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Abstract

For every q ∈ (0, 1), we obtain the Herglotz representation theorem and discuss the Bieberbach problem
for the class of q-convex functions of order α with 0 ≤ α < 1. In addition, we consider the Fekete–
Szegö problem and the Hankel determinant problem for the class of q-starlike functions, leading to two
conjectures for the class of q-starlike functions of order α with 0 ≤ α < 1.
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1. Introduction
Throughout, C denotes the set of complex numbers and H(D) the set of all analytic
(or holomorphic) functions in the unit disc D. We use the symbol A for the class of
functions f ∈ H(D) with the standard normalisation f (0) = 0 = f ′(0) − 1, that is, the
functions f ∈ A having the power series representation of the form

f (z) = z +

∞∑
n=2

anzn. (1.1)

The set S denotes the class of univalent functions in A and S∗ and C the classes of
starlike and convex functions inA, respectively (see [4, 7]). The principal value of the
logarithm for z , 0 is denoted by Log z := ln |z| + iArg (z), where −π ≤ Arg (z) < π.

In geometric function theory, finding bounds for the coefficients an of functions of
the form (1.1) is an important problem, connected with geometric properties of the
function. For example, the bound for the second coefficient a2 of functions in the
class S gives growth and distortion properties as well as covering theorems. In 1916,
Bieberbach proposed a conjecture that among all functions in S, the Koebe function
z/(1 − z)2 has the largest coefficients. The conjecture was first approached for some
subclasses of univalent functions such as S∗ and C. One of the important techniques
developed to settle the conjecture is the Herglotz representation theorem giving an
integral representation for analytic functions with positive real part in D. Finally, de
Branges [3] settled the Bieberbach conjecture in 1985.
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The kth-order Hankel determinant (k ≥ 1) of f ∈ A is defined by

Hk(n) =

∣∣∣∣∣∣∣∣∣∣∣∣
an an+1 . . . an+k−1

an+1 an+2 . . . an+k
...

...
...

an+k−1 an+k . . . an+2k−2

∣∣∣∣∣∣∣∣∣∣∣∣ .
We consider the Hankel determinants H2(1) (also called the Fekete–Szegö functional)
and H2(2). Also in 1916, Bieberbach proved that if f ∈ S, then |a2

2 − a3| ≤ 1. In 1933,
Fekete and Szegö [5] proved that

|a3 − µa2
2| ≤


4µ − 3 if µ ≥ 1,
1 + 2 exp[−2µ/(1 − µ)] if 0 ≤ µ ≤ 1,
3 − 4µ if µ ≤ 0.

The result is sharp in the sense that for each µ there is a function in the class
under consideration for which equality holds. The coefficient functional a3 − µa2

2
has many applications in function theory. For example, a3 − a2

2 is equal to S f (z)/6,
where S f (z) is the Schwarzian derivative of the locally univalent function f defined by
S f (z) = ( f ′′(z)/ f ′(z))′ − (1/2)( f ′′(z)/ f ′(z))2. The Fekete–Szegö problem asks for the
maximum value of a3 − µa2

2. Koepf [12] solved the Fekete–Szegö problem for close-
to-convex functions and showed that the largest real number µ for which a3 − µa2

2
is maximised by the Koebe function is µ = 1/3. Later, in [13] (see also [15]), this
result was generalised for functions that are close-to-convex of order β, β ≥ 0. In
[17], Pfluger employed a variational method to give another treatment of the Fekete–
Szegö inequality which includes a description of the image domains under extremal
functions. Later, Pfluger [18] used Jenkin’s method to show that for f ∈ S,

|a3 − µa2
2| ≤ 1 + 2| exp(−2µ/(1 − µ))|

holds for complex µ such that Re (1/(1 − µ)) ≥ 1. The inequality is sharp if and only
if µ is in a certain pear-shaped subregion of the disc given by

µ = 1 − (u + itv)/(u2 + v2), −1 ≤ t ≤ 1,

where u = 1 − log(cosϕ) and v = tanϕ − ϕ, 0 < ϕ < π/2.
Bieberbach problems for functions belonging to q-analogues of subclasses of

univalent functions are discussed in [1, 8, 19]. We discuss the Bieberbach problem for
the q-analogue of convex functions of order αwith 0 ≤ α < 1. The Hankel determinant
and Fekete–Szegö problems do not seem to be treated for q-analogues of subclasses
of univalent functions. In this regard, we discuss the Hankel determinant and Fekete–
Szegö problems for the q-analogue of starlike functions.

2. Preliminaries and main theorems
For 0 < q < 1, the q-difference operator, denoted by Dq f , is defined by

(Dq f )(z) =
f (z) − f (qz)

z(1 − q)
, z , 0; (Dq f )(0) = f ′(0).

The class, S∗q(α), of q-starlike functions of order α for 0 ≤ α < 1 is defined as follows.
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Definition 2.1 [1, Definition 1.1]. A function f ∈ A is said to be in the class S∗q(α),
0 ≤ α < 1, if ∣∣∣∣∣ 1

1 − α

(z(Dq f )(z)
f (z)

− α
)
−

1
1 − q

∣∣∣∣∣ ≤ 1
1 − q

, z ∈ D.

The choice α = 0 gives the class S∗q of q-starlike functions (see [8, Definition 1.3]).
By using the idea of Alexander’s theorem [4, Theorem 2.12], Baricz and Swaminathan
[2] defined the class Cq of q-convex functions in the following way.

Definition 2.2 [2, Definition 3.1]. A function f ∈ A is said to be in the class Cq if and
only if z(Dq f )(z) ∈ S∗q.

The class Cq is nonempty as shown in [2, Theorem 3.2]. Note that as q→ 1, the
classes S∗q and Cq reduce to S∗ and C, respectively. It is natural to define the class
Cq(α) of q-convex functions of order α for 0 ≤ α < 1 as follows.

Definition 2.3. A function f ∈ A is said to be in the class Cq(α) for 0 ≤ α < 1, if and
only if z(Dq f )(z) ∈ S∗q(α).

As q→ 1, Cq(α) reduces to the class C(α) of convex functions of order α (see [7]).
Thomae [20], a pupil of Heine, introduced a particular case of the q-integral,∫ 1

0
f (t) dqt = (1 − q)

∞∑
n=0

qn f (qn),

provided the q-series converges. In 1910, Jackson defined the general q-integral [9]
(see also [6, 20]) in the following manner:∫ b

a
f (t) dqt :=

∫ b

0
f (t) dqt −

∫ a

0
f (t) dqt,

where

Iq( f (x)) :=
∫ x

0
f (t) dqt = x(1 − q)

∞∑
n=0

qn f (xqn),

provided the q-series converges. Observe that

DqIq f (x) = f (x) and IqDq f (x) = f (x) − f (0),

where the second equality holds if f is continuous at x = 0.
We now state our main results. We first deal with the Fekete–Szegö problem for the

class S∗q.

Theorem 2.4. Let f ∈ S∗q be of the form (1.1) and µ be any complex number. Then

|a3 − µa2
2| ≤ max

{∣∣∣∣∣2(1 − 2µ)
( ln q
q − 1

)2
+ 2

( ln q
q2 − 1

)∣∣∣∣∣, 2( ln q
q2 − 1

)}
.
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Equality occurs for the functions

F1(z) := z
{
exp

[ ∞∑
n=1

2 ln q
qn − 1

zn
]}

(2.1)

and

F2(z) := z
{
exp

[ ∞∑
n=1

2 ln q
q2n − 1

z2n
]}
. (2.2)

Next, we estimate the second-order Hankel determinant for the class S∗q.

Theorem 2.5. Let f ∈ S∗q be of the form (1.1). Then

|H2(2)| = |a2a4 − a2
3| ≤ 4

( ln q
q2 − 1

)2
.

Equality occurs for the function F2(z) defined in (2.2).

Remark 2.6. As q→ 1, Theorem 2.4 reduces to the Fekete–Szegö problem for the
class S∗ [11, Theorem 1] and Theorem 2.5 gives the Hankel determinant for the class
S∗ [10, Theorem 3.1]. Later, in Section 4, we pose two conjectures on the Fekete–
Szegö problem and Hankel determinant for the class S∗q(α).

Next, we present the Herglotz representation for functions in the class Cq(α).

Theorem 2.7. Let f ∈ A. Then f ∈ Cq(α), 0 ≤ α < 1, if and only if there exists a
probability measure µ supported on the unit circle such that

z(Dq f )′(z)
(Dq f )(z)

=

∫
|σ|=1

σzF
′

q,α(σz) dµ(σ)

where

Fq,α(z) =

∞∑
n=1

−2
1 − qn ln

( q
1 − α(1 − q)

)
zn, z ∈ D. (2.3)

Remark 2.8. As q → 1, F
′

q,α(z) → 2(1 − α)/(1 − z) and z(Dq f )′(z)/(Dq f )(z) →
z f ′′(z)/ f ′(z). Hence, when q→ 1, Theorem 2.7 leads to the Herglotz representation
of convex functions of order α (see [7, page 172, Problem 3]).

The Bieberbach problem for the classes S∗q and S∗q(α) is treated in [8] and [1],
respectively. Our next result is on the Bieberbach problem for the class Cq(α),
0 ≤ α < 1, which does not seem to have been considered before. One can also consider
Hankel determinant and Fekete–Szegö problems for Cq(α).

Theorem 2.9. Let

Eq(z) := Iq{exp[Fq,α(z)]} = z +

∞∑
n=2

( 1 − q
1 − qn

)
cnzn (2.4)

where cn is the nth coefficient of the function z exp[Fq,α(z)]. Then Eq ∈ Cq(α) for
0 ≤ α < 1. Moreover, if f (z) = z +

∑∞
n=2 anzn ∈ Cq(α), then |an| ≤ ((1 − q)/(1 − qn))cn,

with equality holding for all n if and only if f is a rotation of Eq.
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Remark 2.10. As q→ 1, Fq,α(z)→ −2(1 − α) log(1 − z) and hence z exp[Fq,α(z)]→
z/(1 − z)2(1−α). Therefore, as q → 1, the coefficient cn →

∏n
k=2(k − 2α)/(n − 1)!,

showing that |an| is bounded by
∏n

k=2(k − 2α)/n! for f ∈ C(α). Thus, when q→ 1,
Theorem 2.9 leads to the Bieberbach problem for the class C(α) (see [7, page 140,
Theorem 2]). It would be interesting to get an explicit form of the extremal function
independent of the q-integral in Theorem 2.9.

3. Properties of the class Cq(α), 0 ≤ α < 1

This section is concerned with some basic properties of the class Cq(α). We first
remark that a function f ∈ Cq(α) can be written in terms of a function g in S∗q(α). The
proof is obvious and follows from the definition of Cq(α).

Proposition 3.1. Let f ∈ Cq(α), 0 ≤ α < 1. Then there exists a unique function
g ∈ S∗q(α), 0 ≤ α < 1, such that

g(z) = z(Dq f )(z). (3.1)

Similarly, given g ∈ S∗q(α), there exists a unique function f ∈ Cq(α) satisfying (3.1).

The next result gives a characterisation of the functions in the class Cq(α).

Theorem 3.2. Let f ∈ A. Then f ∈ Cq(α), 0 ≤ α < 1, if and only if∣∣∣∣∣q (Dq f )(qz)
(Dq f )(z)

− αq
∣∣∣∣∣ ≤ 1 − α, z ∈ D.

Proof. By Definition 2.3, f ∈ Cq(α) if and only if z(Dq f )(z) ∈ S∗q(α). The result
follows immediately from [1, Theorem 2.2]. �

Corollary 3.3. The class Cq(α) satisfies the relations⋂
q<p<1

Cp(α) ⊆ Cq(α) and
⋂

0<q<1

Cq(α) = C(α).

Proof. If f ∈ Cp(α) for all p ∈ (q, 1), then letting p→ q shows f ∈ Cq(α). Hence the
first inclusion in the corollary holds. Similarly, if f ∈ Cq(α) for all q ∈ (0, 1), then
letting q→ 1 shows f ∈ C(α), that is,⋂

0<q<1

Cq(α) ⊆ C(α).

It remains to prove the converse inclusion that

C(α) ⊆
⋂

0<q<1

Cq(α).

For this, let f ∈ C(α) so that z f ′ ∈ S∗(α). By [1, Corollary 2.3], S∗(α) =
⋂

0<q<1S
∗
q(α),

so that z f ′ ∈ S∗q(α) for all q ∈ (0, 1). Thus, by Proposition 3.1, there exists a unique
h ∈ Cq(α) satisfying (3.1) with h(z) = f (z). That is, f ∈ Cq(α) for all q ∈ (0, 1). This
completes the proof. �
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Define the two sets

Bq = {g : g ∈ H(D), g(0) = q and g : D→ D} and B0
q = {g : g ∈ Bq and 0 < g(D)}.

Lemma 3.4 [1, Lemma 2.4]. For h ∈ Bq, the infinite product
∞∏

n=0

(1 − α)h(zqn) + αq
q

converges uniformly on compact subsets of D.

Lemma 3.5. For h ∈ B0
q, the infinite product

∏∞
n=0{((1 − α)h(zqn) + αq)/q} converges

uniformly on compact subsets of D to a nonzero function in H(D) with no zeros.
Furthermore, the function f satisfying the relation

z(Dq f )(z) =
z∏∞

n=0{((1 − α)h(zqn) + αq)/q}
(3.2)

belongs to Cq(α) and h(z) = (1/(1 − α))(q(Dq f )(qz)/(Dq f )(z) − αq).

Proof. The convergence of the infinite product is given by Lemma 3.4. Since h ∈ B0
q,

h(z) , 0 in D and the infinite product does not vanish in D. Thus, z(Dq f )(z) ∈ A and

q
(Dq f )(qz)
(Dq f )(z)

= q lim
k→∞

k∏
n=0

(1 − α)h(zqn) + αq
(1 − α)h(zqn+1) + αq

= (1 − α)h(z) + αq.

Since h ∈ B0
q, we see that f ∈ Cq(α) and the proof of the lemma is complete. �

Let P be the family of all functions p ∈ H(D) for which Re {p(z)} ≥ 0 and

p(z) = 1 + p1z + p2z2 + · · · for z ∈ D. (3.3)

Lemma 3.6 [8, Lemma 2.4]. A function g ∈ B0
q if and only if it has the representation

g(z) = exp{(ln q)p(z)} with p(z) ∈ P. (3.4)

Theorem 3.7. The mapping ρ : Cq(α)→ B0
q defined by

ρ( f )(z) =
1

1 − α

(
q

(Dq f )(qz)
(Dq f )(z)

− αq
)

is a bijection.

Proof. For h ∈ B0
q, define a mapping σ : B0

q →A by

z(Dqσ(h))(z) =
z∏∞

n=0{((1 − α)h(zqn) + αq)/q}
.

From Lemma 3.5, σ(h) ∈ Cq and (ρ ◦ σ)(h) = h. Considering the composite mapping
σ ◦ ρ, we compute

z(Dq(σ ◦ ρ)( f ))(z) =
z∏∞

n=0{((1 − α)ρ( f )(zqn) + αq)/q}

=
z∏∞

n=0{q(Dq f )(zqn+1)/q(Dq f )(zqn)}
= z(Dq f )(z)

whence (σ ◦ ρ)( f ) = f . Hence σ is the inverse of ρ and ρ( f ) is a bijection. �
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4. Proof of the main theorems

We now prove the main theorems stated in Section 2. The following lemmas are
used to obtain the results on the Fekete–Szegö problem and the Hankel determinant.

Lemma 4.1 [8, Theorem 1.13]. The mapping ρ : S∗q → B0
q defined by

ρ( f )(z) =
f (qz)
f (z)

is a bijection.

Lemma 4.2 [8, Theorem 1.15]. Let f ∈ A. Then f ∈ S∗q if and only if there exists a
probability measure µ supported on the unit circle such that

z f ′(z)
f (z)

= 1 +

∫
|σ|=1

σzF
′

q(σz) dµ(σ)

where

Fq(z) =

∞∑
n=1

2 ln q
qn − 1

zn, z ∈ D. (4.1)

Lemma 4.3 [14, pages 254–256]. Let the function p ∈ P be given by the power series
(3.3). Then

2p2 = p2
1 + x(4 − p2

1),

4p3 = p3
1 + 2(4 − p2

1)p1x − p1(4 − p2
1)x2 + 2(4 − p2

1)(1 − |x|2)z,

for some x and z satisfying |x| ≤ 1, |z| ≤ 1, and p1 ∈ [0, 2].

Lemma 4.4 [16, Lemma 1]. Let the function p ∈ P be given by the power series (3.3).
Then for any real number λ,

|p2 − λp2
1| ≤ 2 max{1, |2λ − 1|}

and the result is sharp.

Proof of Theorem 2.4. Let f ∈ S∗q. By Lemma 4.1, g(z) = f (qz)/ f (z) ∈ B0
q. By

Lemma 3.6, g(z) has the representation (3.4), Define the function

φ(z) = Log
f (z)
z

=

∞∑
n=1

φnzn.

From (3.4), we find φ(qz) − φ(z) = (ln q)p(z) − ln q which implies

φn = pn

( ln q
qn − 1

)
. (4.2)

So, f (z) can be written as

f (z) = z exp
[ ∞∑

n=1

φnzn
]
, (4.3)
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where φn is defined in (4.2) and f (z) has the form (1.1). Equating the coefficients of zn

on both sides of (4.3) and using the value of φn given in (4.2),

a2 = φ1 = p1

( ln q
q − 1

)
, a3 = φ2 +

φ2
1

2
= p2

( ln q
q2 − 1

)
+

p2
1

2

( ln q
q − 1

)2
. (4.4)

Thus,

|a3 − µa2
2|=

∣∣∣∣∣p2

( ln q
q2 − 1

)
+

p2
1

2

( ln q
q − 1

)2
− µp2

1

( ln q
q − 1

)2∣∣∣∣∣
≤max

{∣∣∣∣∣2(1 − 2µ)
( ln q
q − 1

)2
+ 2

( ln q
q2 − 1

)∣∣∣∣∣, 2( ln q
q2 − 1

)}
,

where the last inequality follows from Lemma 4.4.
It now remains to prove the sharpness part. From the definition of S∗q, the functions

F1 and F2 defined in the statement of Theorem 2.4 belong to S∗q. Further, F1 ∈ S
∗
q as

a special case of Lemma 4.2 when the measure has a unit mass. The functions F1 and
F2 prove the sharpness of the result. This completes the proof of the theorem. �

We now pose the following conjecture on the Fekete–Szegö problem for S∗q(α).

Conjecture 4.5. Let f ∈ S∗q(α), 0 ≤ α < 1, be of the form (1.1) and µ be any complex
number. Set q(α) = q/(1 − α(1 − q)). Then

|a3 − µa2
2| ≤ max

{∣∣∣∣∣2(1 − 2µ)
( ln q(α)

q − 1

)2
+ 2

( ln q(α)
q2 − 1

)∣∣∣∣∣, 2( ln q(α)
q2 − 1

)}
.

Equality occurs for the functions

F1(z) := z
{
exp

[ ∞∑
n=1

2 ln q(α)
qn − 1

zn
]}

(4.5)

and

F2(z) := z
{
exp

[ ∞∑
n=1

2 ln q(α)
q2n − 1

z2n
]}
. (4.6)

Proof of Theorem 2.5. Let f ∈ S∗q have the form (1.1). In (4.4), we already obtained
the values of a2 and a3. In a similar way, we can find the value of a4. Indeed,

a4 = φ3 + φ1φ2 +
φ3

1

6
= p3

( ln q
q3 − 1

)
+ p1 p2

( ln q
q − 1

)( ln q
q2 − 1

)
+

p3
1

6

( ln q
q − 1

)3
.

Hence,

|a2a4 − a2
3| =

∣∣∣∣∣− p4
1

12

( ln q
q − 1

)4
+ p1 p3

( ln q
q − 1

)( ln q
q3 − 1

)
− p2

2

( ln q
q2 − 1

)2∣∣∣∣∣.
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Suppose now that p1 = c and 0 ≤ c ≤ 2. Using Lemma 4.3, we obtain

|a2a4 − a2
3|=

∣∣∣∣∣− c4

12

[( ln q
q − 1

)4
− 3

( ln q
q − 1

)( ln q
q3 − 1

)
+ 3

( ln q
q2 − 1

)2]
+

c2

2
(4 − c2)x

[( ln q
q − 1

)( ln q
q3 − 1

)
−

( ln q
q2 − 1

)2]
+

(4 − c2)(1 − |x|2)cz
2

( ln q
q − 1

)( ln q
q3 − 1

)
−

[c2

4
(4 − c2)

( ln q
q − 1

)( ln q
q3 − 1

)
+

(4 − c2)2

4

( ln q
q2 − 1

)2]
x2

∣∣∣∣∣
≤

c4

12

∣∣∣∣∣( ln q
q − 1

)4
− 3

( ln q
q − 1

)( ln q
q3 − 1

)
+ 3

( ln q
q2 − 1

)2∣∣∣∣∣
+

(4 − c2)c
2

( ln q
q − 1

)( ln q
q3 − 1

)
+

c2

2
(4 − c2)

[( ln q
q − 1

)( ln q
q3 − 1

)
−

( ln q
q2 − 1

)2]
ρ

+

(4 − c2

4

)[
(4 − c2)

( ln q
q2 − 1

)2
+ c(c − 2)

( ln q
q − 1

)( ln q
q3 − 1

)]
ρ2

= F(ρ),

with ρ = |x| ≤ 1. Furthermore, F′(ρ) ≥ 0 which implies that F is an increasing function
of ρ and that the upper bound for |a2a4 − a2

3| corresponds to ρ = 1. Hence,

|a2a4 − a2
3| ≤ F(1) = G(c) (say).

We can see that ( ln q
q − 1

)4
− 3

( ln q
q − 1

)( ln q
q3 − 1

)
+ 3

( ln q
q2 − 1

)2
> 0,

for 0 < q < 1 and a simple calculation gives

G(c) =
c4

12

[( ln q
q − 1

)4
− 12

( ln q
q − 1

)( ln q
q3 − 1

)
+ 12

( ln q
q2 − 1

)2]
+ c2

[
3
( ln q
q − 1

)( ln q
q3 − 1

)
− 4

( ln q
q2 − 1

)2]
+ 4

( ln q
q2 − 1

)2
.

We can verify that G′(c) = 0 gives either c = 0 or ±c(q), where c(q) > 0 can be given
explicitly in terms of q, and that G′′(c) is negative for c = 0 and positive for other
values of c. Hence the maximum of G(c) occurs at c = 0 and we obtain

|a2a4 − a2
3| ≤ 4

( ln q
q2 − 1

)2
.

The function F2 defined in the statement of the theorem shows the sharpness of the
result. This completes the proof of the theorem. �
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We pose a conjecture about the Hankel determinant for the class S∗q(α).

Conjecture 4.6. Let f ∈ S∗q(α), 0 ≤ α < 1, be of the form (1.1). Then

|a2a4 − a2
3| ≤ 4

( ln q(α)
q2 − 1

)2
.

where q(α) = q/(1 − α(1 − q)). Equality occurs for the function F2 defined in (4.6).

Remark 4.7. We remark that the inequalities in Conjectures 4.5 and 4.6 can be
obtained by calculations similar to those in the proofs of Theorems 2.4 and 2.5,
respectively. However, the point of the conjectures is to find the extremal functions
which we believe to be (4.5) and (4.6).

Proof of Theorem 2.7. Let f ∈ Cq(α), 0 ≤ α < 1. From the definition of Cq(α),
z(Dq f )(z) ∈ S∗q(α). By [1, Theorem 1.1],

1 +
z(Dq f )′(z)
(Dq f )(z)

= z
(z(Dq f )(z))′(z)

z(Dq f )(z)
= 1 +

∫
|σ|=1

σzF
′

q,α(σz) dµ(σ)

where Fq,α is defined in (2.3). This completes the proof. �

Proof of Theorem 2.9. Let f (z) = z +
∑∞

n=2 anzn ∈ Cq(α). From the definition of
Cq(α), z(Dq f )(z) = z +

∑∞
n=2((1 − qn)/(1 − q))anzn ∈ S∗q(α). By [1, Theorem 1.3],∣∣∣∣∣1 − qn

1 − q
an

∣∣∣∣∣ ≤ cn.

Next, we show that equality holds for the function Eq ∈ Cq(α). As a special case
of Theorem 2.7, when the measure has a unit mass, it is clear that Eq ∈ Cq(α). Let
Eq(z) = z +

∑∞
n=2 bnzn. From this representation of Eq and the definition of Dq f ,

z(DqEq)(z) = z +

∞∑
n=2

bn

(1 − qn

1 − q

)
zn. (4.7)

On the other hand, Eq(z) = Iq{exp[Fq,α(z)]}, so z(DqEq)(z) = z{exp[Fq,α(z)]} and, since
cn is the nth coefficient of the function z exp[Fq,α(z)],

z(DqEq)(z) = z +

∞∑
n=2

cnzn. (4.8)

By comparing (4.7) and (4.8), we see that bn = cn(1 − q)/(1 − qn), that is,

Eq(z) = z +

∞∑
n=2

( 1 − q
1 − qn

)
cnzn.

This completes the proof of the theorem. �
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