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CLOSED LIE IDEALS IN OPERATOR ALGEBRAS 

C. ROBERT MIERS 

1. Introduction. If M is an associative algebra with product xy, M 
can be made into a Lie algebra by endowing M with a new multiplication 
[x, y] = xy — yx. The Poincare-Birkoff-Witt Theorem, in part, shows 
that every Lie algebra is (Lie) isomorphic to a Lie subalgebra of such 
an associative algebra M. A Lie ideal in M is a linear subspace U C M 
such that [x, u] Ç U for all x £ M, u £ £/. In [9], as a step in character­
izing Lie mappings between von Neumann algebras, Lie ideals which 
are closed in the ultra-weak topology, and closed under the adjoint 
operation are characterized when If is a von Neumann algebra. However 
the restrictions of ultra-weak closure and adjoint closure seemed un­
natural, and in this paper we characterize those uniformly closed linear 
subspaces which can occur as Lie ideals in von Neumann algebras. We 
follow, and use results from, the programme of Herstein [8] who charac­
terized Lie ideals in simple rings. We expect, therefore, that the Lie ideal 
structure of M will be closely related to its associative ideal structure, 
and, indeed, this is the case. Using our characterization and a Herstein-
Amitsur-like result, other characterizations of Lie ideals in terms of 
invariance properties are given. Finally, finite dimensional Lie ideals, 
and solvable Lie ideals are characterized in von Neumann algebras. 

2. Uniformly closed Lie ideals. In what follows, if M is an algebra 
over the complex field, and S, T subsets of M then 

[S,T] = { | > , [ s , , *,]|a, G C , ^ e S,tte Tj , 

5 will denote closure in the uniform topology, and S™ closure in the 
ultraweak topology. 

We shall need the following facts: 
(1) If M is a properly infinite von Neumann algebra then M = [M, M] 

[15] and M is the (non-closed) linear span of its projections [11]. 
(2) If M is a finite von Neumann algebra, [M, M] = {m G M\m* = 0} 

where w# is the centre-valued trace ([6], Théorème 3.2, and [10], Theorem 
1). This implies that if i f is a i7i-factor then it is the (non-closed) linear 
span of its projections ([10], Theorem 3). 
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(3) Any von Neumann algebra is the uniform closure of the linear 
span of its projections by the spectral theorem. 

(4) If M is a ring with no 2-torsion, and no non-zero nilpotent ideals, 
and if PF is a Lie ideal and subring of M then W Q, ZM, the centre of M, 
or there exists a non-zero, two-sided ideal / of M such that / Q W ([8], 
Lemma 1.3). 

The following lemma is due to John Bunce. 

LEMMA 1. If A is a C*-algebra and J a uniformly closed, two-sided ideal 
in A, then [A, J] = J C\ [A, A]. 

Proof. [A, J] QJC\ [A, A] so 

P77] c ; n [A, A] c / n [A,A] = jr\ [A, A], 

Let \ux) be a quasi-central approximate identity for / . That is, 
\\u\\\ ^ 1, {u\} Q J, u\ ^ 0, u\/*, \\j — u\j\\ —> 0 for all j Ç / , and 
\\[ux, a]|| —» 0 for all a £ A. (See [1] for a discussion of this idea.) Given 
e > 0, suppose \\j — [x, y]\\ < e for j £ J, x, y £ A. Then 

||j - [x, uxy]\\ = ||j - uxj + uxj - [x, uxy]\\ 

^ Hi - ^xill + Ikxi - [*, u*y]\\ 
^ Hi - ^xill + \\uxj + [x, ux]y - [x, uxy]\\ + \\[x, ux]y\\. 

But 

[x, ux]y — [x, uxy] = xuxy — uxxy — xuxy + uxyx = ux[y, x]. 

Hence 

\\uxj + [x, uxy) - [x, uxy]\\ = \\uxj - ux[x, y]\\ ^ \\j - [x, y]\\ < e. 

This implies that if j G / H [A, A] then j e [A, J]. 

COROLLARY. If J is any two-sided ideal, then [A, J] = J C\ [A, A}. 

LEMMA 2. If M is a von Neumann algebra and J a uniformly closed, 
two-sided ideal in M then Z(M/J) = J + ZM where ZM is the centre of M. 

Proof. Let x — x + J be the coset in M/J containing x and suppose 
x Ç Z{M/J). Then [x, y] = 0 for all y £ M. That is [x,y] (E / for all 
y (E M. In particular, if u (E AT is unitary, [x, u] = xu — ux (E J" so that 
uxu~l — x Ç J for all unitary u £ M. Let 

i£T = {uxu~1\ u unitary in M}. 

Then (by [5], Théorème 1, p. 253) co i ^ P\ ZM ^ 0 where co Kx is the 
convex hull of Kx. Let £ £ co KXC\ ZM and / = lim tn where 

tn = I a / % / % ^ ^ ) - 1 , E««(n) = 1. 
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Then 

t n - X = (£a< ( nWn )*(«* ( n ))"~1) - x 

= Y,ai
w(uiWx(uiW)-1 - x) e J. 

Hence t — x = j £ / or x = j + t and t £ ZM. 

T H E O R E M 1. Let M be a von Neumann algebra and U a uniformly closed 
Lie ideal in M. If M is properly infinite, there exists a closed two-sided ideal 
J Ç M such that J Ç U Q J -\- ZM. If M is finite there exists a closed, 
two-sided ideal J Ç M such that J Ç JJ + ZM Q J + ZM. 

Proof. If T(U) = {x G M\ [x, M] Ç U} then T{U) is a Lie ideal and 
subring of M, containing U, and is uniformly closed since U is uniformly 
closed. Hence either T(U) £ ZM or there exists a non-zero, two-sided 
ideal JQ T(U). If r (C/ ) Q ZM then Z7 Ç Z M and / = {0} in the 
theorem. 

Otherwise let / be a maximal non-zero, two-sided ideal in T(U). Since 
T(U) is uniformly closed, so is J. We claim tha t J Q T(U) C J + ZM. 
For, if T(U)/J j* {0} in M/J then T(U)/J is a Lie ideal and subring 
in M/J and is either contained in the centre of M/J or contains a non­
zero, two-sided ideal K of M/J. In the first case, by Lemma 2, 
T{U)/J Ç Z(M/J) = J + Z M or T(U) Q J + ZM. In the second case let 
i£o = TV~1(K) where -w: M —> M/J is the canonical map and notice t ha t 
J Ç Ko Q T(U) + J = T(U) which is impossible since KQ is a two-
sided ideal and / is maximal. Hence we must have J Q T(U) Q J + ZM. 
By Lemma 1, 

j r \ [M7M\= [M, J] Q UQ T(U) QJ + ZM. 

If M is infinite, then [M, M] = M so tha t J = J C\ [M, M] Q U 
Ç J + ZM. H M is finite, [M, M] = {x G M|x# = 0} = ikT0- Moreover, if 

3 € / , j - i # G / H Mo ([5], Proposition 2, p. 256). Hence, in the finite 
case, 

j-j*ejnMo = jr\[M,M]QUQj + zM. 
Finally this implies / Ç JJ + Z M Ç / + Z M . 

3. Charac ter i za t ions of Lie idea ls . 

LEMMA 3. If M is a von Neumann algebra and U a linear sub space such 
that [U, [M, I ] ] Ç [ / then U is a Lie ideal in M. 

Proof. If M is properly infinite [M, M] = M. If M is finite, [Mf M] = 
{m £ M\m* = 0} = M0. If x G M, x - x* G MQ and so [x - x*, u] = 
[x, u] Ç U when u ^ U so t ha t c7 is a Lie ideal. In general M = Mc ® 
Mi-c where c is a central projection, Mc = {cm\m G M], with 7kfc finite 
and Mi-C properly infinite. Moreover Uc and U\-c satisfy the condition 
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of the theorem in Mc and M\-c respectively and are Lie ideals by the 
first par t of the proof. 

T H E O R E M 2 (See [8], Theorem 1.15, [16], p . 348). Let M he a von 

Neumann algebra, W a sub space of M invariant under all special inner 
automorphisms of M. (That is (1 + a)W(l — a) Ç W for all a in M for 
which a2 = 0.) If M is properly infinite, W is a Lie ideal of M. If M is 
finite, W is a Lie ideal of M. 

Proof. We follow ([8], Theorem 1.15). Given a £ M with a2 = 0 and 
b £ W then 

(1 + a)b(l - a) = b + ah - ha - aba £ W. 

Hence ah — ba — aba f W. Let a f C with a2 ^ a. Then (aa)2 = 0 
implies 

aah — aba — a2aba f W. 

Since W is a subspace, a2(ab — ba — aha) (- W so t h a t 

(a2 — a) (ah — ha) Ç W. 

Hence [a,b] Ç W for all è G W and all a for which a2 = 0. 
If p is a projection in M then a = xp — pxp is a ni lpotent of index 

two for all x Ç M. Hence 

[a, b] = (xp - pxp)b - b(xp - pxp) t W for all b Ç W, x C: AP 

Similarly, 

(px ~~ pxp)b - h(px — pxp) Ç IT for all b Ç: IT, x f Af. 

This implies \[p, M], W] Ç IT for all projections £ in M. If P is the 
linear span of projections in M, then [[P, Tf], IT] Ç IT. If Tf is properly 
infinité, P = I f so tha t WJs a Lie ideal of [M, M]_= M. If M is finite, 
P - M so t h a t [[M, M], IT] C IT. By Lemma 3, W is a Lie ideal in M. 

COROLLARY. 4̂ uniformly closed linear subspace W of a von Neumann 
algebra M is a Lie ideal if and only if it is invariant under all special inner 
auiom o rp hi s m s. 

Proof. Let W be a uniformly closed Lie ideal. If M is properly infinite 
there exists, by Theorem 1, a closed, two-sided ideal / such tha t 
/ Ç W Q J + ZM. Hence, if w 6 IT, w = j + z where j £ J, z f ZM. 
Let a2 = 0 and 0 a(x) = (1 + a)x(l — a). Then 

<f>a(w) •= (1 + a)j(l — a) + z and <t>a(w) — w d J. 

Thus <j>a(w) 6 / + IT ^ IT. A similar argument suffices for the finite 
case. Finally, <j>a preserves direct sums. 
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Lie ideals have other invariance properties as shown in the following 
theorem. 

THEOREM 3. Let W be a linear sub space of an algebra A. If W is a Lie 
ideal then u*Wu Ç W for all u = p + i(l — p), p a projection in A. If A 
is generated as a linear space by its projections and if u*Wu Q W for all 
u = p + i(l — p) then W is a Lie ideal. If A is a properly infinite von 
Neumann algebra and u*Wu CI W for all u — p + i{\ — p) then 
u*Wu Ç W for all unitaries u Ç A. 

Proof. If W is a Lie ideal in A then for any unitary u £ A, 

[[u, w], u*\ = uwu* + u*wu — 2w t W 

so that uwu* + u*wu Ç W for all w (z W. If p is a projection and 
u = p + iil — p) then 2i[p, w] = u*wu — uwu* Ç W. Thus, if u = 
p + ?'(1 — p) we have, by adding, that u*wu t W for all w G W. 

If A is generated as a linear space by its projections and u*Wu C IF 
for all u = p + i(l — p) then 2i[p,w] = u*wu — uwu* G W for all 
pso [A, IF] C W. 

HA is a properly infinite von Neumann algebra and u*Wu ÇZ IF for 
all u = p + z(l — £) then (u*)2Wu2 = zdTi' G IF" where i» = ?i2 (w*)2 = 
2p — 1. Hence W is invariant under symmetries. But each unitary in A 
is the product of four symmetries ([7], Corollary, Theorem 3) so that for 
a general unitary u f A, u = z '^2^4 and 

u*Wu = (?;î 2?',3^4)*IF(̂ iz/2̂ 3^4) = vtf)zVtf)iWv\V?vzV\ Q W 

by the above. 

Remark. For comparison to Theorem 3 we note that if A is an algebra 
with no 2-torsion generated as a linear space by its projections, then a 
linear subspace W is a Jordan ideal if and only if pWp Ç W for all 
projections p G A. For, if pWp Ç IF" then w f IF implies 

w = (£ + (1 - p))w{p + (1 -p)) 

= pwp + (1 — p)w(l — £) + (1 — p)wp + pw(l — £) 

= (1 — £)w(l — p) — pwp + w/> + pw (z IF. 

Hence w£ + pw G W for all p c ^4. On the other hand if IF is a Jordan 
ideal then wp + pw = w' G W for all />. Hence 

wfp + />«/ = wp + ^w + 2/?w^ Ç IF". 

Hence £w£ G IF. 
Furthermore if A has no non-zero nilpotent ideals, a non-zero Jordan 

ideal contains a non-zero two-sided ideal ([8], Lemma 1.1) and any 
closed Jordan ideal in a C*-algebra is a two-sided ideal ([4], Theorem 5.3). 
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4. Finite dimensional and solvable Lie ideals. 
THEOREM 4. If U is a finite dimensional Lie ideal in a von Neumann 

algebra M and if c is the maximal finite central projection in M then 
(1 - c)U C ZMl_c and cU ^ 0 t = i Uni where Uni is {0}, Mni, Cl , or 
[Mni, Mni], and Mni is an fit X nt matrix algebra over C. 

Proof. (1 — c) U is a finite dimensional and hence uniformly closed Lie 
ideal in Mi-C. By Theorem 1, there exists a closed two-sided ideal / in 
Mi-C such that 

JQ (1 - c)UQJ + ZMl_e. 

J is thus a finite dimensional two-sided ideal in the properly infinite algebra 
Mi-C and so J = {0}. Hence (1 - c)U Q ZMl_c. 

In Mc there exists a closed, two-sided ideal K such that 

KQcU + ZMcQK + ZMc. 

Thus [i£, i£] = c[[/, U] and [-K", X] is finite dimensional. We have 
[K~uw, K'uw] C [i£, i£]~uw, so that if K~uw = Md, d ^ c, d a central 
projection, then [ikfd, Md] is finite dimensional. Notice that if p, q are 
projections in Md with p ~ q via the partial isometry v £ Md then 
[v,v*} = P - qt [Md,Md]. 

If Md has a non-zero continuous summand Md', and 0 ^ p a projection 
in Md' then p can be ''halved" and written p = pi -\- pi, p\ JL p2, 
pi ~ p2. Likewise pi and p2 can be halved, pi = pu + ^12,^2 = P21 + P22 
where the pij are mutually J_, pu ^ pi2, P21 ^ £22. Hence pu — pu and 
P21 — P22 are in [Md, Md] and are independent vectors. Since the halving 
can be done infinitely many times, Md can have no continuous part when 
[Md, Md] is finite dimensional. Thus d is finite and discrete. A similar 
argument shows that Md can have only a finite number of homogeneous 
summands and each of these type In summands has n < co . Thus 

A; 

Md = E[ Ani where Ani ^ Bt 0 f£(Hni), 
i=l 

nt a finite integer and Bt an abelian von Neumann algebra. If Bt has 
infinitely many orthogonal projections then [Ani1 Ani] and hence [Md, Md] 
will contain infinitely many independent vectors. Hence Bt is an abelian 
von Neumann algebra with only finitely many projections. Md is thus 
finite dimensional so 

Md = 0 Mni. 

Let d be a maximal central projection such that d ^ c, Md is finite 
dimensional and 

MdQcU + ZMe Ç Md + Z. 
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If (c — d)U ^ {OJ the same argument will give 

{0} * Mé> Q (c - d)U + ZMc_d C Md> + ZMc_d 

where Md< is finite dimensional. Thus Md © Md> = Md+d> will be a larger 
such ideal contradicting maximality. Hence cU = dU. The result now 
follows from ([8] Theorem 1.3) since the Mni are simple associative rings. 

LEMMA 4. If M is a C*-algebra with DnM = {0} then M is abelian. (Here 
D*M = M, DlM = [M, M], and DnM = D{Dn~lM).) 

Proof. Let n be the smallest positive integer for which DnM = {0}. 
Then U = Dn~lM is an abelian Lie ideal closed under the *-operation. 
Thus for x G U, y £ M, [x, [x, y]] = 0. If x = x*, 3/ = 3;* this forces 
[x, y] = 0 by ([14], Theorem 1). Hence we have U Q ZM. The Kleinecke-
Sirokov Theorem ([12], Theorem 1.3.1) implies Dn~lM = {0}. An 
induction argument now gives the result. 

Recall that a Lie algebra L is solvable if DnL = {0} for some n. 

THEOREM 5. If M is a von Neumann algebra and U a solvable Lie ideal 
then U Q ZM. 

Proof. It suffices to assume U is uniformly closed. Let c be the maximal 
finite central projection in M. By Theorem 1 there exists a closed, two-
sided ideal J C Mi_c such that J Q (1 — c)U Q J + ZMi-c- Thus 
[j}j] = (i _ c)[u, U] and J'™ ç (1 - c)U~uw. Let /"u w - Md, 
d ^ 1 — c, d a central projection. We have 

[Md,Md] C (1 - c)[U~™, U~™1 

and in general, 

DnMd C (1 - c)DnU~uw. 

For some n > 0, DnU = {0} which implies DnU~uw = {0}. By Lemma 4, 
Md is abelian. But d ^ 1 — c and Mi_c is properly infinite, so d = 0. 
That is, 7 = {0} and (1 - c)U Q ZMl_c. 

On the other hand cU is a uniformly closed Lie ideal in the finite 
algebra Mc. There exists a uniformly closed, two-sided ideal K Q Mc 

such that 

KQcU + ZMcQK + ZMc. 

As before, K~uw = Me where e ^ c and g is a central projection. Now 

K + ZMc C ct/ + ZMc Ç cC7-^ + ZMc 

so that 

[Me, Me] = [i£~UW, i^"UW] Ç [2£, K]~™ C C[[/-UW, f/-™]-™\ 
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In general D\¥e C c(DnU-™)-uw. DnU = 0 implies DnU~xm = 0 so that 
by Lemma 4, Me is abelian. Hence K C Afe Ç ZMc. This implies 

c£/ + ZMc ç ^ + ZMc Ç Z M C 

so that ell Q ZMc. 

Remark. It is possible that at least in some cases the restriction of 
uniform closure in Theorem 1 can be removed. The problem stems from 
the lack of Lemma 1 and Lemma 2 in the non-closed case. Lemma 2 
holds for non-closed ideals when I f is a type I factor on a separable 
Hilbert space ([3], Theorem 2.9) and, of course, when M is simple. Very 
little is known about [A, J] even when / is closed. (See [2], [13]). 
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