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ON MEROMORPHIC SOLUTIONS OF
CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

J. HEITTOKANGAS, R. KORHONEN AND I. LAINE

In this paper, we consider the growth of meromorphic solutions of nonlinear differen-
tial equations of the form L(f) + P(z,f) = h(z), where L(f) denotes a linear differ-
ential polynomial in / , P(z, / ) is a polynomial in / , both with small meromorphic co-
efficients, and h(z) is a meromorphic function. Specialising to L(f) — p{z)fn = h(z),
where p{z) is a small meromorphic function, we consider the uniqueness of mero-
morphic solutions with few poles only. Our results complement earlier ones due to
C.-C. Yang.

1. INTRODUCTION

In a recent paper [7], C.-C. Yang considered transcendental entire solutions / of
finite order of

(1.1) L(f) -p(z)fn = h(z),

where L(f) denotes a linear differential polynomial in / with polynomial coefficients, p(z)
is a non-vanishing polynomial, h(z) is entire and n ^ 3. In particular, he showed that /
has to be unique, unless L(f) = 0.

In this paper, we consider a slightly more general form of the equation (1.1), where
p(z), h(z) and the coefficients of L(f) are meromorphic, and not necessarily of finite order.
We show that the method used by Yang can be modified to obtain similar uniqueness
results for meromorphic solutions of this generalised equation, when n ^ 4. Concerning
the case n = 3, we offer a counterexample to show that [7, Theorem 1] remains valid for
n ^ 4 only.

We note that if n = 1 then the equation (1.1) with meromorphic coefficients reduces
into a linear differential equation, while if n = 2 then (1.1) contains the first and the
second Painleve differential equations and the Riccati differential equations.
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In addition, we study the growth of meromorphic solutions of differential equations
of the form

(1.2) L(f) + P(z,f) = h(z),

where L(f) has meromorphic coefficients, and P(z, f) is a polynomial in / with mero-
morphic coefficients.

2. PRELIMINARIES

In what follows, a meromorphic function is always understood to be non-constant
and meromorphic in the whole complex plane C. Concerning the value distribution of
meromorphic functions, we assume that the reader is familiar with basic notations such
as m(r, / ) , N(r, f), T(r, / ) , and with basic results, see any standard reference like [2] or
[4]. In particular, for a meromorphic function / , the notions of order

r->oo lOgr

lower order
m i- • *l0S+T(r,f)

u(f) :— limint ; ,
r-K» logr-

and type, when 0 < p < oo,
r ( / ) := lim sup !—,

r-K» ffi

will appear frequently in the subsequent considerations. For the convenience of the reader,
we recall the following Valiron-Mohon'ko theorem, see [5] or [4, pp. 31-34].

THEOREM A. Let f be a meromorphic function. Then for all irreducible rational
functions in f,

R(z, f) = — = ^=0 3 ,

with meromorphic coefficients a,j(z), bk(z) such that

rT(r,aj) = S(r,f), j = 0,...,p,

T(r,bk) = S(r,f), k = 0,...,q,

the characteristic function of R(z, f) satisfies

T(r,R(z,f))=dT(r,f) + S(r,f),

where d = max{p, q}.
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R E M A R K . If we assume, in addition, that a,j(z) and bk(z) are complex constants, then

T(r,R(z,f))=dT(r,f) + O(l).

This follows by a careful examination of the proof of Theorem A.

Finally, we introduce two differential fields of meromorphic functions, needed
throughout of this paper. Firstly, given a meromorphic function / , we define

Cf := {h meromorphic : T(r, h) = S(r, / )} .

Secondly, given p > 0, we define

Cp := {h meromorphic : p(h) < p) .

3. GROWTH CONSIDERATIONS

In this section, we deal with differential equations of the form

(3.1) L(f)+P(z,f) = h(z),

where L(f) = ao(z)f + ai(z)/ ' + • • • + a*(z)/^ is a linear differential polynomial in /
with meromorphic coefficients, P(z, f) = b2(z)f2 + • • • + bn(z)fn is a polynomial in /
with meromorphic coefficients, and h(z) is meromorphic. Note that the function qo(z) ap-
peared in [7] is incorporated in h(z). Throughout the paper, we denote n := degy P(z,f).
Moreover, we restrict ourselves to consider meromorphic solutions / of (3.1) such that
all coefficients of L(/) and P(z,f) are in Cf. Provided / has a few poles only, in the
sense that N(r, f) = S(r, / ) , it appears that all such solutions are of comparable growth.
To see this, we prove the following.

THEOREM 3 . 1 . Given L(f), P(z,f), h(z) as to above, and P{z,f) £ o, de-
note by T the family of meromorphic solutions of (3.1) such that whenever f € T, all
coefficients of (3.1) are in Cf, and N(r,f) - S(r,f). If now f,g e f, then

(3.2) T(r,g) = O{T(r,f))+S(r,f).

Moreover, if a > 1, then for some ra > 0,

(3.3) T(r,g) = O(T(ar,f))

for all r ^ ra.

PROOF: Since / and g are solutions of (3.1), we have

Hf)-Ljg)= P(z,f)-P(z,g)

f-9 1-9
M/"-g") + --- +

f-9
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for some n ^ 2. Hence, we may write

p.4) UfiL-MIhm.^,^
where Q(z, f, g) is a polynomial in / and g with coefficients in Cj f~l Cg such that degy Q
= deg9 Q ^ 1. By the lemma of the logarithmic derivative,

m{r,Q(z,f,g))=S(r,f) + S(r,g).

Since
max{ JV(r, / ) , N{r, g)} = S(r, /) + S(r, g),

it clearly follows that
.T(r,Q(z,f,g))=S(r,f) + S(r,g).

Now, (3.4) may be interpreted as an algebraic equation for g over the field

£:={h meromorphic : T{r, h) = O(T{r, /)) + S(r, f) + S(r,g)} .

Therefore, by a slight modification of [3, Theorem 1],

T(r,g) = O(T(r,f))+S(r,f) + S(r,g),

from which (3.2) immediately follows, while (3.3) is a standard consequence of (3.2) by
[4, Lemma 1.1.1]. D

We now proceed to consider meromorphic solutions / of (3.1) such that all coeffi-
cients of (3.1) are in Cj, giving no restrictions for possible poles of / , nor for the degree
of P(z,f). Note that in the case P{z,f) = 0 the following result reduces to the well
known fact in the theory of linear differential equations.

PROPOSITION 3 . 2 . If f is a meromorphic solution of (3.1) such that all coef-
ficients of (3.1) are in £ / , then p(f) > p(h). Similarly for the lower order, /x(/) ^ fJ.{h).

PROOF: The equation (3.1) gives

(3.5) T(r, h) < T(r, L(f)) + T(r,P(z, /)) + 0(1).

Since a,- € £ / for all j = 1 , . . . , k, we obtain

(3.6) T(r, L(f)) ^(k + l)T(r, f) + S(r, f)

by the Milloux estimate, see [2, p. 55]. Further, since bj G £ / for all j = 2 , . . . ,n, we

obtain

(3.7) T{r, P(z, /)) = nT(r, f) + 5(r, /)
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by the Valiron-Mohon'ko theorem. Substituting (3.6) and (3.7) into (3.5) and applying
[4, Lemma 1.1.1], we see that, for every e > 0 and a > 1, there exists an R > 0 such that

(3.8) T{r, h)^(n + k + l+ e)T{ar, f),

provided r ̂  R. Then

,.v . . . logT(ar , / ) -
p(/l) < lim SUP —^ i—; —

r_»oo logr
log T(ar,/)

= hm sup

The second inequality p,{h) ^ //(/) follows similarly from (3.8). D

The following result offers a partial answer to the problem whether p(f) = p(h) and
fi(f) = n(h) may appear in Proposition 3.2.

PROPOSITI ON 3 . 3 . Suppose f is a meromorphic solution of (3.1) such that all
coefficients of (3.1) are in Cf. Denote n := degy P(z, / ) J? 2.

(a) Ifn > k + 2, then p(f) = p(h) and n{f) = n{h).

(b) IfN(r, f) = S(r, f), then p(f) = p(h) and /i(/) = »(h).

PROOF: By Proposition 3.2, it suffices to show that p(f) ̂  p(h) and fi(f) ̂  fj.(h).

(a) Write (3.1) in the form P{z, f) = -L(f) + h(z). Then, using (3.6), (3.7) and [4,
Lemma 1.1.1], it immediately follows that, for every e e (0,1) and a > 1, there exists an
R > 0 such that

(3.9) (n-k-l-e)T(r,f)^T(ar,h),

provided r > R. Since n ̂  A; + 2 by the assumption, the left-hand side of (3.9) remains
positive. Hence,

The identity / i ( / ) = n{h) follows in a similar way.

(b) By examining the proof of the Milloux estimate in [2, p. 55], we deduce that the
assumption N(r, f) — S(r, f) results in

(3.10) T(r,L(f))^T(r,f) + S(r,f).

By making use of (3.10), we get, corresponding to (3.9), that

(3.11) (n-l-e)T(r,f)^T{ar,h),

provided r ̂  R. Since n ̂  2 by the assumption, the left-hand side of (3.11) remains
positive. Exactly as in Part (a), we obtain Part (b). D

EXAMPLES. We now list some examples related to Proposition 3.2 and 3.3, which show
that all possible combinations between p(f), p(h) and oo may appear:
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(a) oo > p(f) > p{h). We offer two examples in this case:

(i) The first Painleve differential equation is clearly of the form
(3.1) with p(f) = 5/2 (see[6]) and h(z) = z.

(ii) See [1, Example 13.4] for a Riccati differential equation with
h(z) = 0 possessing a meromorphic solution / of order
q(2m + 1), where q, m € N can be chosen arbitrarily.

(b) oo > /?(/) = p(h). See Example 4.1 in the next section.

(c) co = p(f) > p(h). For every k € N, function f(z) — exp(z) + exp(exp(z))
satisfies

k k+\

j=\ j=2

(d) oo = p(f) = p(h). For every k € N, function f(z) — exp(exp(a;)) satisfies

The inequalities (3.8), (3.9) and (3.11) lead us to the following statement concerning
the types r ( / ) and r(h).

PROPOSITION 3 . 4 . Suppose f is a meromorphic solution of (3.1) such that
all coefficients of (3.1) are in Cj. Suppose further that 0 < p(f) < oo. Denote
n := deg / P(z, f) > 2.

(a) Ifn^ k + 2, then

(n-k- l)r(/) ^ r(h) ^(n + k + 1)T( / ) .

(b) IfN(r,f) = S(r,f),then

( n - l ) T ( / X r ( / i X ( n + l ) r ( / ) .

PROOF: Using Proposition 3.3, we may denote p = p(f) = p{h).
(a) Dividing (3.9) by rp, we obtain

T(nr h)
(3.12) (n - k - 1 - e)r(f) ^ limsup v ' ; = a"r(/i).

r-too Tp

Similarly, dividing (3.8) by rp, we obtain

(3.13) r{h) ^ (n + k + 1 + e) lim sup r ^ r ' ^ = (n + A; + 1 + e)apr(/).

By letting e —> 0 and a —> 1 in (3.12) and (3.13), we conclude the proof of Part (a).
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(b) Dividing (3.11) by rp, we get

(3.14) (n - 1 - e)r(f) «: limsup Z f c ^ l = a"r(/i).
r-»oo T?

By making use of (3.10), we get, corresponding to (3.8), that

(3.15) T(r, h) ^ (n + 1 + e)T(ar, /),

provided r ̂  R. Dividing (3.15) by rp, we get

(3.16) T[h) sj (n + 1 + e) limsup !&lll = (n + 1 + e)a>T(/).
r-Kx fP

Letting again e -> 0 and a ->• 1 in (3.14) and (3.16), we conclude the proof of Part (b). D

We close this section by giving a result on the ratio of the Nevanlinna characteristics
of the functions h and / . Note that there are no restrictions concerning n, k and p(f).

COROLLARY 3 . 5 . Suppose f is a meromorphic solution of (3.1) such that
all coefficients of (3.1) are in Cf. Let a > 1 be any fixed constant, and denote
n :-degfP(z,f). Then

lim sup ^y' ;. < n + k + 1
r-,00 T(ctr, f)

and

Suppose further that N(r, f) - S(r, f) holds. Then

T(r,h)
limsup —f—-r^n+1

and
.. . cT{ar,h) ^
lim inf —h—-r- >• n — 1.r—>oo T(r,f)

PROOF: The first two inequalities follow from (3.8) and (3.9), respectively, while
the remaining two inequalities follow from (3.15) and (3.11), respectively. D

4. MEROMORPHIC SOLUTIONS WITH FEW POLES

This section is devoted to pointing out a slip in [7], and offering a slight improvement

for [7] in the case n ^ 4. We start by giving an example which shows that [7, Theorem 1]

fails for n = 3.
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E X A M P L E 4 . 1 . Let Q(z),p(z) e Cx - {h: p(h) < 1}, let a,quq2 e C \ { 0 } , and let

Moreover, suppose that y/3 > 0, and denote

Hz) := !^(
9

Then, assuming ex = - ( 1 / 2 ) - ( \ / 3 /2 ) i and e2 = - ( 1 / 2 ) + (y/3/2)i,

and

are two solutions of
p(z)f" + Q(z)f+P(z)f3 = h(z),

such that fi £ ejf2, j = 1,2.

By substituting qi = -(\/3/4) - (3i/4), g2 = -(V5/4) + (3i/4), a = i, Q(z) = 0
and p(z) = 3, we see that the differential equation

(4.1) 3 / " + 4/3=-sin(3z)

has at least two meromorphic solutions, namely f\(z) = sin(z) and /2(z) = —(1/2) sinz
- (l/2)\/3cosz.

Observe that, for k ^ 3, (4.1) may be extended to

/(*-2) + 3 / « + 4 / 3 = - sin(3z),

which has the same two solutions / i and fa as (4.1).

Restricting ourselves first to the case n ̂  4, we may apply the ideas from the proof
of [7, Theorem 1], to obtain the following slight extension of [7]:

THEOREM 4 . 2 . Let f be a meromorphic function such that N(r,f) = S(r,f).
Moreover, let n, k be positive integers, with n ^ 4, let p(z) € £ / , p ^ 0, and iet
denote a linear differential polynomial in f,

where a.j{z) G £ / for all j — 0,... ,k such that not all a,j are identically zero. Moreover,

let h{z) be a meromorphic function. Iff is a solution of the nonlinear differential equation

(4.2)

then one of the following situations hold:
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(a) The equation (4.2) has / as its unique transcendental meromorpbic solution
such that N(r, f) = S{r, f).

(b) The equation (4.2) has exactly n transcendental meromorpbic solutions fj,

j = l . . . . . n . such that N(r,fj) = S(r,fj). In this case, L(fj) = 0 and
h(z) = -p(z)f?forallj = l,...,n.

(c) The equation (4.2) has / as its unique polynomial solution.

(d) The equation (4.2) has exactly n polynomial solutions fj, j — 1 , . . . , n. In
this case, L(fj) = 0 and h[z) = -pf?, p € C, for all j = 1 , . . . , n.

P R O O F : Suppose that (4.2) has at least two distinct transcendental meromorphic
solutions f,g such that N{r,f) = S(r,f) and N(r,g) = S(r,g). Then,

(4.3) . L(f)-L(g)-p(z)(fn-gn)=O,

and so

where F(z) = ( / — £\g)(f — £29) • • • ( / — £n-iff)- Here Cj ̂  1 are the distinct n:th roots
of unity. Now,

m(r, F) = m(r, i • L ( / j " ^ ( g ) ) - S(r, f - g) < S(r, f) + S(r, g)

and N(r, F) = S{r, f) + S(r, g) by assumption. Hence T(r, F) = S{r, f) + S(r, g).
Assume first that F = 0. Then / " = gn, and g = £jf for some j = 1 , . . . , n - 1.

By substituting this into (4.3), we have that L(f) — L(£jf) = (1 — £j)L(f) = 0, and so
L(f) = 0. Thus h(z) = -p(z)fn as asserted. Moreover, L{ejf) = 0 for all j = 1 , . . . , n-\.
Therefore, / , £ i / , . . . ,£n-if are the solutions of (4.2), completing the proof of the Part
(b).

Assume now that F ̂  0. Then

(4.4)

Now, if (g/f)(z0) — £j for some j = 1 , . . . ,n — 1, then either F(zo) = 0, or f{zQ)

Since T(r, F) = S(r, f) + S(r, g) and N{r, f) = S(r, / ) , it follows that

(4.5)

for all j - 1 , . . . , n - 1. We have by (4.4) that

fn—\
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where Q is a polynomial in g/f of degree n — 1 with constant coefficients. By Remark
following Theorem A,

(4.6) (n

On the other hand,

where Q is the same polynomial as to above. Again by Theorem A,

(4.7) (n ~ 1 ) T( r ' / ) + ° ( 1 ) = (n " 1 ) T(r' g) + ° ( 1 ) =

= (n-l)T(r,g)+S(rJ) +

Combining (4.6) and (4.7), we obtain

T(r,f) + S(r,f) = T(r,g) + S(r,g).

Hence S(r,g) = S(rJ), and so by (4.6),

Thus S{r,f) = S(r, (# / / ) ) , and, by the second main theorem [4, p. 48] and (4.5), we
obtain

n - 1

This is a contradiction, since we assumed n ̂  4. Therefore equation (4.2) may have only
one transcendental meromorphic solution such that N(r, f) = S(r, / ) , as asserted in Part
(a).

Suppose now that (4.2) has a polynomial solution / satisfying the assumptions of
the theorem. Then the coefficients p,ao,-..,ak must be constants. By Theorem 3.1, if
(4.2) has another meromorphic solution g satisfying the assumptions of Theorem 4.2,
then g has to be rational and, in fact, a polynomial, since N(r,g) — S(r,g). Therefore,
we may now assume that (4.2) has at least two distinct polynomial solutions f,g.

Exactly as in the first part of the proof,

( 4 . 8 )
 L(fs) = pF{z) = p ( / _

Moreover, since / and g are polynomials,

T(r, F) = m(r, F) = m(r, ~ ^ ) = 0(1),
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and so F has to be a constant. If F = 0, the same reasoning as for Part (b) results in
the situation of Part (d). To proceed, assume that F ^ 0. Since by (4.8)

n- l

we conclude that / - Ejg is a constant, for j = 1 , . . . , n — 1. Hence / and g must be
constants, a contradiction. Therefore, the equation (4.2) may have only one polynomial
solution, as asserted in Part (c). D

EXAMPLES. The following list of examples demonstrates that each of the cases (a)-(d)
may occur in Theorem 4.2.

(a) Suppose that / is a meromorphic solution of the differential equation

(4.9) 10/" + 16/5 = sin(5z) - 5 sin(3z).

We immediately see, by standard pole multiplicity consideration, that /
must be entire. Therefore by Theorem 4.2, f(z) = sin(z) is the unique
meromorphic, in fact entire, solution of (4.9).

(b) The equation f" + f + f4 = (sin z)4 has exactly four transcendental mero-
morphic solutions fj(z) = £jsin(z).

(c) The equation f'+f4 = z4 + l has exactly one polynomial solution f(z) = z.

(d) The equation / " + f4 — z4 has exactly four polynomial solutions fj(z)

= EjZ.

Returning back to the case n = 3 in Theorem 4.2, the proof of Theorem 4.2 shows
that if (4.2) has a polynomial solution, then either (c) or (d) holds, including the case
n — 3. On the other hand, Example 4.1 demonstrates that neither (a) nor (b) need to be
valid for transcendental meromorphic solutions in the case n = 3 and k ~£ 2 arbitrary. We
now proceed to show that (a) and (b) of Theorem 4.2 remain valid for n = 3, provided

THEOREM 4 . 3 . Let f be a transcendental meromorphic function, suppose n-3

and k = 1 and suppose that all the other assumptions in Theorem 4.2 hold. If f satisfies

the noniinear differential equation

(4.10) ai(z)f + ao(z)f - p(z)f3 = h(z)

then one of the following situations hold:

(a) The equation (4.10) has / as its unique transcendental meromorphic solu-

tion such that N(r, f) = S{r, / ) .
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(b) The equation (4.10) has exactly three transcendental meromorphic solu-

tions fj, j = 1,2,3 such that N(r,fj) = S(r,fj) for j = 1,2,3. Moreover

*i(z)f'i + ao{z)}j = 0, and h{z) = -p{z)ff for all j = 1,2,3.

PROOF: Suppose that (4.2) has at least two distinct transcendental meromorphic
solutions / , g such that N(r, f) = S(r, f) and N(r, g) — S(r, g). Then, similarly as in the
proof of Theorem 4.2,

(4 n ) -WC/-.1W.K/-.) . v[z)flz£ _„

where F(z) = (f — £ig)(f - £2ff)- Here £j ̂  1 are the distinct third roots of unity. Now,

and
N(r,F)=S(r,f) + S{r,g)

by assumption. Again, by repeating the reasoning in the proof of Theorem 4.2, we have
that S(r, g) = S{r, f) and T(r, F) = S(r, f) + S(r,g) = S(r,g/f). The case F = 0 leads
to the assertion of Part (b) exactly as in the proof of Theorem 4.2, and so we may assume
that F £ 0. Then,

(4.12)

Assume now that z0 S C is such that (g/f)(z0) = 1. Then (/ - g)(z0) = 0, which is
possible only when either F has a pole at z0, or one of the coefficient functions of (4.11)
has a pole or zero at ZQ. But this means that

and so, by (4.12) and by the second main theorem,

2

where £o '•= 1- This is a contradiction. Therefore equation (4.10) may have only one
transcendental meromorphic solution such that N(r,f) = S(r,f), as asserted in Part
(a). D
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