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Using marker-maps in marker-assisted selection
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Summary

A method of using information on the location of markers to improve the efficiency of marker-
assisted selection (MAS) in a population produced by a cross between two inbred lines is
developed. The method is closer to mapping QTL than the selection index approaches to MAS
described by previous authors. We use computer simulations to compare our method with
phenotypic selection and two selection index approaches, simulations being performed on three
genetic maps. The simulations show that whilst MAS can be considerably more efficient than
phenotypic selection differences between the three MAS methods are slight. Which of the MAS
methods is best depends on a number of factors: in particular the genetic map, the time scale
under consideration and the population size are of importance.

1. Introduction

A number of papers have now been published
examining the possibility of using marker-assisted
selected (MAS) to improve the value of quantitative
traits. Lande & Thompson (1990) developed a method
which, rather than attempting to estimate the location
of Quantitative Trait Loci (QTL), directly, uses
multiple regression of phenotype on marker-type to
estimate differences between marker groups, and then
combines these so-called marker effects with pheno-
typic information using a selection index. The
method works best when utilizing the linkage dis-
equilibrium between markers and QTL created by
crossing two inbred lines. Computer simulation studies
(Gimelfarb & Lande, 1994a; Zhang & Smith, 1992,
1993) have confirmed that the use of markers can
improve the efficiency of selection relative to selection
based solely on phenotypes, particularly when the
population size is large.

The only information about the relative positions of
the markers used by Lande & Thompson (1990) is the
linkage group to which a marker is assigned; in
general a linkage map of markers exists, and so it
seems sensible to consider whether the extra in-
formation about the estimated location of the markers
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embodied in this map can be used to improve the
performance of MAS. In this paper we develop a
method for map-based marker-assisted selection
(MBMAS) and, using computer simulations, compare
its performance with phenotypic selection and the
approach to MAS detailed by Gimelfarb & Lande
(1994a).

Our method is based on the ideas of interval
mapping. First introduced by Lander & Botstein
(1988) for a cross between two inbred lines, interval
mapping provides estimates of the location and the
'effect-size' of QTL. A point on the genome is
arbitrarily chosen and it is supposed that a QTL is
present at this point. The expected genetic contribution
of the marker interval in which this putative QTL is
located to the trait under consideration can then be
written as a function of the QTL effect for each
possible combination of marker alleles at the marker
loci flanking the QTL and, given the phenotypic
values and marker-types of a number of individuals,
maximum likelihood can be used to give an estimate
of the effect of a QTL at that location. Also, a
likelihood ratio test can be performed to test the
hypothesis that a QTL exists at this location. By
moving the putative QTL along the genome a
likelihood map can be constructed from which it is
possible, for each interval between markers, to test the
hypothesis that a QTL exists in that interval and to
estimate the QTL's position and effect.
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It has been shown (see Haley & Knott, 1992;
Martinez & Curnow, 1992) that proceeding as above
but using least-squares rather than maximum like-
lihood to estimate the size of the QTL effect produces
virtually identical results, despite involving the ap-
proximation of a mixture of normal distribution by a
single normal distribution. Least-squares has compu-
tational advantages over likelihood methods, par-
ticularly when considering a number of QTL sim-
ultaneously, and is therefore the approach used here.
More details follow in Section (i).

2. Method

We shall consider a cross between two inbred lines,
each assumed homozygous (for different alleles) at all
loci. We label the alleles at the rth QTL in the first line
Q(, and the alleles at the jth marker locus M}. The
alleles in the second line are labeled qt and m} in a
corresponding fashion. We assume that all QTL lie
within a marker interval, that is that there are no QTL
between the last marker locus on a chromosome and
the end of that chromosome.

For each individual in the population we know the
phenotype y and the number of M( alleles at the rth
marker locus, xt. From these we wish to construct an
estimate £ of the genetic value of the individual, z. We
tackle this problem in two stages: first we estimate the
size and position of the QTL, then we calculate z. We
describe the calculation of z first.

(i) Estimation of an individuals genetic value

The obvious estimate of z based on the phenotype y
and marker-type x = (xv x2, ..., xn) is the regression
of z on y and x, E(z\y, x). We next derive an
expression for E{z\y, x).

Suppose that there are n QTL, and let the number
of Qf alleles at the rth QTL for a particular individual
be described by gt, so that if the locus is Qt Qt, gt = 1,
if qt qt, gt = — 1 and if the locus is a heterozygote gt =
0, for / = 1, 2, ..., n. Then, assuming that the QTL
combine additively between and within loci, we can
write the genetic value of that individual as

phenotype and the marker-type. Writing/(y | g, x) for
the probability density function of phenotype con-
ditional on g and x and noting that given g this is
independent of the marker-type,

s f(y|g,x)/?(g,x)

f(y\*)p(x)

We shall assume that the phenotype conditional on
genotype has a normal distribution with known
variance so that

Furthermore, if we relabel the markers so that the rth
QTL locus is flanked by the marker loci xt and xt

(this notation introduces a degree of redundancy in
that markers may have more than one label), we know
that in the F2 derived from two completely homo-
zygous lines

/>(g|x)=

as we are assuming independence of recombination
events; i.e., Haldane's (1919) mapping function.
Given the position of the QTL relative to their flank-
ing markers p(g \ x) is easily calculated in the F2. For
subsequent generations, rather more work is required;
a method of estimating p(g{ | xt, xt ) from the marker
frequencies is given in Appendix 1.

Replacing the actual QTL locations and effects by
the estimates derived in Section (ii) below we have, in
principle, an estimator for z. However, this formula
for z involves summing over the 3" possible QTL
types, which makes this time-consuming when we
need to calculate z for reasonable numbers of
individuals. It is therefore useful to derive a compu-
tationally quick approximation for f = E(z\y,x). To
do this, write z, = atgt so that

where at is the effect of the rth QTL. If we knew the
location and effect of the QTL, we could calculate

z = E(z\y,x)

= 2 £ ... S Pte\y,x)T,atgi
g,—1 «2—1 «„ —1 i-l

where g = (g13 g2, ..., gj and p{g\y, x) is the
probability of getting a particular g given the

n 1

= 2 S a,.

Working as above,

/(Fix)
0)

and
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which is a mixture of Normal distributions. To
approximate E(z \ y, x), we shall replace this mixture of
distributions by a Normal distribution with the same
mean and variance, so that we assume Y\x ~ N(/i, a2)
where

n 1

fi=2,at 2 g,p(g,\x(i,xir)
t-i gi—i

and, if cr2
e is the environmental variance, and vt\x is

the variance due to the rth Q T L given the marker-
type,

tf(|x = a, 2 glp(gi\xtl,x(r)-\ 2 g(p(gi\xtl,x(r)\ ,
Lgj—1 \gt—i / J

where cr2 is given by

n

a2 = a2 + 2 v( | x.

There is no covariance term here because of the
conditioning on x. Similarly we replace f{y \ gt, x) in
eqn (1), by assuming that (Y\gt, x) ~ N(fit, a2) where

n 1

/«( = 2 ^ 2 gjPigj I xu, xu) + atg(

and

n

<A = c2 + 2 v, I x.

The approximation to E(z\y,x) so produced is
computationally fast, and seems to agree with the
exact method to an accuracy of more than 99 % for
five QTL and a heritability of 0-4. One would expect
the accuracy of the approximation to improve as the
number of QTL increases.

(ii) Estimation of QTL effects

To use z derived above, we need estimates of the
locations and effects of the QTL present. It would be
possible to use interval mapping methods to produce
these, but this would be both computationally
demanding and difficult to automate completely: see
Martinez & Curnow (1992) for the problems of
'ghost' QTL, for instance. Also it is known that, while
interval mapping can in general be relied on to place
a QTL in the correct marker interval, fixing the
position of the QTL within that interval can be
unreliable, and mapping accurately multiple QTL in
the same interval impossible.

Accordingly, we assume in estimating QTL effects
that each interval contains at most one QTL, and that
if an interval contains a QTL that QTL is located
midway between the two flanking markers. In other
words, we fit an interval effect that we hope will

accurately reflect the QTL within that interval. In the
rest of this paper we shall treat these interval effects as
if they represented 'real' QTL. We can now fit a
model with effects for any selected set of intervals by
regression mapping. If the selected intervals are labeled
1, 2, ..., k, the phenotypic value of an individual
whose marker-type at these intervals is represented by
x can be written

where /?0 is a mean term, at is the effect of the rth
interval, xt and x( , the number of markers at the loci
flanking that interval, gt the genotype at the
hypothesized QTL at the midpoint of that interval
and e an error term. Given the phenotypes and marker
types of n individuals, denoted by y} and x' for 7 = 1 ,
2, ...n we can then solve for a( using least-squares, i.e.
by minimizing

2fy>-/?0-2a<

with respect to /?„, a). If the error, e, had a normal
distribution this would give maximum likelihood
estimates for (/?„, a). However, even if the fitted model
was correct so that all QTL segregating in the
population were located at the midpoints of the
selected intervals - which is extremely unlikely — and
the underlying environmental error has a normal
distribution the distribution of e would be a mixture
of normals because individuals with the same marker-
types may have different genotypes.

The interval effects a can now be used to calculate
z = E{z\y,x) as described above.

(iii) Model selection

For the above approach to be useful we need a
procedure for deciding which set of intervals to
include in our model. First we take each chromosome
in turn and, using forward stepwise regression (Draper
& Smith, 1981) find the model with the smallest
residuals containing k of that chromosome's variables,
for k = 0, 1,2, ..., with no effects fitted on the other
chromosomes. In selecting the best model for each
chromosome - that is, selecting the optimum value for
k - we are trying to determine how many variables to
include in a regression. This is a difficult statistical
problem, but a commonly used criterion is Mallows
Cp (Draper & Smith, 1981).

For a particular model with p parameters - (p — 1)
interval effects plus a mean term - Mallow's Cp is
defined as

C =
SSE

-n + 2p
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where SSE is the error sum of squares from the model
under consideration, n is the number of observations
- here the number of individuals - and <r2 is an
estimate of the error variance a2 obtained by fitting
the full model, that is fitting effects for all the intervals
on a chromosome. The error variance here will include
the variance due to QTL on other chromosomes. Note
the form of Cv: the error sum of squares less a penalty
for the number of parameters included in the model.
We could choose as the best model the model
minimizing Cp. Gilmour (1995) points out that this
tends to result in overfitting and suggests the use of
adjusted Cv, Cp, given by

r _ 2(k-p + \)

have been fitted. The effects /?, are fitted by multiple
linear regression, i.e. by minimizing

c*> c » n-k-3

where k is the number of potential regressors; here k
is the number of intervals on a single chromosome.
Again this is the error sum of squares less a penalty for
the number of parameters included in the model. We
use Cv here, but it should be noted that even Cv

presents a risk of overfitting: Gilmour (1995) gives a
method for selecting models using hypothesis tests,
but this has not been used as it would be difficult to
automate.

The best models for each chromosome are pooled
to give a full model in which effects are included for
each interval selected by the chromosome by chromo-
some procedure. This full model can then be fitted to
the data.

We have now developed a method for using the
marker-map to estimate, in any generation, the
expected genetic value of an individual, given the
individual's phenotype and marker-type. These
expected genetic values can be used for selection. We
shall describe briefly an alternative approach intro-
duced by Lande & Thompson (1990) and further
developed by Gimelfarb & Lande (1994 a) which uses
information on the location of the markers only to
divide markers into linkage groups, and then compare
these two methods with selection based solely on
phenotype using computer simulations.

(iv) MAS by regression on markers

In the analysis of Gimelfarb & Lande (1994a) selection
is based on combining phenotype and the 'molecular
score', S, in an index I such that

I = y + bsS,

where, for any individual, the marker score S is given
by

Here fit is the additive effect associated with the rth
marker and s/ is the set of markers for which effects

i-l

where yt and x} are the phenotype and marker-type
respectively of the yth individual. Note that this is
equivalent to using a linear approximation

to the regression function E(z\y,x).
Gimelfarb and Lande (1994a) suggest using a two-

stage process to select the markers to include in j / . In
the first stage, each chromosome is taken in turn and
the 'forward selection process' used to select a
predetermined number of markers from those on that
chromosome. Next, the markers so selected for each
chromosome are pooled and the forward selection
process used to select a number, again predetermined,
of markers which make up the set stf. The simulations
of Gimelfarb & Lande (1994 a) show that an im-
provement in performance can be gained by repeating
this selection procedure in each generation, so that the
markers contributing to the marker score may change
between generations.

A linear index incorporating phenotype and marker
score is optimal when the marker score coefficient in
the tth generation, bs is given by

where tr^(t) is the phenotypic variance, cr|(/) the
variance accounted for by the markers and h\t) the
heritability of the trait, all in the ;th generation.
Substituting for

where <r\ is the environmental variance, this becomes

bs(t) = -

We have assumed that <T\ is known in the simulations
below.

It should be noted that this formula assumes that all
the variance explained by the markers is genetic: the
fact that the markers to be included in the index are
selected because they explain a high proportion of the
phenotypic variance will tend to result in this not
being true. This leads to more weight being placed on
the marker score than would be optimal; indeed, in
the simulations described below we often found that
bs became negative. In this case we set bs to 20, a value
arbitrarily selected to place nearly all weight on the
marker score.
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Note that in using this method we must decide how
many markers to include in the model: Gimelfarb &
Lande (1994 a) demonstrate that selecting either too
many or too few markers reduces the efficiency of
selection. There is no theory to guide us here; in
simulations this decision may be made on the basis of
trial and error but this is clearly not possible in
practice. The obvious solution to this problem is to
base a model selection procedure on Mallows Cv, in
similar vein to Section (iii). This has been done.

3. Simulations

Four methods were compared using computer simu-
lations. They were:

• selection based solely on phenotype;
• selection based on the multiple regression of

phenotype on single markers, the marker score
being combined with phenotypic information
using an index, as described in Section (iv), with
the number of markers included in the model fixed
(at 6, as in the BASE parameter set of Gimelfarb
& Lande, 1994a) (GLMAS);

• selection based on the multiple regression of
phenotype on single markers, the marker score
being combined with phenotypic information
using an index, as described in Section (iv), with
the number of markers selected using adjusted
Mallows Cp (MGLMAS);

• selection using information on the location of
markers as detailed in Section 2; that is, using the
estimation procedure described in Section (ii) in
conjunction with the model selection procedure of
Section (iii) (MBMAS).

In each case the model fitting procedure was repeated
every generation so that the intervals (for MBMAS)
or markers (for GLMAS and MGLMAS) for which
effects are fitted may change with time.

Simulations were done using two maps. The first
had 20 chromosomes, each of length 1 morgan; 5
marker loci were spaced evenly along each chromo-
some, with a marker located at each end of every
chromosome. Using the Haldane mapping function
this gives the probability of recombination between
two adjacent markers on the same chromosome to be
01967. Locations for 100 QTL were chosen from a
uniform distribution. We stress that the simulated
QTL were not constrained to the midpoints of the
intervals. The effect of these QTL, a, for / = 1,2,
100 was generated assuming that the amount of
additive genetic variance due to QTL may be
approximated by a power series, as by Lande &
Thompson (1990). That is, the variance due to the /th
QTL is Ara"-1' for constants a and k. Here a is a shape
parameter; we write a in terms of nB, the effective
number of loci (Lande, 1981),

_(Zf!0a')2_l+a
nE — y99 2( ~ 1 •

^-<_n U 1 — a

The simulations were performed with nE = 10, which
is the value used by Gimelfarb & Lande (1994a).
Given a, the constant k determines the genetic variance
<T%, fo r

/100 \

o-2 =var \'£laigi)
\t-i /

= 2 var (a( gt) + 2 2 cov (at gt, a} g})
i-1 i-l}<l

100 100

= 0-5A:2 2 a2""1' + k2 2 2 a(i+3"2) cov (gt, gj)

We wish to choose cr| to give the desired heritability;
given that the phenotypic variance was fixed at 1 in all
simulations, we require <rG = h2. This is done by
generating a large number of F2 individuals with
k = 1 and recording the genetic variance, V, for these
individuals. The QTL can then be rescaled by setting
k = h2/ V and these rescaled effects used to generate a
generation of F2 individuals on which MAS can be
performed. Positive and negative alleles were allocated
at random between the two lines. We refer to this map
as map 1.

In addition we used the map from Gimelfarb &
Lande (1994a); this has 110 markers evenly spread
over 10 chromosomes of length 1 morgan, with 25
QTL placed randomly on the map. Using the Haldane
mapping function this gives the probability of re-
combination between two adjacent markers on the
same chromosome to be 0-0906. We refer to this map
as map 2. As in Gimelfarb & Lande (1994), simulations
of two types were run. In the first, 'total coupling', the
effects of QTL are in the same direction; that is one of
the initial lines has all the alleles with positive effect on
that chromosome and the other line all the negative
effects. In 'total repulsion' QTL effects alternate in
sign along the genome. Neither total repulsion nor
total coupling is likely to occur in reality: they
represent extreme cases and are included here to show
the range of possible behaviour.

Note that results are grouped according to the
heritability in an F2 population. The fact that QTL on
the same chromosome are positively correlated in
coupling phase, but negatively correlated in repulsion
phase means that, with environmental variance fixed,
QTL effects must be larger in repulsion than in
coupling to give the same F2 heritability.

Simulations were run from 20 generations with
heritabilities 01 and 0-2, and 100, 200 and 400
individuals of each sex. The number of replicates was
varied with the population size: 40 replicates for 100
and 200 individuals and 30 for 400 individuals. In
every generation the top 20 % of individuals of each
sex are selected and paired at random: each pair is
then assumed to produce five offspring of each sex.
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4. Results

Figures 1—4 contain the simulation results obtained
for n = 100 and n = 400, where n is the number of
individuals of each sex, with a heritability of 01 . In all

0-8 i

0 - 7 -

-01 i
10

Generations

Fig. 1. Response to selection, as a proportion of the
genetic maximum: map 1, n - 100, h2 = 0 1 . O ,
Phenotypic selection; A , G L M A S ; *, MBMAS; •&,
M G L M A S .

0-9 H

00 4
10

Generations
Fig. 2. Response to selection, as a proportion of the
genetic maximum: map 2, n = 100, /i2 = 01. O O,
Phenotypic selection, coupling; A A, GLMAS,
coupling; * *, MBMAS, coupling; •& i%,
MGLMAS, coupling; O O, phenotypic selection,
repulsion; A A, GLMAS, repulsion; * *,
MBMAS, repulsion; •& •&, MGLMAS, repulsion.

0-8
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0-6
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00
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Fig. 3. Response to selection, as a proportion of the
genetic maximum: map 1, « = 400, h2 = 01. O,
Phenotypic selection; A, GLMAS; *, MBMAS; it,
MGLMAS.

09

0-8

10
Generations

Fig. 4. Response to selection, as a proportion of the
genetic maximum: map 2, n = 400, h2 = 0-1. O O,
Phenotypic selection, coupling; A A, GLMAS,
coupling; * *, MBMAS, coupling; •& •&,
MGLMAS, coupling; O O, phenotypic selection,
repulsion; A A> GLMAS, repulsion; * *,
MBMAS, repulsion; •& •&, MGLMAS, repulsion.

cases figures are given as percentages of the maximum
genetic value obtainable, that is the genetic value of an
individual possessing all favourable alleles. Standard
errors for these results are acceptable: for example for
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Table 1. Mean number of effects fitted each generation {gen): n = 400,
h2 = 0-1

gen

0
1
2
5

10
15
20

Map 1

MBMAS

18-4
18-2
18-4
14-4
8-6
60
5-4

MGLMAS

22-2
22-6
23-7
20-4
17-8
15-8
15-7

Map 2, coupling

MBMAS MGLMAS

19-3
200
210
17-6
133
100
80

21-2
21-2
23-2
21-5
180
15-8
15-2

Map 2, repulsion

MBMAS MGLMAS

19-8
21-7
20-8
19-0
18-3
14-2
91

22-4
25-3
241
24-2
22-7
200
17-0

Table 2. QTL frequencies: n = 400, h2 = 0-1, map 1

gen

0
1

Phenotypic selection 5
10
20

0
1

GLMAS 5
10
20

0
1

MGLMAS 5
10
20

0
1

MBMAS 5
10
20

QTL effects

01808

0-50
0-57
0-77
0-92
100

0-50
0-59
0-78
0-91
0-99

0-50
0-60
0-82
0-94
0-99

0-50
0-61
0-85
0-95
100

01479

0-50
0-56
0-74
0-89
0-99

0-50
0-64
0-81
0-93
0-99

0-50
0-62
0-86
0-95
0-99

0-50
0-62
0-84
0-94
100

- 0 1 2 1 0

0-50
0-43
0-22
008
001

0-50
0-40
0-23
Oi l
0-02

0-50
0-40
0-21
006
001

0-50
0-39
018
006
000

- 0 0 9 9 0

0-50
0-52
0-50
0-43
0-24

0-50
0-55
0-56
0-52
0-41

0-50
0-54
0-50
0-48
0-32

0-50
0-54
0-53
0-44
0-28

- 0 0 8 1 0

0-50
0-47
0-36
0-23
009

0-50
0-46
0-30
0-22
009

0-50
0-45
0-27
018
005

0-50
0-44
0-28
0-17
006

map 1 with a heritability of 01 and 100 individuals of
each sex standard errors in generation 10 are 00038,
00071, 00111 and 0-0071 for phenotypic selection,
GLMAS, MGLMAS and MBMAS respectively. In
general MGLMAS tends to have larger standard
errors than the other methods.

Results for n = 200 lie between those for n = 100
and n = 400. Results for h2 = 0-2 show an improve-
ment in the performance of phenotypic selection
relative to the MAS methods. This is a general trend:
as heritability increases so does the performance of
phenotypic selection relative to the MAS.

It is immediately apparent that in all cases pheno-
typic selection is inferior to all the marker-assisted
methods for at least ten generations and in most cases
for 20 generations. Differences between the marker-
assisted methods are generally small compared to the

difference between marker-assisted methods and
selection on the phenotype alone; however, the relative
performance of the marker-assisted methods depends
both on the time-horizon to be considered and on the
genetic map. The advantage of marker-assisted
methods over phenotypic selection increases with
decreasing heritability and increasing population size,
as found by Gimelfarb & Lande (1994a).

The maximum ratio of response to marker-assisted
selection to response to phenotypic selection occurs in
generation one or two and declines rapidly thereafter;
in contrast the maximum difference between MAS
and phenotypic selection occurs later, between
generations 5 and 10, and declines more gradually. It
is worth noting that, for all methods and maps,
population size affects the rate of improvement in
the first few generations much more markedly than it
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Table 3. Genetic andphenotypic variances: n = 400, h2 = 0-1, map 1

262

gen

0
1
2
5

10
15
20

pheno

0100
0093
0089
0069
0040
0022
0014

Genetic

GLMAS

0100
0081
0075
0056
0033
0020
0014

MBMAS

0100
0079
0073
0050
0026
0016
0010

MGLMAS

0100
0081
0074
0053
0027
0015
0010

Genetic due

GLMAS

0052
0029
0021
0012
0005
0003
0002

to markers

MGLMAS

0069
0041
0-035
0019
0007
0004
0003

Phenotypic

GLMAS

0074
0055
0048
0038
0034
0029
0026

due to markers

MGLMAS

0112
0079
0070
0056
0042
0042
0040

Genetic due to markers is the covariance of marker score with true genetic value; phenotypic due to markers the covariance
of marker score with phenotypic value. Pheno is phenotypic selection.

does the total response to selection achieved after 20
generations.

Gimelfarb & Lande (1994 a) noted that for map 2
MAS performs better in comparison with phenotypic
selection when the QTL are in coupling rather than
repulsion phase, because in coupling phase we
essentially have 'good' and 'bad' chromosomes.
Detecting and selecting for these good chromosomes
is much easier than attempting to disentangle the
individual alleles, as we must in repulsion phase. We
see the same problem in map 1, where the sign of a
QTL effect is chosen at random: the ratio of response
to MAS to response to phenotypic selection for map
1 is generally slightly less than for map 2 in repulsion
mode, probably because the markers are more widely
spaced.

Table 1 contains the mean number of effects fitted
by MGLMAS and MBMAS for each map with n =
400 and h2 = 01 . As one would expect the number of
effects fitted declines with time, and at each generation
MGLMAS fits more effects than MBMAS.
Surprisingly the mean number of effects fitted is
relatively insensitive to changes in the other para-
meters, although there is a slight increase in mean
number of effects with increasing n and h2. This is to
be expected: as n and h2 increase so should the number
of parameters it is possible to estimate accurately.

Differences between the marker-assisted methods
are less significant, although the worst performer
overall is clearly GLMAS. In all cases one, and
usually both, of the Mallow-based approaches is
superior to GLMAS in generations subsequent to the
sixth; for map 1 the Mallow approaches are always
superior whilst for map 2 in repulsion mode at least
one of the Mallow-based approaches is superior after
the third generation. GLMAS does best compared
with the two methods fitting a variable number of
effects using map 2 in coupling phase: indeed, for this
situation GLMAS is the best performing method in
the first few generations, particularly for n = 100. As
both MGLMAS and MBMAS fit considerably more
effects than GLMAS in early generations this
suggestions the routines based on Mallow's Cp may be

fitting too many parameters. MGLMAS and MBMAS
perform almost identically, although MBMAS has a
slight edge for map 1 with n > 100 and MGLMAS for
map 2 in coupling mode.

Table 2 gives the frequencies of the Q( allele at QTL
1, 3, 5, 7, 9 (where the QTL are ranked in order of
magnitude of effect) for each selection method with
map 1, n = 400 and h2 = 01. The most striking
feature of these tables is how quickly all the loci except
the seventh, which has effect —0099, become fixed.
Examination of map 1 reveals that the marker bracket
containing this locus (between the 66th and 67th
markers) also contains QTL of effect 0-0600 and
0-0180, so this is not surprising. The more sophisticated
methods (MGLMAS and MBMAS) are considerably
more successful at changing the frequency of the
seventh QTL.

5. Discussion

As we noted above, the optimum method in any
particular case depends both on the map and the time
horizon being considered. GLMAS fits few effects in
comparison to MGLMAS and MBMAS and does
best for map 2 in coupling mode, because we then
have 'good' and 'bad' chromosomes and it is possible
to select for these using relatively few markers, at least
in early generations. As this is rather a special case we
believe that the Mallow-based methods are to be
preferred except when the objective is to maximize
selection advance in the first or second post-F2

generation.
The fact that MGLMAS and MBMAS fit con-

siderably more effects than GLMAS in early
generations suggest that an improvement in
MGLMAS and MBMAS may result from modifying
Cp so as to increase the penalty imposed for including
an additional parameter. A harder, but potentially
more fruitful approach, may be to attack the cause of
this over-fitting: the fact that any variable selection
procedure leads to over-estimation of the variance
attributable to the selected variables. This leads to
bias in the parameter estimates and, as mentioned in
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section 2-4, to an over-estimation in the genetic
variance attributable to the markers. Some methods
for reducing this bias exist (Miller, 1990) but ap-
plication to this problem would be very comput-
ationally demanding.

That this bias is considerable is shown in Table 3,
where the actual genetic and phenotypic variances
attributable to the markers are displayed together
with the genetic variance remaining in the population
for map 1 with n = 400 and h2 = 01. Indeed, the
phenotypic variance attributable to the markers is
often greater than the genetic variance remaining in
the population, as we mentioned in Section (iv).
(Remember that the actual genetic variance attribu-
table to the markers is in real populations
unobservable, and that in computing the selection
index we substitute the phenotypic variance attribu-
table to the markers.)

Note that even if the actual genetic variance
attributable to the markers was used in calculating the
selection index the ratio of weight on marker score to
weight on phenotype would be high enough to ensure
that phenotype had little influence on selection,
particularly in later generations. This is inevitable
given the form of the selection index: with I = y + bsS
we have

and the genetic variance cr2
y(f) — a2 tends to zeros as t

increases. It follows that, no matter how small the
variance due to the markers cr|(0, bs must be large for
large t.

It is at first surprising, the MBMAS does not seem
to offer a considerable improvement over MGLMAS,
as it makes use of extra information in the location of
the markers and models the physical processes
involved in selection more closely than does
MGLMAS. There are two mathematical reasons why
we might expect such an improvement. Firstly, because
the known benefits of mapping QTL via interval
rather than single marker methods should lead to the
interval effects being better estimated than the marker
effects (see, for example, Lander & Botstein, 1988).
Secondly, one would hope that the £ used in the
interval method would be a better estimator of z than
the linear function zL, because £ acknowledges the
non-linearity of E(z\y,x). However, it is possible to
show (Whittaker, Thompson & Visscher, personal
communication) that when, as here, QTL combine
additively within and between loci, E(z | x) is a linear
function of x in F2 populations, i.e. that for m markers

for a set of constants kv This result has considerable
implications for marker-assisted selection and re-
gression mapping, which we shall address elsewhere.

Its importance here is in showing that zL differs from
E(z | y, x) only in the treatment of the phenotype: as
we have seen that in general little weight is placed on
the phenotype we would expect our estimators £ and
fL to be almost identical in the F2. The simulation
results presented here suggest that this is also true, at
least approximately, in subsequent generations. This
may also explain why MBMAS does best for map 1:
one would expect this optimal treatment of the
phenotype to be more important here than for map 2
as the markers are more widely spaced, and so less
informative about the QTL present.

One might also draw from this the conclusion that
more sophisticated methods of using information on
the location of markers will not improve the efficiency
of MAS greatly, and that there are only slight gains in
performance to be gained by weighting the marker
and phenotypic information more accurately. How-
ever, we see from Table 3 that after generation 10 over
80 % of the genetic variance cannot be explained by
the markers and this suggests that improved weighting
of information will result in more weight being placed
on the phenotype and improved response. More work
is needed to resolve this question fully, but it does
seem that improvements in efficiency should be more
easily gained by trying to improve the estimates of
QTL effects (for MBMAS) or marker effects (for
MGLMAS). An obvious way of doing this is to
develop a method of combining estimates across
generations: this should have a similar effect to
increasing the population size, and as we have seen
population size has a major effect on the efficiency of
MAS.

A number of simplifying assumptions have been
made in this paper. Relaxation of any of these
assumptions will reduce the advantage of MAS over
phenotypic selection, but in general this reduction
should not be too severe. For instance, the assumption
that markers are evenly spaced should not be crucial,
provided all inter-marker distances remain reasonably
small. Also, one would expect that the assumption
that QTL are additive could be relaxed without
changing the results substantially, since additive effects
can be estimated independently of non-additive effects
(Whittaker, Thompson & Visscher, personal com-
munication). This assertion is supported by Gimelfarb
& Lande (19946). The assumption that the lines are
completely inbred and in complete linkage dis-
equilibrium is probably of more importance.

6. Conclusions

The use of markers can offer a considerable im-
provement in response to selection over selection on
the phenotype alone. However, incorporating in-
formation on relatives by using a family selection
index gives higher genetic response rates than selection
solely on individual phenotype, so we may have
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overstated the value of MAS in practice. It should
also be stressed that the advantage of MAS declines as
heritability increases: it is of most value for traits of
low heritability. Using a marker map gives at best a
slight improvement on the simple regression on
markers approach. The conditions favouring each of
the marker-assisted approaches are not altogether
clear, but differences seem to be slight relative to the
differences between phenotypic selection and any of
the marker-assisted methods. We recommend the
selection of markers using Mallows Cp (or some
related criteria) as a more robust approach than the
inclusion of a fixed number of markers.

J.C.W. was funded by the BBSRC. C.S.H. and R.T.
acknowledge support from MAFF. We thank Peter Visscher
for helpful discussions of this work.
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Appendix 1: Derivation of an approximation for p(g,

The formula for £ derived above requires p(gt | x(i, x()
to be known, which they are in the F2, but in
subsequent generations selection and recombination

will change p(g( | xti, xt) in a complicated manner. We
shall attempt to estimate p{g( | x,, xt ) in later gener-
ations by reference to the marker-type frequencies,
p(Mh Mir), p(Mh, mt), p(mh Mt) and p{mh m(). These
are, of course, unknown, because we have no way of
determining the phase of the double heterozygote (xt

= 1, xi =1). Ignore this problem for now and assume
that the marker-type frequencies, p(M( Mt ), p(M(

ntir), p(mtiMt) and p(mtimlr) are known, so it makes
sense to write

PSMt Qt)Pt{M( \Mt Qt)

where the subscript t means that these are the
probabilities in the tth generation. Assume that in the
rth generation the linkage disequilibrium between the
rth QTL locus and the left flanking marker is equal to
the linkage disequilibrium between the rth QTL locus
and the right flanking marker, and denote this by Lt{t)
so that

as usual, with corresponding expressions for the other
pairs of alleles. It seems reasonable that

pt(Mtr\MtiQt)*pt{Mir\Q() (2 A)

that is most of the information about the allele at a
particular locus is provided by knowledge of the locus
closest to it; this is true exactly in the F2 but not for t
> 2, as is shown in Appendix 2. Substituting this
assumption into equation 1 A and then writing in
terms of the linkage disequilibrium gives

+ L((t)pt(Mi) +

r) + Li(t)pl(M()

(3 A)
PAQtV

with corresponding expressions for pl{Qi \ Mt mt ),
PtiQi I mh Mir) and pt(Qt \ mh mt).

To use these expressions we need to known pt(Qi)
and Lt(t). We shall now obtain an approximate
expression for Lt(t) in terms of the marker frequencies
and the linkage disequilibrium between the markers,
D,(t). Assuming pt(Mir \ Mh Qt) as pt{M(r \ Q() as above
(eqn 2 A),

pt(Mti Mir) « pt{Mh Qt)pt{Mir | &)

= Pt(MtQ()
Pt(Qt)
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Writing in terms of allele frequencies and linkage
disequilibrium and simplifying we get

L (t\2

Producing the corresponding expression for pt{Mt

mt), pt{m( Mt ) and pt{tn( mt ) shows our assumption
that pt(M'tr\M(iQJ=pt(Mtr\Qd is only true if Dt(t),
the linkage disequilibrium between the flanking
marker loci, is

D((t) =

Thus a reasonable estimator of Lt{t) would be

where Dt{t) is the usual estimator of D^t),

4 ( 0 = pt(Mu Mir)pt{mh mir)-pt(Mu mir)pt(mti Mif).

This still leaves the problem of estimating p£Q(); we
do this using the conditional probabilities p(Qt | . . )
from the previous generation in the following manner.
First consider the F2. The probabilitiesp2 (Qt|..) and
p2(Qi) are known, as is the linkage disequilibrium,

that the marker combinations Mti Mtr, M(i m,r, mi{ mlr

and mt m( occur in the same frequencies in the double
heterozygote individuals as they do in the population
with double heterozygote individuals removed. For
example,

pt{Mlmir)=p't{MiiMlr){\ -Pt{xti = \,xir = 1)

't(Mh mir)p't(m(i Mlr)+p't{Mh Mlt)p't(mh mf)\'

Appendix 2: Dependence of conditional allele
frequencies on non-proximate marker-types

We shall show that in the Fp p(M(i \QtMt)+ p{Mi% I
e ^ f o r y > 2 .

Proof. Suppose that in the Fj we have the gametes

with frequencies xx, x2, ..., xs respectively. Then,

where rt is the rate of recombination between the QTL
and the flanking markers (see Appendix 2). Therefore
we can work out p3(Qi) by summing over the four
possible marker types,

Mh Mir)p2{Mh Mir)+p2(Qt | Mh mir)

x, +x9

+Pi(Qi I mh Mir)p2(mh M(r) +p2(Qt \ m,( mj
P-kmi™0
and using the equations for p2(Qt | . .) derived above
(eqn 3 A). This value of p3(Qt) can then be used to
calculatep3(Qt|..) using equations forp2(Qt\..), and
in turn p3(Qt | . . ) and the marker frequencies such as
p4(MtiMir) used to calculate p4(Q(). Continuing the
process allows us to track changes in gene frequency
and linkage disequilibrium through time.

(i) Dealing with double heterozygotes

In the above we assume we can observe the marker
frequencies such as p(Mt Mt ). This is impossible for a
double heterozygote xt[ = 1, x(r = 1; we do not know
whether its marker genotype is M^ MtJmfi m(i or Mt

mtjmti Mir. We deal with this by first counting marker-
types omitting the double heterozygotes to get p't{Mi

M( ),p't(M( m, ). Then we assign haplotypes to double
heterozygotes using p[{) to generate pt{), assuming

whilst

p(Mit\Qt) =

so that p{Mh | Qt Mir) = p{Mu \ Qt) if and only if x2xb

= x1x6.
This completes the proof, for we have shown that

p(Mh | ft Mir) = p(Mh | Qt) if and only if p(Mu Q^)
p{mtlQtMir) = piM^M^pim^m^), which is in
general false because of the effect of selection.

Note that in the F2 we have

h Qtmir) = p{mh Q(Mt) = 0-5r(l -r)

iQtmtT) = 0-5(1 -rf

and similarly for q(, where r is the chance of a
recombination between the QTL and, say, the left-
hand marker loci (remembering that we are supposing
QTL are located in the centre of marker intervals).
Thus,

p(Mh Qtmtr)p(m(i QtM,r) = O25r2(l -rf

= P(Mh Q, M,r)p(m(i Qi mt),

which implies that p(M( \QtM() = p(Mt \ Q() in the
F2. Furthermore, p(Mt Qt) = 0-5(1 — r) so, because
p{M( Qi) = p(M{ )p(Qt) + Lt, we know that the linkage
disequilibrium in the F2 is Lt = 025 —0-5r.
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