
JFP 13 (1): 205–218, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S0956796803002314 Printed in the United Kingdom

Chapter 21

Input/Output

module IO (
Handle, HandlePosn,
IOMode(ReadMode,WriteMode,AppendMode,ReadWriteMode),
BufferMode(NoBuffering,LineBuffering,BlockBuffering),
SeekMode(AbsoluteSeek,RelativeSeek,SeekFromEnd),
stdin, stdout, stderr,
openFile, hClose, hFileSize, hIsEOF, isEOF,
hSetBuffering, hGetBuffering, hFlush,
hGetPosn, hSetPosn, hSeek,
hWaitForInput, hReady, hGetChar, hGetLine, hLookAhead, hGetContents,
hPutChar, hPutStr, hPutStrLn, hPrint,
hIsOpen, hIsClosed, hIsReadable, hIsWritable, hIsSeekable,
isAlreadyExistsError, isDoesNotExistError, isAlreadyInUseError,
isFullError, isEOFError,
isIllegalOperation, isPermissionError, isUserError,
ioeGetErrorString, ioeGetHandle, ioeGetFileName,
try, bracket, bracket_,

-- ...and what the Prelude exports
IO, FilePath, IOError, ioError, userError, catch, interact,
putChar, putStr, putStrLn, print, getChar, getLine, getContents,
readFile, writeFile, appendFile, readIO, readLn
) where

import Ix(Ix)

205

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

206 CHAPTER 21. INPUT/OUTPUT

data Handle = ... -- implementation-dependent
instance Eq Handle where ...
instance Show Handle where .. -- implementation-dependent

data HandlePosn = ... -- implementation-dependent
instance Eq HandlePosn where ...
instance Show HandlePosn where --- -- implementation-dependent

data IOMode = ReadMode | WriteMode | AppendMode | ReadWriteMode
deriving (Eq, Ord, Ix, Bounded, Enum, Read, Show)

data BufferMode = NoBuffering | LineBuffering
| BlockBuffering (Maybe Int)

deriving (Eq, Ord, Read, Show)
data SeekMode = AbsoluteSeek | RelativeSeek | SeekFromEnd

deriving (Eq, Ord, Ix, Bounded, Enum, Read, Show)

stdin, stdout, stderr :: Handle

openFile :: FilePath -> IOMode -> IO Handle
hClose :: Handle -> IO ()

hFileSize :: Handle -> IO Integer
hIsEOF :: Handle -> IO Bool
isEOF :: IO Bool
isEOF = hIsEOF stdin

hSetBuffering :: Handle -> BufferMode -> IO ()
hGetBuffering :: Handle -> IO BufferMode
hFlush :: Handle -> IO ()
hGetPosn :: Handle -> IO HandlePosn
hSetPosn :: HandlePosn -> IO ()
hSeek :: Handle -> SeekMode -> Integer -> IO ()

hWaitForInput :: Handle -> Int -> IO Bool
hReady :: Handle -> IO Bool
hReady h = hWaitForInput h 0
hGetChar :: Handle -> IO Char
hGetLine :: Handle -> IO String
hLookAhead :: Handle -> IO Char
hGetContents :: Handle -> IO String
hPutChar :: Handle -> Char -> IO ()
hPutStr :: Handle -> String -> IO ()
hPutStrLn :: Handle -> String -> IO ()
hPrint :: Show a => Handle -> a -> IO ()

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

21.1. I/O ERRORS 207

hIsOpen :: Handle -> IO Bool
hIsClosed :: Handle -> IO Bool
hIsReadable :: Handle -> IO Bool
hIsWritable :: Handle -> IO Bool
hIsSeekable :: Handle -> IO Bool

isAlreadyExistsError :: IOError -> Bool
isDoesNotExistError :: IOError -> Bool
isAlreadyInUseError :: IOError -> Bool
isFullError :: IOError -> Bool
isEOFError :: IOError -> Bool
isIllegalOperation :: IOError -> Bool
isPermissionError :: IOError -> Bool
isUserError :: IOError -> Bool

ioeGetErrorString :: IOError -> String
ioeGetHandle :: IOError -> Maybe Handle
ioeGetFileName :: IOError -> Maybe FilePath

try :: IO a -> IO (Either IOError a)
bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
bracket_ :: IO a -> (a -> IO b) -> IO c -> IO c

The monadic I/O system used in Haskell is described by the Haskell language report. Commonly
used I/O functions such as print are part of the standard prelude and need not be explicitly im-
ported. This library contain more advanced I/O features. Some related operations on file systems
are contained in the Directory library.

21.1 I/O Errors

Errors of type IOError are used by the I/O monad. This is an abstract type; the library provides
functions to interrogate and construct values in IOError:

� isAlreadyExistsError – the operation failed because one of its arguments already
exists.

� isDoesNotExistError – the operation failed because one of its arguments does not
exist.

� isAlreadyInUseError – the operation failed because one of its arguments is a single-
use resource, which is already being used (for example, opening the same file twice for writing
might give this error).

� isFullError – the operation failed because the device is full.

� isEOFError – the operation failed because the end of file has been reached.

� isIllegalOperation – the operation is not possible.

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

208 CHAPTER 21. INPUT/OUTPUT

� isPermissionError – the operation failed because the user does not have sufficient op-
erating system privilege to perform that operation.

� isUserError – a programmer-defined error value has been raised using fail.

All these functions return a Bool, which is True if its argument is the corresponding kind of error,
and False otherwise.

Any computation which returns an IO result may fail with isIllegalOperation. Additional
errors which could be raised by an implementation are listed after the corresponding operation. In
some cases, an implementation will not be able to distinguish between the possible error causes. In
this case it should return isIllegalOperation .

Three additional functions are provided to obtain information about an error value. These are
ioeGetHandle which returns Just ��
 if the error value refers to handle ��
 and Nothing
otherwise; ioeGetFileName which returns Just ��	� if the error value refers to file ��	� ,
and Nothing otherwise; and ioeGetErrorString which returns a string. For “user” errors
(those which are raised using fail), the string returned by ioeGetErrorString is the argu-
ment that was passed to fail; for all other errors, the string is implementation-dependent.

The try function returns an error in a computation explicitly using the Either type.

The bracket function captures a common allocate, compute, deallocate idiom in which the deal-
location step must occur even in the case of an error during computation. This is similar to try-
catch-finally in Java.

21.2 Files and Handles

Haskell interfaces to the external world through an abstract file system. This file system is a col-
lection of named file system objects, which may be organised in directories (see Directory). In
some implementations, directories may themselves be file system objects and could be entries in
other directories. For simplicity, any non-directory file system object is termed a file, although it
could in fact be a communication channel, or any other object recognised by the operating system.
Physical files are persistent, ordered files, and normally reside on disk.

File and directory names are values of type String, whose precise meaning is operating system
dependent. Files can be opened, yielding a handle which can then be used to operate on the contents
of that file.

Haskell defines operations to read and write characters from and to files, represented by values of
type Handle. Each value of this type is a handle: a record used by the Haskell run-time system to
manage I/O with file system objects. A handle has at least the following properties:

� whether it manages input or output or both;

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

21.2. FILES AND HANDLES 209

� whether it is open, closed or semi-closed;

� whether the object is seekable;

� whether buffering is disabled, or enabled on a line or block basis;

� a buffer (whose length may be zero).

Most handles will also have a current I/O position indicating where the next input or output operation
will occur. A handle is readable if it manages only input or both input and output; likewise, it is
writable if it manages only output or both input and output. A handle is open when first allocated.
Once it is closed it can no longer be used for either input or output, though an implementation
cannot re-use its storage while references remain to it. Handles are in the Show and Eq classes.
The string produced by showing a handle is system dependent; it should include enough information
to identify the handle for debugging. A handle is equal according to == only to itself; no attempt is
made to compare the internal state of different handles for equality.

21.2.1 Standard Handles

Three handles are allocated during program initialisation. The first two (stdin and stdout)
manage input or output from the Haskell program’s standard input or output channel respectively.
The third (stderr) manages output to the standard error channel. These handles are initially open.

21.2.2 Semi-Closed Handles

The operation hGetContents ��
 (Section 21.9.4) puts a handle ��
 into an intermediate state,
semi-closed. In this state, ��
 is effectively closed, but items are read from ��
 on demand and
accumulated in a special list returned by hGetContents ��
 .

Any operation that fails because a handle is closed, also fails if a handle is semi-closed. The only
exception is hClose. A semi-closed handle becomes closed:

� if hClose is applied to it;

� if an I/O error occurs when reading an item from the handle;

� or once the entire contents of the handle has been read.

Once a semi-closed handle becomes closed, the contents of the associated list becomes fixed. The
contents of this final list is only partially specified: it will contain at least all the items of the stream
that were evaluated prior to the handle becoming closed.

Any I/O errors encountered while a handle is semi-closed are simply discarded.

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

210 CHAPTER 21. INPUT/OUTPUT

21.2.3 File Locking

Implementations should enforce as far as possible, at least locally to the Haskell process, multiple-
reader single-writer locking on files. That is, there may either be many handles on the same file
which manage input, or just one handle on the file which manages output. If any open or semi-
closed handle is managing a file for output, no new handle can be allocated for that file. If any open
or semi-closed handle is managing a file for input, new handles can only be allocated if they do
not manage output. Whether two files are the same is implementation-dependent, but they should
normally be the same if they have the same absolute path name and neither has been renamed, for
example.

Warning: the readFile operation (Section 7.1 of the Haskell Language Report) holds a semi-
closed handle on the file until the entire contents of the file have been consumed. It follows that an
attempt to write to a file (using writeFile, for example) that was earlier opened by readFile
will usually result in failure with isAlreadyInUseError .

21.3 Opening and Closing Files

21.3.1 Opening Files

Computation openFile *
� 	��� allocates and returns a new, open handle to manage the file *
�.
It manages input if 	��� is ReadMode, output if 	��� is WriteMode or AppendMode, and
both input and output if mode is ReadWriteMode.

If the file does not exist and it is opened for output, it should be created as a new file. If 	��� is
WriteMode and the file already exists, then it should be truncated to zero length. Some operating
systems delete empty files, so there is no guarantee that the file will exist following an openFile
with	��� WriteMode unless it is subsequently written to successfully. The handle is positioned
at the end of the file if 	��� is AppendMode, and otherwise at the beginning (in which case its
internal I/O position is 0). The initial buffer mode is implementation-dependent.

If openFile fails on a file opened for output, the file may still have been created if it did not
already exist.

Error reporting: the openFile computation may fail with isAlreadyInUseError if the file
is already open and cannot be reopened; isDoesNotExistError if the file does not exist; or
isPermissionError if the user does not have permission to open the file.

21.3.2 Closing Files

Computation hClose ��
 makes handle ��
 closed. Before the computation finishes, if ��
 is
writable its buffer is flushed as for hFlush. Performing hClose on a handle that has already been
closed has no effect; doing so not an error. All other operations on a closed handle will fail. If

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

21.4. DETERMINING THE SIZE OF A FILE 211

hClose fails for any reason, any further operations (apart from hClose) on the handle will still
fail as if ��
 had been successfully closed.

21.4 Determining the Size of a File

For a handle ��
 which is attached to a physical file, hFileSize ��
 returns the size of that file
in 8-bit bytes (� 0).

21.5 Detecting the End of Input

For a readable handle ��
 , computation hIsEOF ��
 returns True if no further input can be taken
from ��
 ; for a handle attached to a physical file this means that the current I/O position is equal
to the length of the file. Otherwise, it returns False. The computation isEOF is identical, except
that it works only on stdin.

21.6 Buffering Operations

Three kinds of buffering are supported: line-buffering, block-buffering or no-buffering. These
modes have the following effects. For output, items are written out, or flushed, from the internal
buffer according to the buffer mode:

� line-buffering: the entire buffer is flushed whenever a newline is output, the buffer overflows,
a hFlush is issued, or the handle is closed.

� block-buffering: the entire buffer is written out whenever it overflows, a hFlush is issued,
or the handle is closed.

� no-buffering: output is written immediately, and never stored in the buffer.

An implementation is free to flush the buffer more frequently, but not less frequently, than specified
above. The buffer is emptied as soon as it has been written out.

Similarly, input occurs according to the buffer mode for handle ��
 .

� line-buffering: when the buffer for ��
 is not empty, the next item is obtained from the
buffer; otherwise, when the buffer is empty, characters are read into the buffer until the next
newline character is encountered or the buffer is full. No characters are available until the
newline character is available or the buffer is full.

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

212 CHAPTER 21. INPUT/OUTPUT

� block-buffering: when the buffer for ��
 becomes empty, the next block of data is read into
the buffer.

� no-buffering: the next input item is read and returned. The hLookAhead operation (Sec-
tion 21.9.3) implies that even a no-buffered handle may require a one-character buffer.

For most implementations, physical files will normally be block-buffered and terminals will nor-
mally be line-buffered.

Computation hSetBuffering ��
 	��� sets the mode of buffering for handle ��
 on subsequent
reads and writes.

� If	��� is LineBuffering, line-buffering is enabled if possible.

� If	��� is BlockBuffering ��%�, then block-buffering is enabled if possible. The size of
the buffer is � items if ��%� is Just � and is otherwise implementation-dependent.

� If	��� is NoBuffering, then buffering is disabled if possible.

If the buffer mode is changed from BlockBuffering or LineBuffering to NoBuffering,
then

� if ��
 is writable, the buffer is flushed as for hFlush;

� if ��
 is not writable, the contents of the buffer is discarded.

Error reporting: the hSetBuffering computation may fail with isPermissionError if the
handle has already been used for reading or writing and the implementation does not allow the
buffering mode to be changed.

Computation hGetBuffering ��
 returns the current buffering mode for ��
 .

The default buffering mode when a handle is opened is implementation-dependent and may depend
on the file system object which is attached to that handle.

21.6.1 Flushing Buffers

ComputationhFlush ��
 causes any items buffered for output in handle��
 to be sent immediately
to the operating system.

Error reporting: the hFlush computation may fail with: isFullError if the device is full;
isPermissionError if a system resource limit would be exceeded. It is unspecified whether
the characters in the buffer are discarded or retained under these circumstances.

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

21.7. REPOSITIONING HANDLES 213

21.7 Repositioning Handles

21.7.1 Revisiting an I/O Position

Computation hGetPosn ��
 returns the current I/O position of ��
 as a value of the abstract type
HandlePosn. If a call to hGetPosn � returns a position � , then computation hSetPosn � sets
the position of � to the position it held at the time of the call to hGetPosn.

Error reporting: the hSetPosn computation may fail with: isPermissionError if a system
resource limit would be exceeded.

21.7.2 Seeking to a New Position

Computation hSeek ��
 	��� � sets the position of handle ��
 depending on 	��� . If 	��� is:

� AbsoluteSeek: the position of ��
 is set to � .

� RelativeSeek: the position of ��
 is set to offset � from the current position.

� SeekFromEnd: the position of ��
 is set to offset � from the end of the file.

The offset is given in terms of 8-bit bytes.

If ��
 is block- or line-buffered, then seeking to a position which is not in the current buffer will
first cause any items in the output buffer to be written to the device, and then cause the input buffer
to be discarded. Some handles may not be seekable (see hIsSeekable), or only support a subset
of the possible positioning operations (for instance, it may only be possible to seek to the end of a
tape, or to a positive offset from the beginning or current position). It is not possible to set a negative
I/O position, or for a physical file, an I/O position beyond the current end-of-file.

Error reporting: the hSeek computation may fail with: isPermissionError if a system re-
source limit would be exceeded.

21.8 Handle Properties

The functions hIsOpen, hIsClosed, hIsReadable, hIsWritable and hIsSeekable
return information about the properties of a handle. Each of these returns True if the handle has
the specified property, and False otherwise.

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

214 CHAPTER 21. INPUT/OUTPUT

21.9 Text Input and Output

Here we define a standard set of input operations for reading characters and strings from text files,
using handles. Many of these functions are generalizations of Prelude functions. I/O in the Prelude
generally uses stdin and stdout; here, handles are explicitly specified by the I/O operation.

21.9.1 Checking for Input

Computation hWaitForInput ��
 � waits until input is available on handle ��
 . It returns True
as soon as input is available on ��
 , or False if no input is available within � milliseconds.

Computation hReady ��
 indicates whether at least one item is available for input from handle
��
 .

Error reporting. The hWaitForInput and hReady computations fail with isEOFError if the
end of file has been reached.

21.9.2 Reading Input

Computation hGetChar ��
 reads a character from the file or channel managed by ��
 .

Computation hGetLine ��
 reads a line from the file or channel managed by ��
 . The Prelude’s
getLine is a shorthand for hGetLine stdin.

Error reporting. The hGetChar computation fails with isEOFError if the end of file has been
reached. The hGetLine computation fails with isEOFError if the end of file is encountered
when reading the first character of the line. If hGetLine encounters end-of-file at any other point
while reading in a line, it is treated as a line terminator and the (partial) line is returned.

21.9.3 Reading Ahead

Computation hLookAhead ��
 returns the next character from handle ��
 without removing it
from the input buffer, blocking until a character is available.

Error reporting: the hLookAhead computation may fail with: isEOFError if the end of file has
been reached.

21.9.4 Reading the Entire Input

ComputationhGetContents ��
 returns the list of characters corresponding to the unread portion
of the channel or file managed by ��
 , which is made semi-closed.

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

21.10. EXAMPLES 215

Error reporting: the hGetContents computation may fail with: isEOFError if the end of file
has been reached.

21.9.5 Text Output

Computation hPutChar ��
 � writes the character � to the file or channel managed by ��
 . Char-
acters may be buffered if buffering is enabled for ��
 .

Computation hPutStr ��
 � writes the string � to the file or channel managed by ��
 .

Computation hPrint ��
 � writes the string representation of � given by the shows function to
the file or channel managed by ��
 and appends a newline.

Error reporting: the hPutChar, hPutStr and hPrint computations may fail with: isFull-
Error if the device is full; or isPermissionError if another system resource limit would be
exceeded.

21.10 Examples

Here are some simple examples to illustrate Haskell I/O.

21.10.1 Summing Two Numbers

This program reads and sums two Integers.

import IO

main = do
hSetBuffering stdout NoBuffering
putStr "Enter an integer: "
x1 <- readNum
putStr "Enter another integer: "
x2 <- readNum
putStr ("Their sum is " ++ show (x1+x2) ++ "\n")

where readNum :: IO Integer
-- Providing a type signature avoids reliance on
-- the defaulting rule to fix the type of x1,x2

readNum = readLn

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

216 CHAPTER 21. INPUT/OUTPUT

21.10.2 Copying Files

A simple program to create a copy of a file, with all lower-case characters translated to upper-case.
This program will not allow a file to be copied to itself. This version uses character-level I/O. Note
that exactly two arguments must be supplied to the program.

import IO
import System
import Char(toUpper)

main = do
[f1,f2] <- getArgs
h1 <- openFile f1 ReadMode
h2 <- openFile f2 WriteMode
copyFile h1 h2
hClose h1
hClose h2

copyFile h1 h2 = do
eof <- hIsEOF h1
if eof then return () else

do
c <- hGetChar h1
hPutChar h2 (toUpper c)
copyFile h1 h2

An equivalent but much shorter version, using string I/O is:

import System
import Char(toUpper)

main = do
[f1,f2] <- getArgs
s <- readFile f1
writeFile f2 (map toUpper s)

21.11 Library IO

module IO {- export list omitted -} where

-- Just provide an implementation of the system-independent
-- actions that IO exports.

try :: IO a -> IO (Either IOError a)
try f = catch (do r <- f

return (Right r))
(return . Left)

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

21.11. LIBRARY IO 217

bracket :: IO a -> (a -> IO b) -> (a -> IO c) -> IO c
bracket before after m = do

x <- before
rs <- try (m x)
after x
case rs of

Right r -> return r
Left e -> ioError e

-- variant of the above where middle computation doesn’t want x
bracket_ :: IO a -> (a -> IO b) -> IO c -> IO c
bracket_ before after m = do

x <- before
rs <- try m
after x
case rs of

Right r -> return r
Left e -> ioError e

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

https://doi.org/10.1017/S0956796803002314 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803002314

