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A Short Proof of Paouris’ Inequality
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Abstract. We give a short proof of a result of G. Paouris on the tail behaviour of the Euclidean norm
|X| of an isotropic log-concave random vector X ∈ Rn, stating that for every t ≥ 1,

P
(
|X| ≥ ct

√
n
)
≤ exp(−t

√
n).

More precisely we show that for any log-concave random vector X and any p ≥ 1,

(E|X|p)1/p ∼ E|X| + sup
z∈Sn−1

(
E|〈z,X〉|p

) 1/p
.

1 Introduction

Let X be a random vector in the Euclidean space Rn equipped with its Euclidean
norm | · | and its scalar product 〈 · , · 〉. Assume that X has a log-concave distribution
(a typical example of such a distribution is a random vector uniformly distributed on
a convex body). Assume further that it is centered and that its covariance matrix is
the identity; such a random vector will be called isotropic. A famous and important
result, [14, Theorem 1.1], states the following.

Theorem 1.1 There exists an absolute constant c > 0 such that if X is an isotropic
log-concave random vector in Rn, then for every t ≥ 1,

P
(
|X| ≥ ct

√
n
)
≤ exp(−t

√
n).

This result had a huge impact on the study of log-concave measures and has a lot
of applications in that subject.

A Borel probability measure on Rn is called log-concave if for all 0 < θ < 1 and all
compact sets A,B ⊂ Rn one has

µ
(

(1− θ)A + θB
)
≥ µ(A)1−θµ(B)θ.
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We refer to [5, 6] for a general study of this class of measures. Clearly, the affine
image of a log-concave probability is also log-concave. The Euclidean norm of an
n-dimensional log-concave random vector has moments of all orders (see [5]). A
log-concave probability is supported on some convex subset of an affine subspace
where it has a density. In particular when the support of the probability generates the
whole space Rn (in which case we talk, in short, about full-dimensional probability)
a characterization of Borell (see [5,6]) states that the probability is absolutely contin-
uous with respect to the Lebesgue measure and has a density that is log-concave. We
say that a random vector is log-concave if its distribution is a log-concave measure.

Let X ∈ Rn be a random vector. Denote the weak p-th moment of X by

σp(X) = sup
z∈Sn−1

(
E|〈z,X〉|p

) 1/p
.

The purpose of this article is to give a short proof of the following theorem.

Theorem 1.2 For any log-concave random vector X ∈ Rn and any p ≥ 1,

(E|X|p)1/p ≤ C
(

E|X| + σp(X)
)
,

where C is an absolute positive constant.

This result may be deduced directly from Paouris’ work [14]. Indeed, it is a conse-
quence of Theorem 8.2 combined with Lemma 3.9 in that paper. As formulated here,
Theorem 1.2 first appeared as [3, Theorem 2]. Note that because trivially a converse
inequality is valid (with constant 1/2), Theorem 1.2 states in fact an equivalence for
(E|X|p)1/p.

It is noteworthy that the following strengthening of Theorem 1.2 is still open:
(E|X|p)1/p ≤ E|X| + Cσp(X), where C is an absolute positive constant.

If X is a log-concave random vector, then so is 〈z,X〉 for every z ∈ Sn−1. It follows
that there exists an absolute constant C ′ > 0 such that for any p ≥ 1, σp(X) ≤
C ′p σ2(X) ([5]). (In fact one can deduce this inequality with C ′ = 1 from [4] or
from [11, Remark 5]; see also Remark 1 following [2, Theorem 3.1].) If, moreover, X
is isotropic, then E|X| ≤ (E|X|2)1/2 =

√
n and σ2(X) = 1; thus

(E|X|p)1/p ≤ C
(√

n + C ′p
)
.

From Markov’s inequality for p = t
√

n, Theorem 1.2 implies Theorem 1.1 with
c = (C ′ + 1)eC .

Let us recall the idea underlying the proof by Paouris. Let X ∈ Rn be an isotropic
log-concave random vector. Let p ∼

√
n be an integer (for example, p = [

√
n]).

Let Y = PX, where P is an orthogonal projection of rank p and let G ∈ ImP be
a standard Gaussian vector. By rotation invariance, E|Y |p ∼ E|〈G/√p,Y 〉|p. If the
linear forms 〈z,X〉 with |z| = 1 had a sub-Gaussian tail behaviour, the proof would
be straightforward. But in general they only obey a sub-exponential tail behaviour.
The first step of the proof consists of showing that there exists some z for which
(E|〈z,Y 〉|p)1/p is in fact small compared to E|Y |. The second step uses a concentra-
tion principle to show that (EX|〈z, PX〉|p)1/p is essentially constant on the sphere for
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a random orthogonal projection of rank p ∼
√

n, and thus comparable to the min-
imum. Thus for these good projections, one has a good estimate of (E|Y |p)1/p, and
the result follows by averaging over P. Our proof follows the same scheme, at least
for the first step, but whereas the proof of the first step in [14] is the most technical
part, our argument is very simple. Then the estimate for min|z|=1 E|〈z,Y 〉|p brings us
to a minimax problem precisely in the form answered by Gordon’s inequality ([9]).

Finally we would like to note that our proof can be generalized to the case of con-
vex measures in the sense of [5, 6]. Of course the proof is longer and more technical.
We provide the details in [1].

2 Proof of Theorem 1.2

First let us notice that it is enough to prove Theorem 1.2 for symmetric log-concave
random vectors. Indeed, let X be a log-concave random vector and let X ′ be an
independent copy. By Jensen’s inequality we have for all p ≥ 1,

(E|X|p)1/p ≤
(

E|X − EX|p
) 1/p

+ |EX| ≤
(

E|X − X ′|p
) 1/p

+ E|X|.

On the other hand E|X − X ′| ≤ 2E|X| and for p ≥ 1 one has σp(X − X ′) ≤ 2σp(X).
Since X − X ′ is log-concave (see [8]) and symmetric, we obtain that the symmetric
case proved with a constant C ′ implies the non-symmetric case with the constant
C = 2C ′ + 1.

Lemma 2.1 Let Y ∈ Rq be a random vector. Let ‖ · ‖ be a norm on Rq. Then for all
p > 0,

min
|z|=1

(
E|〈z,Y 〉|p

) 1/p ≤ (E‖Y‖p)1/p

E‖Y‖
E|Y |.

Proof Let r be the largest number such that r‖t‖ ≤ |t| for all t ∈ Rq. Using duality,
pick z ∈ Rq such that |z| = 1 and ‖z‖∗ ≤ r (the dual norm of ‖ · ‖). Then |〈z, t〉| ≤
r‖t‖ ≤ |t| for all t ∈ Rq. Therefore, (E|〈z,Y 〉|p)1/p ≤ r(E‖Y‖p)1/p for any p > 0,
and the proof follows from rE‖Y‖ ≤ E|Y |.

Lemma 2.2 Let Y be a full-dimensional symmetric log-concave Rq-valued random
vector. Then there exists a norm ‖ · ‖ on Rq such that

(
E‖Y‖q

) 1/q ≤ 500 E‖Y‖.

Remark In fact, the constant 500 can be significantly improved. To keep the pre-
sentation short and transparent we omit the details.

Proof From Borell’s characterization, Y has an even log-concave density gY . Thus
gY (0) is the maximum of gY . Define a symmetric convex set by

K =
{

t ∈ Rq : gY (t) ≥ 25−qgY (0)
}
.
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Since K clearly has a non-empty interior, it is the unit ball of a norm that we denote
by ‖ · ‖. On one hand, 1 ≥ P(Y ∈ K) =

∫
K gY ≥ 25−qgY (0)vol(K), thus

P
(
‖Y‖ ≤ 1/50

)
=

∫
K/50

gY ≤ gY (0)50−qvol(K) ≤ 2−q ≤ 1/2.

Therefore, E‖Y‖ ≥ P(‖Y‖ > 1/50)/50 ≥ 1/100. On the other hand, by the log-
concavity of gY ,

∀t ∈ Rq \ K g2Y (t) = 2−qgY (t/2) ≥ 2−qgY (t)1/2gY (0)1/2 ≥ (5/2)qgY (t).

Therefore,

E‖Y‖q ≤ 1 + E(‖Y‖q1Y∈Rq\K ) ≤ 1 + (2/5)qE‖2Y‖q = 1 + (4/5)qE‖Y‖q.

We conclude that (E‖Y‖q)1/q ≤ 5 and (E‖Y‖q)1/q/E‖Y‖ ≤ 500.

Lemma 2.3 Let n, q ≥ 1 be integers and p ≥ 1. Let X be an n-dimensional random
vector, let G be a standard Gaussian vector in Rn, and let Γ be an n×q standard Gaussian
matrix. Then

(E|X|p)1/p ≤ α−1
p

(
E min
|t|=1

9Γt 9 +(αp +
√

q)σp(X)
)
,

where 9z9 = (E|〈z,X〉|p)1/p and αp
p is the p-th moment of an N(0, 1) Gaussian ran-

dom variable (so that limp→∞(αp/
√

p) = 1/
√

e).

Proof By rotation invariance, E|〈G,X〉|p = α
p
p E|X|p. Notice that

σ2 := sup
9t9∗≤1

E|〈G, t〉|2 = sup
9t9∗≤1

|t|2 = σ2
p(X),

where 9 ·9∗ denotes the norm on Rn dual to the norm 9 ·9. Denote the median
of 9G9 by MG. The classical deviation inequality for a norm of a Gaussian vector
([7, 15], see also [12, Theorem 12.2]) states

∀s ≥ 0 P
(∣∣9G9−MG

∣∣ ≥ s
)
≤ 2

∫ ∞
s/σ

exp
(
−t2/2

) dt√
2π

and since MG ≤ E 9G9 ([10], see also [12, Lemma 12.2]), this implies

(E|X|p)1/p = α−1
p (E 9G9p)1/p ≤ α−1

p

(
E 9G 9 +αpσp(X)

)
(cf. [13, Statement 3.1]).

The Gordon minimax lower bound (see [9, Theorem 2.5]) states that for any norm
9 ·9,

E 9G9 ≤ E min
|t|=1

9Γt 9 +
(

E|H|
)

max
|z|=1

9z9 ≤ E min
|t|=1

9Γt 9 +
√

qσp(X),

where H is a standard Gaussian vector in Rq. This concludes the proof.

https://doi.org/10.4153/CMB-2012-014-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-014-5


A Short Proof of Paouris’ Inequality 7

Proof of Theorem 1.2 Assume that X is log-concave symmetric. We use the nota-
tion of Lemma 2.3 with q the integer such that p ≤ q < p + 1. We first condition
on Γ. Let Y = Γ∗X. Note that Y is log-concave symmetric and that

9Γt9 =
(

EX|〈Γt,X〉|p
) 1/p

=
(

EX|〈t,Γ∗X〉|p
) 1/p

.

If Γ∗X is supported by a hyperplane then min|t|=1(EX|〈t,Γ∗X〉|p)1/p = 0. Otherwise
Lemma 2.2 applies and combined with Lemma 2.1 gives that

min
|t|=1

9Γt9 ≤ min
|t|=1

(EX|〈t,Γ∗X〉|p)1/p ≤ 500 EX|Γ∗X|.

By taking expectation over Γ we get

E min
|t|=1

9Γt9 ≤ 500 E|Γ∗X| = 500 E|H| E|X| ≤ 500
√

q E|X|,

where H ∈ Rq is a standard Gaussian vector. Applying Lemma 2.3 we obtain

(E|X|p)1/p ≤ 500α−1
p
√

q E|X| + (1 + α−1
p
√

q)σp(X).

This implies the desired result, since q ≤ p + 1 and hence α−1
p
√

q ≤ c for some

numerical constant c (recall that limp→∞
(
αp/
√

p
)

= 1/
√

e).
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