r and F2 ∈ Mn′+r be Morse families. Then we have the
following.

(1) L(F1) and L(F2) are Lagrangian equivalent if and only if F1, F2 are stably P–R+-
equivalent.

(2) L(F ) is Lagrangian stable if and only if F is a R+-versal deformation of F |Rn × {0}.

For the proof of the above theorem, see pp. 304 and 325 of [1]. The following proposition
describes the well-known relationship between bifurcation sets and equivalence among
unfoldings of function germs.

Proposition A 3. Let F, G : (Rn × Rr, 0) → (R, 0) be function germs. If F and G

are P–R+-equivalent then there exists a diffeomorphism germ φ : (Rr, 0) → (Rr, 0) such
that φ(BF ) = BG.
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