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Several methods have been proposed to characterize the complex interactions in turbulent
wakes, especially for flows with strong cyclic dynamics. This paper introduces the concept
of Fourier-averaged Navier–Stokes (FANS) equations as a framework to obtain direct
insights into the dynamics of complex coherent wake interactions. The method simplifies
the interpretations of flow physics by identifying terms contributing to momentum
transport at different time scales. The method also allows for direct interpretation
of nonlinear interactions of the terms in the Navier–Stokes equations. By analysing
well-known cases, the characteristics of FANS are evaluated. Particularly, we focus on
physical interpretation of the terms as they relate to the interactions between modes at
different time scales. Through comparison with established physics and other methods,
FANS is shown to provide insight into the transfer of momentum between modes by
extracting information about the contributing pressure, convective and diffusive forces.
The FANS equations provide a simply calculated and more directly interpretable set of
equations to analyse flow physics by leveraging momentum conservation principles and
Fourier analysis. By representing the velocity as a Fourier series in time, for example,
the triadic model interactions are apparent from the governing equations. The method
is shown to be applicable to flows with complex cyclic waveforms, including broadband
spectral energy distributions.

Key words: turbulence theory, Navier–Stokes equations

1. Introduction

Turbulent wakes and jets exhibit complicated physics related to flow nonlinearity. As a
result, there have been many methods proposed over the past few decades to investigate
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the underlying characteristics of turbulent flows (e.g. as detailed in Picard & Delville
2000; Noack et al. 2003; Qing 2004; Chen, Tu & Rowley 2012; Sieber, Paschereit &
Oberleithner 2016; Schmidt 2020). These methods have been successful in representing
the flow dynamics underlying complex systems, but it remains that the interpretation of
these representations in the physical domain is often difficult and non-intuitive. We aim
to address this shortcoming by introducing a technique that allows for the direct physical
interpretation of the forces that affect the flow at each time scale.

There are several approaches to analyse fluid systems through dimensionality reduction.
Two well-established methods are proper orthogonal decomposition (POD; Lumley
1970) and dynamic mode decomposition (DMD; Chen et al. 2012), which are linear
decompositions of the flow dynamics. In POD, singular value decomposition (SVD) is
performed on flow data, where SVD optimizes the modes in terms of energy content, so
the large-scale dynamics is captured compactly. For instance, Wang et al. (2022) used
POD on the streamwise component of a boundary layer to investigate the properties
of wall-attached eddies, arguing that the resulting modes were a strong statistical
representation of the eddies. He et al. (2021) used POD to compare the processes of
wake asymmetry and switching on two Ahmed body models, using the modes to aid
analysis of the two mechanisms. While interactions between modes can be identified, e.g.
through phase portraits of the temporal dynamics or establishing a dynamical system that
relates them (Noack et al. 2003), the physical interpretation of these interactions remains
challenging. Likewise, one limitation of POD is that isolating the highest-energy modes
does not always capture important dynamics. Low-energy modes can be important to the
evolution of a flow as noted by Rowley & Dawson (2017).

In DMD snapshots of the flow variables are used to identify a sparser set of dynamics
(Schmid 2010). Dynamic mode decomposition ‘fits’ an approximate linear system that
describes the transitions between a series of flow snapshots. There is a rich mathematical
background to DMD through its connection to the Koopman operator, as described for
instance in Chen et al. (2012). There are several variant methods derived by changing
the optimization target or adding a mode-ranking process, e.g. in the optimized DMD
of Chen et al. (2012) or recursive DMD of Noack et al. (2016). An early example on
the topic is the jet study of Schmid et al. (2011), where it was shown that DMD could
successfully isolate the large-scale structures, frequencies and forcing response of jet
flows from particle image velocimetry and schlieren snapshots. Gómez et al. (2014) used
DMD on a turbulent pipe flow, where they successfully linked DMD results about the
energy and frequency content of the turbulence to predictions from resolvent analysis. That
investigation showed how DMD results could connect to the fundamental fluid dynamics
equations. However, this connection required an external method in the form of resolvent
analysis. The study of Jang et al. (2021) on oscillatory flow over a surface-mounted
circular cylinder showed that DMD was able to accurately model the bed shear stress with
relatively few modes, but required a large number of modes to represent the flow around the
cylinder body. This highlights the potential difficulties and limitations regarding sparsity
in DMD representations.

Proper orthogonal decomposition and DMD are widely and successfully employed, but
gaps remain in their applicability and interpretability. The POD method loses dynamical
information due to averaging, and returns modes that are only coherent in space. It
can also result in modes that contain contributions from several time scales, reducing
interpretability. Meanwhile, DMD does not have an energy optimization procedure,
and will restrict modes to single frequencies, which may not be desirable in flows
with broadband frequency content. Two distinct methods have been introduced that
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Momentum analysis of complex time-periodic flows

address these shortcomings. The first corresponds originally to a formulation of POD
used by Lumley (1970) and named spectral POD by Picard & Delville (2000), which
was then formalized by Towne, Schmidt & Colonius (2018). The method investigates
the decomposition of the cross-spectral density tensor. From flow data, this can be
implemented as a series of SVDs performed on ensembles of Fourier modes. The
structures identified by this method are claimed by Towne et al. (2018) to evolve coherently
in space and time, unlike those identified by basic POD or DMD. The modes found by this
method correspond to individual frequencies due to the Fourier decomposition and are
optimized in terms of energy due to the SVD.

The second method, proposed by Sieber et al. (2016), achieves spectral separation
directly from time-domain data using a filter applied on the correlation matrix, typically
the snapshot matrix of Sirovich (1987). The filter is implemented through a convolution
of the correlation matrix coefficients with a windowing function of custom width (Sieber
2021). The method recovers the Fourier modes and power spectral density of the flow in
the limit of filtering over the whole window. This approach, also identified as spectral POD
by Sieber et al. (2016) and several subsequent studies, allows for ‘much better separation
of individual fluid dynamic phenomena into single modes’ (Sieber et al. 2016) than either
POD or Fourier modes.

While these data analysis methods are useful for educing structures or dynamics of
particular flows by offering simplified representations, they conspicuously do not include
a direct connection to the physical processes that are involved. This would be useful when
the complexity of the full Navier–Stokes equations should be avoided. For instance, a
common application is a Galerkin projection of the governing equations onto the spatial
modes. This approach is useful when short-term predictions of the flow dynamics are
desirable. However, this does not provide spatial information for characterizing regions
where nonlinear interactions are important.

Other nonlinear analysis methods include higher-order spectral methods (Qing 2004),
which introduce the idea of the ‘bispectrum’. The bispectrum is used to characterize
relationships between Fourier modes of a nonlinear system, specifically by measuring the
degree of correlation between triads of frequency or wavenumber components. This makes
it natural for analysing systems with quadratic nonlinearity, such as incompressible flows
described by the Navier–Stokes equations. These triadic interactions between structures
at different wavenumbers have been successfully applied, for example to the turbulent
kinetic energy cascade (Durbin & Pettersson 2011). However, interactions between modes
of different frequencies have been less extensively studied. Recently, the bispectral modal
decomposition (BMD) was proposed by Schmidt (2020), which is a promising method to
analyse triadic interactions through a specialized reduced-order method that maximizes
the bicorrelation between frequency or wavenumber components of a flow. However,
the method cannot directly relate the magnitude of the nonlinear interactions to the
physical transportation processes that govern the flow, and relies on coincidence of local
components of Fourier modes.

Here, we explore a new technique, initially proposed by Freeman, Hemmati &
Martinuzzi (2022) and further explored in Freeman, Martinuzzi & Hemmati (2023),
in which momentum equations for individual Fourier modes can be analysed term by
term. Specifically, this method focuses on decomposing the Navier–Stokes equations
into a Fourier series in the temporal domain. This approach is conceptually different
from spatial Fourier analysis of the flow, which has been examined in three-dimensional
flow transitions (e.g. Barkley & Henderson 1996; Gioria et al. 2009), and evolution
of the energy spectrum (Orszag 1970). The ‘Fourier-averaged Navier–Stokes’ (FANS)
technique derives individual momentum equations at each time scale in terms of temporal

979 A50-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1067


B.R.S. Freeman, R.J. Martinuzzi and A. Hemmati

Fourier modes for pressure and velocity. Temporal Fourier decomposition enables the
analysis of recurring events in the flow. The method aims to analyse the contribution
of pressure, diffusive, convective and unsteady momentum fluxes to budgets at specific
time scales, which constitutes the key novelty of the work. This strategy is analogous
to analysing the turbulent kinetic energy transport terms that arise when studying the
Reynolds-averaged Navier–Stokes equations. The current research proposes that analysing
these momentum budgets is useful to directly identify the processes that govern the flow
physics. By evaluating the convective coupling between Fourier modes, this method also
allows for direct comparison of triadic interactions to other momentum fluxes. The method
relies on well-known data processing techniques (Fourier decomposition and numerical
gradient approximation) which aids the physical interpretation of the results. To evaluate
the application of FANS for analysing the momentum balance of complex flows, three
case studies are considered: periodic flows in (i) the wake of a square cylinder and (ii)
swirling jet as well as (iii) the cyclical but non-periodic flow around two cylinders arranged
side-by-side. Here, periodic flows refer to those that repeat regularly in time, while cyclic
flows refer to any case with recurring patterns, whether they are regular or irregular. The
square cylinder serves to illustrate the methodology on a simple case. The jet flow shows
the application of the method in a case where there are a large number of energetically
important frequencies and additional complexity due to the swirl. Finally, the dual cylinder
case illustrates the application when the frequency signature does not only consist of a
single dominant frequency and harmonics. A comparison with the BMD analysis is also
provided.

The structure of the paper is as follows. First the derivation of the FANS equations is
detailed and the terms are labelled and interpreted. A brief overview of the BMD is also
presented for context. Subsequently, case studies are conducted and discussed. Finally, a
few concluding remarks are made.

2. Methods

Overviews of the methods used in this paper are presented in two parts. We begin by
deriving the FANS equations and providing the physical interpretation of different terms
therein. Then, we proceed with a brief review of the BMD and its derivation, which is
referred to later on in the case studies.

2.1. Fourier-Averaged Navier–Stokes equations
The FANS approach assumes a Fourier series representation to the solution of the
governing equations to arrive at a decomposition of the momentum equations. The goal
of this decomposition is to elucidate the momentum transfer processes at different time
scales. The derivation is briefly summarized here, and the detailed formulations are shown
in Appendix A. Starting from the incompressible, non-dimensionalized Navier–Stokes
equations:

∂u
∂t

+ (u · ∇)u = −∇p + 1
Re

∇2u, (2.1)

where u is the velocity field and (represented in bold as a vector quantity) and p is the
pressure field, we assume these fields satisfy Fourier series over an interval T:

u =
∞∑

m=−∞
ûm exp( j2πfmt) (2.2)
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and

p =
∞∑

m=−∞
p̂m exp( j2πfmt). (2.3)

Here, j = √−1, f = 1/T is the frequency and the spatially varying, complex-valued
coefficients of the Fourier series (ûm, p̂m) are called the velocity and pressure modes with
mode number m. Inserting this ansatz into the Navier–Stokes equations yields

∂

∂t

∑
m

ûm exp( j2πfmt)+
∑

m

(
ûm exp( j2πfmt)

) · ∇
∑

n

ûn exp( j2πfnt)

= −∇
∑

m

p̂m exp( j2πfmt)+ 1
Re

∇2
∑

m

ûm exp( j2πfmt). (2.4)

As differentiation is linear, the derivative operators may be brought into the summations:∑
m

ûm
∂

∂t
exp( j2πfmt)+

∑
m

∑
n

(ûm · ∇)ûn exp( j2πfmt) exp( j2πfnt)

=
∑

m

(
−∇p̂m + 1

Re
∇2ûm

)
exp( j2πfmt). (2.5)

Using the orthogonality of the Fourier basis functions (exp(j2πf kt)), an equation for a
momentum balance for each mode (ûk) can be obtained. The resulting momentum balance
at the time scale corresponding to each mode can be expressed in terms of that mode and
the other Fourier modes:

j2πf kûk + (U · ∇) ûk + (
ûk · ∇)U = −∇p̂k + 1

Re
∇2ûk −

∞∑
n=−∞
n /= 0,k

(
ûk−n · ∇) ûn. (2.6)

Here, U represents the mean flow. The physical interpretation of the terms are detailed
in table 1. Convective interactions between phenomena at different frequencies are of
particular interest as they are triadic in nature. For convenience for the rest of this paper,
the inter-mode convection term will be written as

χ̃ [ûk] =
∞∑

n=−∞
n /= 0,k

(
ûk−n · ∇) ûn. (2.7)

We refer to these terms as the Fourier stresses by way of analogy to the Reynolds stresses.
It suggests a series of kinetic energy equations for each time scale, similar to the turbulent
kinetic energy equation that arises due to the closure problem in the Reynolds-averaged
Navier–Stokes equations.

The momentum equation can be written to highlight the processes that affect the rate of
change of a mode:

j2πkf ûk = − (U · ∇) ûk − (
ûk · ∇)U − ∇p̂k + 1

Re
∇2ûk − χ̃ [ûk]. (2.8)

The left-hand side represents the contribution to the unsteady fluctuations at a point in
space at a time scale (kf )−1. Note that the unsteady term (UT) at frequency kf is a scalar
multiple of the velocity mode ûk.
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Term Interpretation

j2πf kûk Unsteady

(U · ∇)ûk + (ûk · ∇)U Mean-flow convection

−∇p̂k Pressure
1

Re
∇2ûk Viscosity/diffusion

∞∑
n=−∞
n /=0,k

(ûk−n · ∇)ûn Inter-mode convection

Table 1. Interpretation of individual FANS terms.

In practice, this process will be applied to experimental or simulation data that are
discretely sampled. As a result, the modes are constructed from a discrete Fourier
transform of the N snapshots, un:

ûk =
N−1∑
n=0

un exp(−j2πfkn), (2.9)

where fk = k/N. The exp(−j2πfkn) factors are basis vectors with a useful orthogonality
property that allows us to find the momentum transport processes for each mode. Using
a discrete approximation of the momentum equations, we can find the following discrete
version of (2.8):

j2πfkûk = −C[U, ûk] − C[ûk,U] − G[p̂k] + 1
Re

L[ûk] − χ [ûk], (2.10)

where C[. . . ] is a discrete convection operator, G[. . . ] is a discrete gradient, L[. . . ] is a
discrete Laplacian operator and χ [ûk] = ∑∞

n=−∞
n /= 0,k

C[ûk−n, ûn]. In the case of simulation

data, it is recommended that these operators are selected to be the same as those used to
set up the system of equations. Using the same operators is advantageous as it may limit
new discretization errors.

Interpretation of the terms in the FANS formulation reveals how flow dynamics can be
explored. In (2.10), the unsteady term – and thus the mode – can be isolated and calculated
as a balance of forces due to convection, diffusion and pressure. This separates the
contributions of each force to the momentum balance and allows for comparison of their
magnitudes. Likewise, analysing phases of the terms shows whether the forces are locally
enhancing or resisting the unsteady fluctuations (UT). Forces that are in phase increase
the magnitude of the UT, while forces that are out of phase resist it. Both location and
frequency data can be used to associate forces with the physics. For instance, the locations
and time scales associated with a particular structure can be used to identify which forces
are significant in the evolution of that structure. If there are several frequencies associated
with a particular structure, a summation of those frequencies can be used to investigate the
relationships between forces that act on it.

The FANS formulation may also be used to identify nonlinear interactions between
modes directly by estimating the convective term that drives them. Namely, the term
ûn · ∇ûk−n represents the driving force of a triadic interaction between modes k, n
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and k − n. Since this term transmits momentum between modes, it must also redistribute
energy. As a result, an energy balance may be performed, which indicates the directionality
of energy transfer between terms. It can be shown (Appendix B) that, for incompressible
flows with no applied pressure gradient and steady boundary conditions, the global energy
for a fluctuating mode k /= 0 is∫

Ω

j2πfk‖ûk‖2 dV +
∑

n

�Ek
n = −ν

∫
Ω

‖∇ûk‖2
F dV, (2.11)

where Ω is the domain, ‖·‖2 is the vector norm, ‖·‖2
F is the Frobenius norm and �Ek

n is
defined as

�Ek
n =

∫
Ω

((
ûk−n · ∇) ûn

) · û∗
k dV. (2.12)

As shown in Appendix C, the phase of the terms in (2.11) is important. The first
term, which corresponds to the energy of the velocity fluctuations, is strictly imaginary.
Meanwhile the third term, which corresponds to the dissipation, is strictly real. Finally,
there is an important energy transfer relationship between modes n and k, where the
transfer term �Ek

n can be found in the equation for mode −n:

�E−n
−k =

∫
∂Ω

(
ûn · û∗

k
) (

ûk−n · n
)

dS −�Ek
n. (2.13)

As discussed in Appendix B, in many cases the first term of the right-hand side vanishes,
resulting in a symmetry property where �Ek

n = −�E−n
−k = −(�En

k )
∗. The form of this

symmetry arises due to the convention for the Fourier decomposition of the real velocity
field. Using (2.13) together with (2.11), the magnitude and direction of energy transfer
between modes ûk and ûn can be identified. Note that there are multiple pathways
between modes, as ûk and û−k represent the same motion. Therefore, the total energy
transfer between motions at | fk| and | fn| requires the combination of all associated
energy exchanges, �Ek

n +�Ek−n + (�E−k
n +�E−k

−n)
∗, upon invoking properties found

in (B9). The real part of the resulting transfer would represent the net energy transfer
between motions, and the imaginary part would represent conservative exchanges. Further
discussion on physical interpretation of symmetry and symmetry-breaking features of the
energy decomposition deserves a thorough analysis in a separate study.

The stated properties assume that real-valued data are analysed, such that û−k = û∗
k .

However, it can be shown that similar properties hold for complex, spatially decomposed
fields. An example of input data consisting of a Fourier spatial decomposition is discussed
in Appendix B. The properties of the Fourier stress term χ [ûk] and corresponding energy
transfer �Ek

n are investigated in later sections.

2.1.1. Calculation of FANS terms
Two methods can be used to calculate the terms from flow-field data. The first option
is to calculate the Navier–Stokes terms on the original snapshots and then apply the
discrete Fourier transform on each set of terms. The other option is to apply the discrete
Fourier transform to the snapshots and then calculate the FANS terms from the modes.
For the UT, diffusion, pressure and mean-flow convection terms, these two methods are
equivalent. However, the first method allows the Fourier stresses to be calculated quickly
by calculating the derivatives in the time domain, whereas the second method requires
calculating a sum of N convection terms in the frequency domain for each of the N modes.

979 A50-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
67

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1067


B.R.S. Freeman, R.J. Martinuzzi and A. Hemmati

The derivation of FANS that results in (2.10) implies a single, long-time box window
including all available data. As a result, the standard rules apply with regards to sampling
frequency and window size. The analysis window must be sufficiently large to allow for
good frequency resolution. Furthermore, the use of discrete Fourier transform in this case
indicates that FANS is useful in cases where energy is concentrated in limited ranges of
frequencies.

2.2. Bispectral mode decomposition
The BMD, introduced by Schmidt (2020), is a modal decomposition used to identify
the locations of triadic interactions. The method specifically aims to extract modes that
‘exhibit quadratic phase coupling over extended portions of the flow field’. This is done by
means of a spatial integration. Bispectral mode decomposition is a data-based method that
uses the phase coupling relationship as a proxy to identify interactions between modes,
which contrasts to FANS, which uses physical arguments to identify interactions.

Interested readers are referred to the original derivation in Schmidt (2020), the basic
overview and results of which are included here for completeness. The method is derived
to be general for any process that can be described as a set of quadratically nonlinear partial
differential equations. The quantity of interest for BMD is a vector of complex expansion
coefficients ak,l = ai

k,l for each triad (k, l, k + l) that maximizes the quantity

a1 = argmax
‖ak,l‖=1

∣∣∣aH
k,lQ̂

H
k◦lW Q̂k+lak,l

∣∣∣ , (2.14)

such that
λ1 = aH

1 Q̂
H
k◦lW Q̂k+la1. (2.15)

The superscript ‘H’ represents the conjugate transpose of a vector or matrix. The quantity
λ1 can be interpreted as representing a maximized bicorrelation for a particular triad.
Term W is a weight matrix that is used to approximate spatial integration, and Q̂k◦l =
[q̂0

k ◦ q̂0
l · · · q̂n

k ◦ q̂n
l ] (where q̂k ◦ q̂l is the elementwise product of two vectors) and Q̂k+l =

[q̂0
k+l · · · q̂n

k+l] are matrices formed from the Fourier modes (q̂i
k) of sequences of snapshots

that have been split into n blocks.
Once the maximizing expansion coefficients have been calculated, the desired modes of

BMD can be obtained:

φk+l = Qk+la1, (2.16)

φk◦l = Qk◦la1, (2.17)

ψk,l =|φk+l ◦ φk◦l|. (2.18)

Here φk+l is named the ‘bispectral mode’, and represents the resultant mode of the triadic
interaction, φk◦l is the ‘cross-frequency’ mode and represents the effect of the input
modes and ψk,l is deemed the ‘interaction map’ and shows the magnitude of the local
bicorrelation between the triads. The values of λ1 for all triads [k, l, k + l] are known
as the mode bispectrum and represent the relative magnitudes of interactions, evaluated
globally.

2.3. Discussion of methods
These two flow analysis techniques (BMD and FANS) may be related on the basis that
they both utilize the Fourier decomposition of the Navier–Stokes equations in time.
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However, their formulations entail substantially different analytical capabilities. The BMD
technique begins with an approximation of the source of the triadic interactions and
uses an optimization algorithm to detect interactions based on that assumption. Only
approximations of the momentum-based processes that lead to the interactions are possible
as a result. Likewise, it is not possible to distinguish between the effect of pressure
and other processes in this context. On the other hand, FANS directly operates on the
momentum transport terms and can therefore identify the relationships between them.

The optimization process involved in the BMD analysis makes it robust to noise
(Schmidt 2020), since it requires multiple windows and allows for additional signal
processing steps in advance. However, the maximization (‘numerical radius’) calculation
is not invertible, which may reduce the interpretability of the resulting modes through
loss of information. Meanwhile, FANS entails fewer signal processing steps. This reduces
the robustness against noise, but the implied single data window reduces the constraints
regarding data volume. The FANS technique also does not entail any irreversible or
difficult-to-interpret processing steps. This makes the method more interpretable, and
improves direct analysis and comparison. Like other techniques, there are limitations in
interpreting planar or two-component velocity data with FANS, when the real flow has
strongly three-dimensional character.

In this way, the two methods are best understood as complements to one another
that have similar origin and application, but different strengths. In particular, BMD is
widely applicable to many experimental or simulation set-ups. However, it compromises
on interpretability, approximations of the key physics and the required number of
samples (observation window size). On the other hand, FANS directly interrogates the
physical laws of fluid flow, which improves interpretability, but entails stricter spatial data
requirements. Application of the FANS flow analysis technique to fully featured, spatially
and temporally resolved data (i.e. simulation results) is explored here, while sensitivity to
noise and limited data forms the basis of our future work.

3. Case studies

Three case studies are considered to describe the application of FANS and the physical
interpretation of its results. Two periodic (regularly repeating) cases, flow over a square
cylinder and a swirling jet impinging on a wall, and a cyclic but non-periodic (irregularly
repeating) case of two side-by-side cylinders are analysed for this purpose. The data are
obtained from direct numerical simulations completed in OpenFOAM and the results
are validated against existing results in the literature. The case studies are presented in
order of increasing complexity, starting with the simple, two-dimensional case of flow
around a square cylinder where the fluctuations are well described by the mean and
two most energetic Fourier modes, consisting of the fundamental frequency and second
harmonic. Then, an axisymmetric swirling jet is considered, as there is an increase in
the level of complexity due to the increase in the number of relevant frequencies and
additional velocity component. Finally, irregular vortex shedding behind two adjacent
cylinders is considered to evaluate the application of FANS for characterizing flows with
broadband velocity and pressure signals. This case retains cyclic characteristics resulting
in broadband spectral accumulations about particular frequencies.

3.1. Square cylinder
We begin with the simple case of flow over a two-dimensional square cylinder at
a Reynolds number of 100. The flow is periodic, exhibiting a dominant frequency
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Figure 1. Two-dimensional simulation domain of a square cylinder (not to scale).
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Figure 2. Volume-averaged kinetic energy (1/V)
∫
Ω

‖ûk‖2 dV spectrum in the wake of a square cylinder at a
Re = 100. The whole simulation domain is used for the integration. The Strouhal number is St = 0.15.

and harmonics. This makes it a natural starting point for illustrating FANS-based analysis.
The two-dimensional simulation mesh is based on parameters of Bai & Alam (2018),
against which the present simulations have been validated. A visualization of the domain
and boundary conditions is shown in figure 1. For the purposes of this analysis, 79
snapshots over 6 shedding cycles were considered to obtain sufficient data and avoid
spectral leakage.

The wake behind the cylinder is characterized as a classic periodic (Kármán)
vortex-shedding process, described by Williamson (1996). These vortices grow due to
diffusion and diverge from the centreline as they are convected downstream. This shedding
results in a velocity spectrum characterized by distinct peaks that diminish rapidly in
magnitude as the mode number increases, as seen in figure 2. As a result, only the mean
and modes at the fundamental frequency and second harmonic are considered. These
modes have a maximum magnitude of 1.3U∞, 0.3U∞ and 0.07U∞, respectively. Here,
FANS is used to explore the momentum transportation associated with the vortex street as
well as the interactions between newly formed vortices immediately behind the cylinder.

Figure 3 shows the real values of FANS terms at the frequency corresponding to the
Strouhal number (St = f h/U∞ = 0.15) for the streamwise velocity, û1. The data are
represented as a fraction of the maximum of the UT in the domain at the same frequency
and direction, T1

max:

Tk
max = max

x
(|j2πfkûk(x)|). (3.1)
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Figure 3. Real part of streamwise momentum terms for mode 1 (at the fundamental frequency) in the wake of
a square cylinder at Re = 100: (a) UT, (b) mean-flow convection, (c) pressure gradient and (d) Fourier stress
terms.

For example, the value displayed in figure 3(a) is j2πStû1/T1
max. By applying this same

normalization to each flux at a given frequency, the relative contribution of each term can
be compared. Figure 3(a) shows the UT ( j2πStû1) of the fundamental frequency in the
streamwise direction. Contours of the UT are associated with the large-scale fluctuations
of the vortices. The contours of the UT are similar to the linear instability mode of a
circular cylinder (Mantič-Lugo, Arratia & Gallaire 2015). Figure 3(b) shows the mean-flow
convection term C[U, û1] + C[û1,U]. Figure 3(c) shows the pressure term and figure 3(d)
shows the Fourier stresses. The viscous dissipation is of negligible magnitude and it is not
shown here for brevity. Downstream of the cylinder (past x = 8h), the only force with
significant magnitude is the mean-flow convection. This represents the region where fully
formed vortices are convected downstream. In FANS terms, the mean-flow convection is
nearly balanced by the UT.

Immediately behind the cylinder, there are pressure gradients of large magnitude, which
are related to the vortex formation. This is contrary to the downstream wake region. This
way of comparing the magnitude of momentum terms identifies the critical forces by
region. The pressure gradient in this region is in phase with the UT and out of phase with
the mean-flow convection. From this phase relationship, the pressure gradient reduces the
overall magnitude of the velocity fluctuations caused by movement of the vortices.

The low magnitude of the Fourier stress term indicates that the inter-frequency
interactions are not as important as the other fluxes to the momentum balance at the
fundamental frequency. This is consistent with the findings of other methods, such as
linear stability or the self-consistent method (Meliga, Boujo & Gallaire 2016). These
stresses are generated by interaction of modes û1 and û2 in the form (û−1 · ∇)û2. The
significantly reduced magnitude of the harmonic (mode 2) with respect to mode 1 results
in the low magnitude of these stresses. A representation of mode 2 is shown in figure 4(a)
in the form of the UT. The magnitude of the harmonic is elevated at the centreline and in
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Figure 4. Real part of streamwise (a) unsteady, (b) mean-flow convection, (c) pressure gradient and
(d) Fourier stress terms for the second harmonic of vortex shedding over a square cylinder at Re = 100.

two branches diverging from the centreline, which correspond to the edges of each vortex
track.

The other momentum components in the streamwise direction for the second harmonic
are also shown in figure 4(b–d). The relationships between different momentum fluxes
are the same as they are in the fundamental frequency. Away from the axis and farther
downstream in the wake, the unsteady and convection terms are nearly balanced. Behind
the cylinder, the pressure term is significant and in phase with the velocity fluctuations.

The Fourier stresses play a more critical role in affecting the balance at the harmonic
in comparison with the fundamental frequency. The convective interactions represented
by this term are significant to the momentum transport at this frequency. This momentum
flux is strong and symmetric about the wake centreline, and dissipates rapidly moving
downstream. To better understand this momentum flux, the constituent terms of the Fourier
stresses are analysed. These terms arise from the expansion of χ [û2] from (2.7):

χ [û2] = · · · + û−1∂xû3 + v̂−1∂yû3 + û1∂xû1 + v̂1∂yû1 + û3∂xû−1 + v̂3∂yû−1 + · · · .
(3.2)

For this flow, terms other than û1∂xû1 and v̂1∂yû1 are negligible. This is similar to the
results of Mantič-Lugo et al. (2015) for a cylinder wake. Due to their influence on the
momentum flux of velocity mode 2, these terms can be interpreted as the driving force of
triadic interactions between the fundamental frequency, itself, and the second harmonic.
The real parts of these terms are depicted in figure 5. The values are normalized to the
maximum Fourier stress in the domain (χ [û2]). The first term (û1∂xû1) roughly follows
the track of the vortex street. This flux is strongest near the vortex formation region, and
then dissipates as the vortices separate and lose strength downstream. Hence, this term is a
result of convective momentum transport between streamwise velocity fluctuations within
an individual vortex. Peaking at roughly 40 % of the magnitude of χ [û2], this component
makes a significant contribution to the momentum flux, especially in the vortex formation
region. However, the other term (v̂1∂yû1) in figure 5(b) has a greater effect. This term
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Figure 5. Constituent terms of the Fourier stresses (χ[û2]) in the streamwise direction at the second harmonic
for a square cylinder at Re = 100. (a) First term and (b) second term. Only the real parts of the stresses are
shown.
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Figure 6. Energy transfer terms �Ek
n. (a) Real part Re(�Ek

n). (b) Imaginary part Im(�Ek
n). Diagonal lines

are used to indicate axes of symmetry: dashed line, fn = fk; dash-dotted line, fn = −fk.

attains 100 % of the maximum Fourier stress in the vortex formation region. Thus, this is
the primary term of the Fourier stresses at the second harmonic of the streamwise velocity.
The presence of this momentum transport at the vortex formation region indicates that the
second harmonic is a product of interactions between pairs of counter-rotating vortices
formed along the separated shear layers from opposing faces of the cylinder. Namely, these
vortices are in close proximity, and the resulting contact modifies their shape. Interactions
between these vortices will occur every half-cycle, hence the appearance of this process
in the momentum equation at the second harmonic. This shows how interactions at the
fundamental frequency result in increased energy content of the second mode.

The real and imaginary parts of the energy transfer terms�Ek
n are shown in figure 6. The

mirror symmetry due to the property�Ek
n = −�E−n

−k is observed about the symmetry line
fk = −fn (dash-dotted line in figure 6). The sole exception to this symmetry is along the
diagonal fk = fn (dashed line), which are triads involving mode 0. This difference results
from the surface integral term in (2.13), which is non-negligible for terms involving the
mean field. Hence, the interactions found on the diagonal fk = fn represent energy carried
into or out of the control volume, and involve only the mean field and mode k. From the
off-diagonal results, the transfer terms between modes for the second harmonic mainly
involve interactions with the first harmonic. Meanwhile, transfer terms involving the third
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2πfk‖ûk‖2 dV . Black dotted line:
−Im

(∑
n�Ek

n
) = ∫

Ω
2πfk‖ûk‖2 dV .

harmonic involve both the first and second. These types of interactions have been discussed
similarly in applications of BMD (Schmidt 2020).

The data from the square cylinder can also be used to verify that −Im
(∑

n�Ek
n
) =∫

Ω
2πfk‖ûk‖2 dV . Figure 7 compares the two terms for modes 0–5. The exact relationship

between the terms shows that the imaginary part of the energy transfer terms is related
to the mode magnitude and frequency. This result increases the analytical power of
the FANS formulations, as it provides global results about the energy flow and overall
relationships between modes. Careful consideration of figures 6 and 7 further reinforces
the interpretation that the real part of the energy transfer represents a net energy exchange,
and the imaginary part is a conservative exchange. The total exchange between motions
must be considered as noted in § 2.1. For instance, between mode 1 and mode 2, the
total energy exchange is�E1

2 +�E1
−2 + (�E−1

2 +�E−1
−2)

∗. Furthermore, as discussed in
introducing (2.11), the real part of the energy transfer is related to the net energy transfer,
and does not contain an explicit dependence on fk. This suggests that the phase between
the imaginary and real parts may be useful in interpreting the dynamics. It also provides
information on the direction of an energy transfer, through a rigorous physical basis in the
momentum balance of the unsteady, convective and diffusive terms.

The FANS analysis can directly deduce interactions between time scales, as discussed
above. These interactions can also be deduced using BMD; however, this method can be
more cumbersome. For this flow, the BMD modes and bispectrum have been calculated
for two regions of the BMD search space described by Schmidt (2020). Two regions are
considered as there are symmetries in the results due to the periodicity and real-valued
flow-field data fed into the Fourier decomposition. Results for these regions, consisting
of sums and differences of two base frequencies ( f1 and f2) are presented in figure 8.
Note that the sign of f2 is flipped to allow direct comparison of the BMD triads with the
corresponding FANS triads in figure 6. The BMD mode bispectrum shows the value of
λ1 for each triad, representing the maximized bicorrelation between each triplet of modes.
This spectrum shows the cascade starting from mode 1 at the shedding frequency of 0.15,
which continues through higher modes at the harmonics of this frequency. This is seen
in the local maximum of the bispectrum at ( f1 = 0.15, f2 = 0.15) which is correlated to
f3 = 0.3. This interaction, and ensuing interactions between the fundamental frequency
and the harmonics, results in the series of peaks in the mode bispectrum that attenuate
with increasing frequencies f1 and f2. This is similar to the results of Schmidt (2020) for
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Figure 8. The BMD mode bispectrum of a square cylinder at Re = 100.
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Figure 9. The BMD interaction map of triad { f1, f1, f2} in the streamwise direction for a square cylinder at
Re = 100.

the case of a circular cylinder. This cascade is represented in FANS by the Fourier stress
terms in figures 3(d) and 4(d).

Components of the bispectral mode (φ1+1) and interaction map (ψ1,1) that correspond
to the triad ( f1 = 0.15, f2 = 0.15, f3 = 0.30) are shown in figure 9 for the streamwise
direction. The interaction maps clearly show the interactions between the fundamental
frequency and second harmonic that occur in the Kármán wake behind the cylinder.
This interaction of the triad is similar to the streamwise Fourier stresses on the second
harmonic, shown in figure 5(a). For the square cylinder case, the local interactions detected
by BMD are also captured by FANS. However, the BMD bispectrum and interaction maps
in figures 8 and 9 do not directly show the direction of energy flow. The values of λ1
in the bispectrum are all real and positive, and the interaction map is evaluated in terms
of absolute value. The BMD analysis would not be able to provide direction information
without modification to the method. As a result, the user needs additional information
to identify the direction of the energy exchange. An added benefit of FANS analysis is
that those interactions can be related to other momentum transport terms and the time
dependence of the flow, as seen in figures 3 and 4. This case study supports that FANS is a
simpler method that produces insights into flow features and their interactions for periodic
wakes characterized by a single fundamental frequency and its harmonics.
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Figure 10. Two-dimensional axisymmetric domain of a jet impinging on a wall.

3.2. Swirling jet
The second flow considered is an axisymmetric swirling jet impinging on a flat plate. This
jet flow is selected due to its complicated periodic time signature and the effect of the
third velocity component, which arises due to the swirl. The mesh set-up and boundary
conditions in figure 10 mimic those published in Herrada, Del Pino & Ortega-Casanova
(2009): a jet with uniform axial flow enters the domain from an inlet of diameter d
and Reynolds number (Re = Ud/ν) of 204. The swirl comes from an imposed vortex
characterized by two non-dimensional parameters. These comprise the swirl parameter
(S), which is proportional to the circulation of the vortex, and a vortex core radius (δ). The
particular selection of S and δ is 3 and 0.25, respectively, to recover the physics seen by
Herrada et al. (2009). These parameters are selected due to the resulting complicated but
periodic flow.

Herrada et al. (2009) characterized the jet by a large recirculating region along the
central axis, called a ‘vortex breakdown (VB) bubble’. There are also several axisymmetric
vortex bubbles that originate and decay close to the wall over multiple intervals in each
cycle. Herrada et al. (2009) noted the significant outward convection of the circulation due
to radial flow from the jet impingement.

The transient vortex bubbles result in a time signature that is composed of large energy
concentrations at several discrete frequencies with a base frequency of f ∗ = fd/U ≈ 0.011.
The energy contained in each mode is shown in figure 11. The modes decay exponentially
in energy content with increasing frequency. The right bound of the plot represents the
Nyquist frequency at f ∗ = 0.100. Modes beyond this frequency are of extremely low
magnitude and are thus ignored.

Figure 12 shows the values of the UTs in FANS at the fundamental frequency. These
correspond to the highest-energy peak shown in figure 11. Significant axial velocity
fluctuations are seen throughout the domain. Radial fluctuations are likewise present
throughout but they become stronger in magnitude downstream due to the presence of
vortex bubbles close to the wall. Finally, the azimuthal fluctuations start strongly near the
inlet and diminish toward the wall. This gradual diminishing of fluctuations is due to the
outward convection of the swirl noted by Herrada et al. (2009).

Figures 13(a) and 13(b) show the radial mean-flow convection and pressure gradient
in the near-inlet region, respectively. These momentum fluxes are of considerably larger
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Figure 11. Energy contained in each Fourier mode of the swirling jet. Off-harmonic peaks seen between
0.05 < f ∗ < 0.1 are due to aliasing but have negligible energy content.
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Figure 12. Real value of FANS UTs of the swirling jet at the fundamental frequency in each coordinate
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VB bubble along the axis.
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Figure 13. Real value of FANS terms in the radial direction near the inlet of the swirling jet at the fundamental
frequency: (a) mean-flow convection and (b) pressure gradient. Grey line shows the extent of VB bubble as in
figure 12.

magnitude than the UT, peaking at over 45 times the maximum magnitude of the UT.
The significant radial force fluctuations are due to the deflection of incoming flow against
the VB bubble as indicated in figure 13. The interaction of the incoming jet with the
VB bubble results in a large opposing pressure gradient. The relative magnitude of the
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Figure 14. Real value of FANS viscous diffusion term for the swirling jet in the azimuthal direction at the
fundamental frequency.

forces combined with the phase of the UT (which can be compared through the sign of the
value) shows that the pressure gradients dominate the convection in this region and drive
the radial fluctuations. These radial fluctuations are important as they are related to the
vortex bubbles that dominate the fluctuating flow. Thus, FANS can be used to elucidate
the effect of large counteracting forces and compare them with the time-dependent term,
which represents the fluctuations at that particular time scale.

Herrada et al. (2009) found that this jet flow is highly sensitive to changes in viscosity.
The significant contribution of the viscous diffusion terms to the momentum transfer close
to the inlet as seen in figure 14 implies a similar sensitivity. The phase and high magnitude
of the azimuthal shear suggest that there is a dampening effect on the corresponding
azimuthal fluctuations. This high shear stress shows the significant effect of the viscosity
that results in high sensitivity of the flow physics to changes in the Reynolds number.
In this way, FANS provides a platform to gain insight into the stability of the flow
configuration.

The intermittent nature of the near-wall vortex bubbles observed in this flow results
in a complicated time signature, where the vortex structures are observed across several
frequencies. This suggests significant coupling between frequency components. To more
thoroughly analyse this inter-frequency coupling of the jet flow and its relationship to the
flow physics, Fourier stresses are analysed in more detail. Specifically, Fourier stresses
represent the interactions that are generated by motion of the intermittent vortex bubbles.

The radial Fourier stress magnitudes for modes 2–4 are shown in figure 15. The radial
terms are selected since they are characteristic of the vortex bubbles but not the swirling
inlet flow. Notably, the vast majority of interactions occur outside of the recirculation
region, located along the symmetry axis at y/h = 0. This follows with the radial convection
of the velocity fluctuations as seen in figure 13, which is due to interaction of the jet
with the recirculation region and the wall. The Fourier stresses have significant magnitude
at each mode. This is consistent with the expectation of an energy cascade to higher
frequencies resulting in a large number of modes. Regions of elevated Fourier stresses
are localized well downstream of the inlet and outside of the recirculation region. This
matches the expected location of enhanced interaction due to fluctuations induced by the
vortex bubbles. Thus, FANS analysis of the convective coupling coincides with physical
intuition about the interactions and time signature of the flow.

To further corroborate the influence of the vortex bubble on the inter-harmonic coupling,
we explore the flow dynamics using BMD. Results of the bicorrelation coefficients λ1
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Figure 15. Fourier stress magnitude in the radial direction of the swirling jet for (a) mode 2, (b) mode 3 and
(c) mode 4.
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Figure 16. Mode bispectrum of the swirling jet flow.

for the bispectrum analysis of the jet are shown in figure 16. As this flow is periodic,
the BMD mode bispectrum shows a cascade of harmonics, starting with triads involving
the fundamental frequency f ∗ = f h/U ≈ 0.011. This agrees with the observations of
interactions between several modes as seen in figure 15.

Figure 17 shows the BMD-calculated interaction maps for selected triads corresponding
to ( f ∗

1 = f ∗, f ∗
2 = f ∗, f ∗

3 = 2f ∗), ( f ∗
1 = 2f ∗, f ∗

2 = f ∗, f ∗
3 = 3f ∗) and ( f ∗

1 = 2f ∗, f ∗
2 =

2f ∗, f ∗
3 = 4f ∗). Figure 17 presents the radial component of the interaction map for each

triad. Similar to FANS, the interactions are found to remain outside of the recirculation
region. This is due to the outward forcing of the flow as discussed above. This finding about
the interactions supports the conclusions brought by Fourier stresses. The BMD-calculated
interaction maps also show the localization of interactions downstream (x/h > 5) and
outside of the recirculation region (figure 17). This suggests a relationship to the vortex
bubbles similar to what was previously observed with radial Fourier stresses. The
intermittent motion of the vortex bubbles results in significant interaction between modes,
which then appears as enhanced triadic interactions or Fourier stresses detected by BMD
and FANS, respectively.
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Figure 17. Interaction maps in the radial direction of the swirling jet flow for triads (a) ψ1,1, (b) ψ2,1 and
(c) ψ2,2.
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Figure 18. Two-dimensional simulation domain of side-by-side cylinders with a gap ratio of 0.6.

3.3. Side-by-side cylinders
The final case considered is that of two side-by-side cylinders of diameter D at Reynolds
number of Re = U∞D/ν = 90. The cylinders are separated by a gap of 0.6D. A
representation of the computational domain is shown in figure 18. These settings and the
corresponding mesh requirements were taken from Ma et al. (2017), against which the
results are verified. This flow configuration results in an asymmetric, irregularly oscillating
wake characterized by multiple shedding processes and their interaction. There is vortex
shedding behind each of the two cylinders, which then merges into a single Kármán-like
street far downstream. There is also a ‘flip-flopping’ process where the wake asymmetry
changes orientation (Ma et al. 2017). The flip-flop occurs randomly at a frequency much
lower than that of the shedding (see Burattini & Agrawal 2013; Carini, Giannetti & Auteri
2014). As a result, there are multiple dominant frequencies. Depending on the location
in the wake, the flow may be dominated by the low-frequency flip-flopping in between
the cylinders, the high-frequency shedding process behind each of the cylinders or the
moderate-frequency shedding process in the wake far from the cylinders due to wake
merging. This case is selected to investigate the momentum transport processes detailed
by FANS in a non-periodic case with multiple characteristic frequencies.

The spectrum of the flow energy fluctuations and the estimated power spectral density
(Sxx) of the drag and lift coefficients on the lower of the two cylinders are shown in
figures 19(a) and 19(b), respectively. These broadband spectra show that the flow is
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Figure 19. (a) Spectrum of flow energy fluctuations and (b) power spectral density of drag and lift
coefficients on the lower cylinder.

irregular and not characterized by discrete frequency content. Within figure 19(a), there
is a broadband spectrum centred about f ∗ = 0.07, whereas the drag and lift spectrum
shows dominant frequencies that are centred around 0.01 and 0.12. The lowest frequency
( f ∗ = fD/U∞ ≈ 0.01) corresponds to the flip-flopping process, which occurs on irregular
intervals about this frequency. The moderate frequency shown in the energy spectrum
corresponds to the moderate frequency shedding in the merged wake. The highest
dominant frequencies in the lift and drag spectra (0.09 < f ∗ < 0.15) correspond to vortex
shedding on the cylinder body. The flip-flopping and two vortex production processes are
analysed using the FANS framework. To simplify the analysis, representative frequencies
are used for each process: f ∗ = 0.0105 for flip-flopping, f ∗ = 0.075 for vortex shedding
from individual cylinders and f ∗ = 0.148 for the Kármán-like street in the merged wake.

Figure 20 shows the UT at f ∗ = 0.0105. This frequency corresponds to the flip-flopping
process. Each of the lobes stemming from the gap represents a state of the flow, where
the flow through the gap moves toward either the upper or lower cylinder at a given time.
Ma et al. (2017) discuss the importance of the gap flow in this regime. Figure 21 shows
the momentum fluxes in the streamwise direction at the flip-flopping frequency, where
the mean-flow convection (figure 21a), Fourier stresses (figure 21b) and pressure gradient
(figure 21c) are significant. The diffusion does not contribute significantly to the transport
process. These momentum fluxes show the importance of the gap flow to the flip-flopping
effect. Large velocity gradients on the leeward side of the gap result in the large convective
flux seen in figure 21(a) that sustains the switching process. These large velocity gradients
are due to the combination of strong gap flow and tight spacing between the cylinders.
This combination was highlighted by Ma et al. (2017) as important to the instability that
leads to the irregular flow, which is reflected here.

There are also large-magnitude Fourier stresses at this frequency, immediately behind
the cylinders. These stresses represent interactions of different frequencies within the
bands of shedding and downstream vortex street frequencies. Since the bandwidth of the
energy and force coefficient spectra is larger than the flip-flopping frequency, interactions
between modes that lie within these bands result in Fourier stresses at the flip-flopping
frequency.

Figure 22 shows the significant momentum fluxes at f ∗ = 0.148. This frequency
corresponds to the cyclic shedding from the individual cylinders, which appears in the
force spectra in figure 19(b). Evidence of shedding near the cylinders can be seen in
the UT and pressure gradient in figure 22. This aligns with our expectations due to the
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Figure 20. Real value of UT at flip-flopping frequency.
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Figure 21. Real value of FANS terms in the streamwise direction corresponding to flip-flopping frequencies.
(a) Mean-flow convection, (b) Fourier stresses and (c) pressure gradient.

force fluctuations at this frequency. This mode persists downstream (figure 22a). However,
following Ma et al. (2017), the two vortex streets from the individual cylinders interact in
the wake. This interaction results in a Kármán-like vortex street at a frequency f ∗ ≈ 0.075.
Evidence of these interactions is discussed further below. The spatial-averaged spectrum
of the wake velocity fluctuations thus shows a dominant energy concentration around
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Figure 22. Real values of streamwise momentum fluxes at f ∗
m = 0.148: (a) UT, (b) mean-flow convection,

(c) pressure and (d) Fourier stresses.

f ∗ ≈ 0.075 (figure 19a). However, since the forces arise mainly due to the flip-flopping
instability and near-wake vortex shedding, the main contributions to the forces are around
f ∗ = 0.011 and f ∗ = 0.149 (figure 19b).

The Fourier stresses in figure 22(d) extend throughout the domain and have similar
magnitude to the UT. The localization of wake phenomena, such as flip-flopping and
the Kármán-like street, suggests that the Fourier stresses at this frequency are due to
a broad range of interactions. The FANS technique provides a method to detect the
primary mechanisms that contribute to these stresses in the form of individual terms in
the Fourier stress term. Select terms are shown in figure 23. Modes are subscripted with
their frequency due to the broadband spectrum of this flow. For instance, û0.075 is the
streamwise direction of the velocity Fourier mode at f ∗

m = 0.075. The Fourier stress term
corresponding to the contribution of the downstream Kármán-like shedding frequency
is represented in figure 23(a). The momentum flux due to this term shows increased
magnitude in the region of x/h > 10. The increased stress magnitude in this region is
related to the interactions leading to the formation of the downstream merged vortices.
Thus, it may be said that the primary driver of Fourier stresses in the far wake are due
to contributions at f ∗ = 0.075 due to the interactions leading to Kármán-like vortices
downstream.

Figure 23(b) shows the momentum flux in the same Fourier stress term due to the
triad ( f ∗

1 = 0.010, f ∗
2 = 0.138, f ∗

3 = 0.148). The low frequency of 0.010 corresponds to
the flip-flopping process. This triad represents one of several similar interactions between
these processes (other relevant triads are not shown here for brevity). Magnitude of the
convective flux shown in figure 23(b) shows that the interaction between these modes is a
significant source of momentum for the fluctuations at f ∗ ≈ 0.148 immediately behind the
cylinders. This suggests that the gap flow and flip-flopping process modulate the vortex
shedding. This is supportive of the findings of Ma et al. (2017), who also reported this
modulation of the shedding behind the cylinders.
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Figure 24. Real values of energy transfer terms �Ek
n evaluated on the dual cylinder case. (a) Real part.

(b) Imaginary part. Grey dashed line indicates where fn − fk = 0.075. Interactions involving f ∗ = 0 are omitted
to highlight interactions between flow fluctuations.

The energy transfer terms are also considered for this non-periodic case to assess the
robustness of the FANS analysis. Figures 24(a) and 24(b) show the real and imaginary
parts of the energy transfer terms, respectively. The symmetries expected from (2.13) are
visible in the majority of the spectrum. However, this symmetry breaks down close to
fn = 0.075, fk = −0.075. This may be due to the integration domain. The components of
this interaction have significant magnitude at the outlet in figures 22(a) and 23(a), which
violates the assumption needed for the symmetry property in (2.13).

Interactions involving fn − fk = 0.075 are particularly evident in the spectrum, as
highlighted by the grey dashed line. Note that, by inherent symmetry, the energy transfer
terms along the parallel line fk − fn = 0.075 are interpreted similarly. The importance of
the energy transfer along these lines is expected due to the large magnitude of the energy
at this frequency, which corresponds to the shedding frequency, in figure 19(a). Similarly,
the observed large magnitude of Ek

n involving fk = 0.075 and fk = 0.15 is expected due to
the vortex merging process in the wake. There are also concentrations of large-magnitude
energy transfer terms involving low frequencies. This concentration is expected due to the
interaction of the vortex shedding with the flip-flopping process.

The broadband spectrum of the fluctuations in the wake poses challenges for the
interpretation of energy flow. This is because it spreads energy transfer information over
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Figure 25. The BMD mode bispectrum for the dual cylinder case. The spectrum is blanked below 10−5 to
highlight strongly interacting triads.

several triads. However, in a particular neighbourhood, the sign of the energy transfer term
remains consistent. For instance, the interactions in the neighbourhood of fn = 0.15, fk =
0.075 have positive real value. This quality helps identify the direction of energy transfer,
which can be deduced from the aggregation of multiple similar interactions. This allows
for consistent conclusions about the energy transfer from these terms. Hence, the FANS
energy transfer provides meaningful information in this irregularly cyclic case, suggesting
that the technique is robust.

We once again utilize BMD to explore the flow dynamics. The spectrum of λ1 is shown
in figure 25. There are local maxima in the bispectrum involving frequencies at f ∗ ≈ 0.073.
The diagonal and vertical bands of elevated correlation around these maxima may be due
to spectral leakage (Schmidt 2020). Locations of the maxima correspond to triads around
( f ∗

1 ≈ 0.073, f ∗
2 ≈ 0.073, f ∗

3 ≈ 0.147) and ( f ∗
1 ≈ 0.147, f ∗

2 ≈ −0.073, f ∗
3 ≈ 0.073). These

triads involve the same frequencies, indicating that they are mirrored and capture the same
interactions. The directions and magnitudes of the diagonal, horizontal and vertical bands
of interactions captured by BMD are consistent with those from FANS in figure 24. For
instance, BMD captures a diagonal band for f1 + f2 = 0.075, which corresponds to the
diagonal band seen for fn − fk = 0.075 seen in FANS. The performance and conclusions
of the two methods are similar for this case.

Interaction maps corresponding to the triad ( f ∗
1 ≈ 0.073, f ∗

2 ≈ 0.073, f ∗
3 ≈ 0.147) are

shown in figure 26. These correspond to the same wake processes discussed above
using FANS. The exact listed frequency is slightly different from that of the FANS
analysis due to the change in resolution, where BMD has lost some frequency resolution
due to utilization of multiple windows. The interaction maps show significant triadic
interaction beyond x/D ≈ 10. This corresponds to the merger region, where the wakes
of the individual cylinders combine and turn into a single Kármán-like street. The driving
frequency of f ∗

1 = 0.073 is characteristic of the vortex street. This frequency is outside
of the range of important force spectra seen in figure 19. The resultant frequency of
f ∗
3 = 0.147 is characteristic of the cylinder shedding, which continues to have an influence

downstream, as was deduced from the FANS analysis. The maps show interaction between
these modes in the vortex street far from the cylinders. This interaction is consistent with
the behaviour of the Fourier stresses in figure 23(a).
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Figure 26. Bispectral interaction maps corresponding to far-wake frequencies, represented by the triad
( f ∗

1 = 0.073, f ∗
2 = 0.073, f ∗

3 = 0.147): (a) streamwise and (b) transverse components.

4. Conclusions

Periodic and turbulent flows exhibit complicated interactions that can be difficult to
characterize. Here, the FANS equations are introduced to provide insight into the physics
of flows with cyclic characteristics, including both regular (periodic) and irregular
(non-periodic) recurrences. By combining information from Fourier modes and the
Navier–Stokes equations, this method produces momentum equations for individual
Fourier modes. The equations contain pressure, diffusion and convection terms that can be
related to the velocity fluctuations and nonlinear interactions between modes. By treating
the equations as a momentum budget, it is possible to directly compare different forces
that contribute to fluctuations at a particular time scale. The FANS terms, and their
analyses, can provide a more comprehensive interpretation of the flow, compared with
other methods (e.g. BMD) that do not include spatial differentiation of the flow data as
part of their analysis technique. The method directly addresses nonlinear interactions due
to convection and relates them to the magnitude of other forces. The FANS formulation
also includes phase information that can indicate when forces may be counteracting.
This eases the physical interpretation of flow physics by isolating separate time scales
and directly relating mode shapes to the governing equations. This is illustrated for
periodic flows through case studies of the wake of a square cylinder and a swirling
jet. The FANS analysis can also be utilized for irregularly oscillating flows, which is
shown through the analysis of non-periodic flow around two side-by-side cylinders. The
momentum equations of FANS can be used to find energy transfer terms between modes,
which provide an opportunity to explore the direction in which energy flows between
modes. Globally, these energy transfer terms can be separated into components that are
directly related to the mode magnitude and dissipation, respectively. Momentum and
energy analysis with FANS is shown to provide results consistent with those from other
methods, such as BMD, in all three case studies considered here. However, it does so
with fewer complexities and constraints than those associated with existing techniques.
Particularly, FANS requires a single window of data, which significantly lowers the size
of our dataset, and thus reduces the storage and processing requirements. Contrary to
BMD, FANS does not entail irreversible and difficult-to-interpret processing steps. These
constitute less intensive efforts in post-processing of the data by FANS analysis, which
further benefits the physical interpretation by its direct correspondence to the terms
in the governing equations for momentum conservation and energy balances. Yet, full
implementation of this technique would require both pressure and velocity fields, which
are easily obtained from simulations, but may require additional effort or treatment when
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considering experimental data. Using the FANS equations is a viable method to identify
and describe the relationships between different processes in flows with regularly or
irregularly repeating characteristics.
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Appendix A. Derivation

The derivation begins by considering the incompressible Navier–Stokes equations of a
Newtonian fluid:

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u, (A1)

where u is the instantaneous velocity vector field and p is the pressure field. These
quantities are non-dimensionalized with length scale h and velocity scale U∞, so that
the Reynolds number is Re = U∞h/ν, where ν is the kinematic viscosity. The continuity
equation has the form

∇ · u = 0. (A2)

For the purposes of this method, the velocity and pressure fields are assumed to be
representable as a Fourier series in time t with period T and frequency increment f = 1/T:

u =
∞∑

m=−∞
ûm exp( j2πmft) (A3)

and

p =
∞∑

m=−∞
p̂m exp( j2πmft). (A4)

The Fourier series coefficients, ûm and p̂m, are the velocity and pressure modes. These are
complex-valued spatial functions. Here, j = √−1 and m is the mode number. Substituting
the Fourier series representation of the flow fields into the Navier–Stokes equations:

∂

∂t

∞∑
m=−∞

ûm exp( j2πmft)+
∞∑

m=−∞
ûm exp( j2πmft) · ∇

∞∑
m=−∞

ûm exp( j2πmft)

= −∇
∞∑

m=−∞
p̂m exp( j2πmft)+ 1

Re
∇2

∞∑
m=−∞

ûm exp( j2πmft). (A5)

The basis functions of the Fourier space (exp( j2πmft)) are orthogonal under an integral
inner product:

f
∫ T

0
exp( j2πfmt) exp(−j2πf kt) dt =

{
1, m = k
0, otherwise

, m, k ∈ Z. (A6)

This allows us to isolate momentum equations for the individual modes (ûm, p̂m). This is
accomplished by multiplying both sides of (A5) with the basis function f exp(−j2πkft)
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and integrating over the interval [0, T]:

f
∫

T
exp(−j2πkft)

⎛
⎜⎜⎜⎜⎜⎝
∂

∂t

∞∑
m=−∞

ûm exp( j2πmft)

︸ ︷︷ ︸
unsteady term

+
∞∑

m=−∞
ûm exp( j2πmft) · ∇

∞∑
m=−∞

ûm exp( j2πmft)

︸ ︷︷ ︸
convection term

⎞
⎟⎟⎟⎟⎟⎠ dt

= f
∫

T
exp(−j2πkft)

⎛
⎜⎜⎜⎜⎝−∇

∞∑
m=−∞

p̂m exp( j2πmft)

︸ ︷︷ ︸
pressure term

+ 1
Re

∇2
∞∑

m=−∞
ûm exp( j2πmft)

︸ ︷︷ ︸
diffusion term

⎞
⎟⎟⎟⎟⎠ dt. (A7)

The application of this integral is considered term by term.

A.1. Pressure and diffusion terms
The right-hand side of (A7) can be manipulated by commuting the integral and spatial
derivative operators with the summations:

f
∫

T
exp(−j2πkft)

(
−∇

∞∑
m=−∞

p̂m exp( j2πmft)+ 1
Re

∇2
∞∑

m=−∞
ûm exp( j2πmft)

)
dt

= −
∞∑

m=−∞
f
∫

T
exp(−j2πkft) exp( j2πmft)∇p̂m dt

+ 1
Re

∞∑
m=−∞

f
∫

T
exp(−j2πkft) exp( j2πmft)∇2ûm dt

= −
∞∑

m=−∞

(
f
∫

T
exp(−j2πkft) exp( j2πmft) dt

)(
∇p̂m + 1

Re
∇2ûm

)
. (A8)

The integral in the final line is the inner product in (A6). As a result, the summation terms
have a value of ∇p̂k + (1/Re)∇2ûk when k = m and vanish otherwise. With this fact, the
right-hand side of (A7) becomes

f
∫

T
exp(−j2πkft)

(
−∇

∞∑
m=−∞

p̂m exp( j2πmft)+ 1
Re

∇2
∞∑

m=−∞
ûm exp( j2πmft)

)
dt

=
(

∇p̂k + 1
Re

∇2ûk

)
. (A9)
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A.2. Unsteady term
The unsteady term of (A7) can be written as

f
∫

T
exp(−j2πkft)

∂

∂t

∞∑
m=−∞

ûm exp( j2πmft) dt

= f
∫

T
exp(−j2πkft)

∞∑
m=−∞

ûm
∂

∂t
(exp( j2πmft))+ ∂

∂t

(
ûm
)

exp( j2πmft) dt. (A10)

The (∂/∂t)(ûm) term vanishes since the Fourier modes are functions of space only. Thus,
the inner product can be written as

= f
∫

T
exp(−j2πkft)

∞∑
m=−∞

ûm ( j2πmf ) exp( j2πmft) dt. (A11)

This once again isolates ûk due to the inner product property (A6). As a result,

f
∫

T
exp(−j2πkft)

∂

∂t

∞∑
m=−∞

ûm exp( j2πmft) dt = j2πkf ûk. (A12)

A.3. Convection term
The nonlinearity of the convection term makes its treatment more complicated. With the
inner product from (A7), the convection term is

f
∫

T
exp(−j2πkft)

∞∑
m=−∞

ûm exp( j2πmft) · ∇
∞∑

n=−∞
ûn exp( j2πnft) dt (A13)

= f
∫

T

∞∑
m=−∞

∞∑
n=−∞

exp(−j2πkft) exp( j2πnft) exp( j2πmft)
(
ûm · ∇ûn

)
dt (A14)

=
∞∑

m=−∞

∞∑
n=−∞

f
∫

T
exp( j2π(−k + n + m)ft) dt

(
ûm · ∇ûn

)
. (A15)

Per (A6), the integral is non-zero only when m = k − n. This reduces the double
summation

∑
m
∑

n to a single summation
∑

n:

f
∫

T
exp(−j2πkft)

∞∑
m=−∞

ûm exp( j2πmft) · ∇
∞∑

n=−∞
ûn exp( j2πnft) dt=

∞∑
n=−∞

ûk−n · ∇ûm.

(A16)

Isolating the terms involving mode k and the mean flow in this summation highlights
the effect of inter-frequency coupling on the momentum transfer:

∞∑
n=−∞

ûk−n · ∇ûn = ûk · ∇U + U · ∇ûk +
∞∑

n=−∞
n /= 0,k

ûk−n · ∇ûn, (A17)

where U is the mean velocity. The final term on the right-hand side represents the effect on
mode k of coupling between other modes. These interactions are referred to as the Fourier
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stresses as an analogy to the Reynolds stresses. This term can be written as

χ̃ [ûk] =
∞∑

n=−∞
n /= 0,k

ûk−n · ∇ûn. (A18)

Using the results of (A9), (A12), (A17) and (A18), the momentum equation
corresponding to mode ûk is

j2πkf ûk + ûk · ∇U + U · ∇ûk + χ̃ [ûk] = −∇p̂k + 1
Re

∇2ûk. (A19)

A.4. Continuity
Each velocity mode is divergence-free. Using the Fourier series representation in the
continuity equation, it becomes

∇ · u = ∇ ·
∞∑

m=−∞
ûm exp( j2πmft) = 0. (A20)

To isolate an equation for mode ûk, an inner product of this equation is applied with the
basis function exp(−j2πkft). This yields

∫
T

exp(−j2πkft)∇ ·
∞∑

m=−∞
ûm exp( j2πmft) dt

=
∫

T
∇ ·

∞∑
m=−∞

(
ûm exp( j2πmft) exp(−j2πkft)

)
dt

= ∇ ·
∞∑

m=−∞

∫
T

ûm exp( j2π(m − k)ft) dt = ∇ ·
∞∑

m=−∞

∫
T

exp( j2π(m − k)ft) dtûm.

(A21)

Once again the integral vanishes except for k = m:∫
T

exp(−j2πkft)∇ ·
∞∑

m=−∞
ûm exp( j2πmft) dt = ∇ · ûk. (A22)

Likewise, the integral of the right-hand side of the continuity equation is zero:∫
T

exp(−j2πkft)(0) dt = 0. (A23)

Equating the left- and right-hand sides, we have

∇ · ûk = 0. (A24)

This can be interpreted as a set of continuity equations that the velocity modes each satisfy
independently.
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Momentum analysis of complex time-periodic flows

Appendix B. Energy transfer derivation

In order to construct the turbulent kinetic energy from the modes, the inner product of û∗
k

with the FANS equation for mode k is taken:

j2πf kû∗
k · ûk + û∗

k · ((U · ∇) ûk + (
ûk · ∇)U

)
= −û∗

k · ∇p̂k + νû∗
k · ∇2ûk − û∗

k ·
∞∑

n=−∞
n /= 0,k

(
ûk−n · ∇) ûn. (B1)

Here, the inner product between a vector a and a vector b is a · b = aibi even for
complex-valued vectors. For the purposes of the following derivation, there is no
mathematical difference between the mean-flow and modal convection terms (second and
third terms of the left-hand side and the last term on the right-hand side), so they will be
recombined:

j2πf kû∗
k · ûk + û∗

k ·
∞∑

n=−∞

(
ûk−n · ∇) ûn = −û∗

k · ∇p̂k + νû∗
k · ∇2ûk. (B2)

However, it should still be noted that the interpretation of the mean-flow terms will still
differ. Most of the terms in this equation are extremely straightforward to manipulate into
simpler forms and so will not be considered here. In terms of looking at exchange between
modes, only the convection term û∗

k ·∑∞
n=−∞ ûk−n · ∇ûn is relevant. A single term of this

summation defines the local energy transfer between modes n and k, �ek
n:

�ek
n = û∗

k · ((ûk−n · ∇) ûn
)
. (B3)

There appears to be a symmetry between this term and one that appears in the equation for
û−n:

−j2πfnû∗
−n · û−n + û∗

−n ·
∞∑

k=−∞

(
ûk−n · ∇) û−k = −û∗

−n · ∇p̂−n + νû∗
−n · ∇2û−n.

(B4)

The summation index of the final term was intentionally chosen as k for easy comparison
between the equations. Once again isolating a single term from the Fourier stresses:

�e−n
−k = û∗

−n · ((ûk−n · ∇) û−k
)
. (B5)

Applying the chain rule:

û∗
−n · ((ûk−n · ∇) û−k

) = ∇ · (ûk−n
(
û∗

−n · û−k
))− û−k · (ûk−n · ∇) û∗

−n. (B6)

For real signals, û−k = û∗
k and û∗

−n = ûn. Therefore û−k · (ûk−n · ∇)û∗
−n = û∗

k ·
(ûk−n · ∇)ûn = �ek

n. As a result, �e−n
−k is

�e−n
−k = ∇ · (ûk−n

(
û∗

−n · û−k
))−�ek

n. (B7)

Since �ek
n appears in the equations for both û−n and ûk with opposite sign, it can be

considered to be the energy transfer term. This naming is used as the term ‘transfers’
energy between modal equations. This is analogous to the role of the production term of
the turbulent kinetic energy equations (Durbin & Pettersson 2011).
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The primary concern here is the characteristics of the global energy transfer between k
and n. The energy transfer between mode ûk and mode ûn from the equation for mode k is
defined as

�Ek
n =

∫
Ω

û∗
k · ((ûk−n · ∇) ûn

)
dV. (B8)

Similarly, again given real input signals, the transfer between the same two modes from
the equation for mode −n is

�E−n
−k =

∫
Ω

ûn · ((ûk−n · ∇) û∗
k
)

dV = (
�En

k
)∗

=
∫
Ω

∇ · (ûk−n
(
ûn · û∗

k
))− û∗

k · (ûk−n · ∇) ûn dV

=
∫
∂Ω

(
ûn · û∗

k
) (

ûk−n · n
)

dS −�Ek
n. (B9)

Many cases will have approximately steady or no-slip boundaries almost everywhere,
meaning ûk = 0 for k /= 0. Therefore the surface integral will go to zero with a sufficiently
large integration domain. This indicates that globally,�Ek

n appears in (B2) for k and −�Ek
n

appears in (B4) for −n. This indicates that the direction of energy transfer can be detected
from the value of �Ek

n. This requires consideration of its phase and the values of n and
k. The above derivation assumes the time decomposition of a real velocity field; however,
it may be shown that these properties also hold for a spatially decomposed, and therefore
complex, velocity field. For an illustration of this process, we start with decomposing the
velocity field into a Fourier series in time and space:

u(x, t) =
∑
ζ∈Z3

∞∑
k=−∞

ûk,ζ exp
((

j2π
(

fkt + λζ · x
)))
, (B10)

where fk = k/T is a frequency and λζ = [ζx/Lx, ζy/Ly, ζz/Lz]T is a vector of wavelengths,
T is the period, ζ is a vector of integer wavenumbers and Lx, Ly and Lz are wavelengths in
the x, y and z directions, respectively. The energy transfer term that results from the spatial
and temporal decomposition of the Navier–Stokes equations is

�Ek,ζ
n,η = j2πû∗

k,ζ · ((ûk−n,ζ−η · λζ
)

ûn,η
) = j2π

(
û∗

k,ζ · ûn,η

) (
ûk−n,ζ−η · λη

)
. (B11)

To check the symmetry property in this case, we explore �E−n,−η
−k,−ζ :

�E−n,−η
−k,−ζ = j2π

(
û−k,−ζ · û∗

−n,−η
) (

û−n+k,−η+ζ · λ−ζ

)
. (B12)

There are a few properties to note:

û∗
−k,−ζ = ûk,ζ , λ−ζ = −λζ , λη+ζ = λη + λζ , λζ · ûk,ζ = 0. (B13a–d)

Keeping these in mind, we return to (B12) and can show that

�E−n,−η
−k,−ζ = −j2π

(
û∗

k,ζ · ûn,η

) (
ûk−n,ζ−η · λη

) = −�Ek,ζ
n,η . (B14)

Therefore �Ek,ζ
n,η = −�E−n,−η

−k,−ζ = −(�En,η
k,ζ )

∗, which is a similar symmetry property to
that found in the previous revision for non-spatially decomposed data. Consequently,
the symmetry may be generalized to multiple-dimensional Fourier decompositions. This
provides a method for discussing energy transfer over both multiple length and time scales.
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Appendix C. Energy transfer properties

For a global picture of the energy transfer, the volume integral of (B2) is taken. Taking the
volume integral for a global picture:∫

Ω

j2πf kû∗
k · ûk + û∗

k ·
∞∑

n=−∞

(
ûk−n · ∇) ûn dV =

∫
Ω

−û∗
k · ∇p̂k + νû∗

k · ∇2ûk dV.

(C1)

We briefly look at some of the terms separately in order to make some simplifications.
Starting with the pressure term:∫

Ω

û∗
k · (∇p̂k

)
dV =

∫
Ω

∇ · (û∗
k p̂k
)− p̂k∇ · û∗

k dV. (C2)

The second term on the right-hand side is zero since the modes are incompressible. For
the first term, we consider the Gauss theorem:

=
∫
∂Ω

p̂kû∗
k · n dS. (C3)

Since this term only acts at the boundaries, it may be understood as a transport term.
Additionally, we typically consider steady boundary conditions, so this integral vanishes
when k /= 0. As a result, ∫

Ω

û∗
k · (∇p̂k

)
dV = 0. (C4)

Continuing with the diffusion term, we use the product rule:∫
Ω

νû∗
k ·
(
∇2ûk

)
dV =

∫
Ω

ν∇ · ((∇ûk
)

û∗
k
)− ν(∇û∗

k) : (∇ûk) dV

=
∫
∂Ω

ν
((∇ûk

)
û∗

k
) · n dS − ν

∫
Ω

(∇û∗
k) : (∇ûk) dV. (C5)

The first term is a transport term which vanishes when k /= 0. Since û∗
k = û−k, and the

second term is the Frobenius norm of ∇ûk, defined as

‖∇ûk‖2
F = (∇ûk)

∗ : (∇ûk). (C6)

As a result, the diffusion term evaluates to∫
Ω

νû∗
k ·
(
∇2ûk

)
dV = −ν

∫
Ω

‖∇ûk‖2
F dV. (C7)

This means that the diffusion term is purely real, since the Frobenius norm is strictly real
and positive.

Applying the results (C4) and (C7), alongside the definition of �Ek
n, to (C1):∫

Ω

j2πf k‖ûk‖2 dV +
∞∑

n=−∞
�Ek

n = −ν
∫
Ω

‖∇ûk‖2
F dV. (C8)

Clearly, the first term, from the unsteady part of the equation, is strictly imaginary. The
third term, from diffusion, is strictly real. The second term, representing energy transfers
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due to convective coupling between modes, has both real and imaginary parts. In order for
the equality to be satisfied, then, for k /= 0:

Re

( ∞∑
n=−∞

�Ek
n

)
= −ν

∫
Ω

‖∇ûk‖2
F dV (C9)

and

Im

( ∞∑
n=−∞

�Ek
n

)
= −2πf k

∫
Ω

‖ûk‖2 dV. (C10)

By scaling (C10) with 1/( f k) and summing over k, the kinetic energy of the fluctuating
field can be reconstructed. This indicates that the imaginary part of the energy transfer
term is related to the magnitude, and therefore energy, of the modes. Thus, we hypothesize
that the sign of Im(�Ek

n) can be used to detect conservative energy exchanges between
mode k and mode n, since the integrand of (C10) is strictly real and positive. For example,
for positive frequencies, Im(�Ek

n) < 0 would increase the magnitude of
∫
Ω

‖ûk‖2 dV ,
whereas for negative frequencies Im(�Ek

n) > 0 would do the same. From (C9), the real
part of the energy transfer corresponds to net transfers of kinetic energy at the time
scale 1/( f k), which can include transport into and out of the domain in some situations.
Analysis of the signs in (C9) indicates that Re(�Ek

n) < 0 would increase the dissipation at
time scale 1/( f k) and vice versa.
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