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Abstract. For a bounded domain � in a complete Riemannian manifold M,
we investigate the Dirichlet weighted eigenvalue problem of quadratic polynomial
operator �2 − a� + b of the Laplacian �, where a and b are the nonnegative constants.
We obtain an inequality for eigenvalues which contains a constant that only depends on
the mean curvature of M. It yields an upper bound of the (k + 1)th eigenvalue �k+1. As
their applications, some inequalities and bounds of eigenvalues on a complete minimal
submanifold in a Euclidean space and a unit sphere are obtained.
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1. Introduction. Let � be a bounded domain in an n-dimensional complete
Riemannian manifold M. The Dirichlet eigenvalue problem of the biharmonic
operator is described by

⎧⎪⎨
⎪⎩

�2u = λu, in �,

u|∂� = ∂u
∂ν

∣∣∣∣
∂�

= 0,
(1.1)

where ν denotes the outwards unit normal vector field of ∂�, and �2 is the biharmonic
operator on M. It is also called a clamped plate problem, which describes the
characteristic vibrations of a clamped plate. An open question in estimates for
eigenvalues of problem (1.1) is to give universal upper bounds of the (k + 1)-th
eigenvalue λk+1 in terms of the first k eigenvalues.

To begin with, people were concerned about the case that � is a bounded domain
in �n. In 1956, Payne, Pólya and Weinberger [15] established the following universal
inequality:

λk+1 − λk ≤ 8(n + 2)
n2

1
k

k∑
i=1

λi. (1.2)
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Some progresses have been made after their work. As a generalization of their result,
Hile and Yeh [10] obtained

n2k3/2

8(n + 2)

(
k∑

i=1

λi

)− 1
2

≤
k∑

i=1

λ
1
2
i

λk+1 − λi
(1.3)

by using an improved method of Hile and Protter [9]. In 1990, Hook [11] and Chen
and Qian [5] independently proved

n2k2

8(n + 2)
≤

k∑
i=1

λ
1
2
i

λk+1 − λi

k∑
i=1

λ
1
2
i . (1.4)

In 2006, Cheng and Yang [7] obtained the following sharper inequality

λk+1 ≤ 1
k

k∑
i=1

λi +
[

8(n + 2)
n2

] 1
2 1

k

k∑
i=1

[
λi(λk+1 − λi)

] 1
2 . (1.5)

This also gave an affirmative answer for a question introduced by Ashbaugh in [1].
And more information about universal eigenvalue inequalities can find in [2, 3, 16].

It is natural to consider the estimates for eigenvalues of problem (1.1) on the other
Riemannian manifolds. In 2007, Wang and Xia [17] proved

k∑
i=1

(λk+1 − λi)2 ≤ 8(n + 2)
n2

k∑
i=1

(λk+1 − λi)λi (1.6)

on an n-dimensional complete minimal submanifold in a Euclidean space, and

k∑
i=1

(λk+1 − λi)2 ≤ 1
n2

k∑
i=1

(λk+1 − λi)
[
n2 + (2n + 4)λ

1
2
i
][

n2 + 4λ
1
2
i
]

(1.7)

on an n-dimensional unit sphere. In 2009, Cheng and Yang [8] proved

k∑
i=1

(λk+1 − λi)2 ≤ 4
k∑

i=1

(λk+1 − λi)
[
λi − (n − 1)2

4

]
(1.8)

for eigenvalues of problem (1.1) on a bounded domain � in a hyperbolic space
Hn(−1). Recently, Cheng, Ichikawa and Mametsuka [6] proved that, for any complete
Riemannian manifold M, there exists a universal bound of the (k + 1)-th eigenvalue
in terms of the first k eigenvalues of (1.1). They obtained the following remarkable
inequality of eigenvalues

k∑
i=1

(λk+1 − λi)2 ≤ 1
n2

k∑
i=1

(λk+1 − λi)
[
n2H2

0 + (2n + 4)λ
1
2
i
]
(n2H2

0 + 4λ
1
2
i ), (1.9)

where H0 is a constant which only depends on the mean curvature of M. It is easy to
find that (1.9) contains the inequalities (1.6) and (1.7).
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In this paper, for any complete Riemannian manifold M, we consider the following
Dirichlet eigenvalue problem of quadratic polynomial operator of the Laplacian⎧⎪⎨

⎪⎩
�2u − a�u + bu = �ρu, in �,

u|∂� = ∂u
∂ν

∣∣∣∣
∂�

= 0,
(1.10)

where ρ is a positive function continuous on � and the constants a, b ≥ 0. In general,
(1.10) is a more ideal model which is abstracted from the problems of physics and
mechanics. In fact, the weight function ρ denotes the density. And weighted estimates
are intelligent in filtering and identification problems (see [12, 13]). Moreover, problem
(1.1) is only a special case of problem (1.10).

The main goal of this paper is to give some estimates for eigenvalues of problem
(1.10). In Section 2, we prove a general inequality for eigenvalues of problem (1.10)
on a complete Riemannian manifold. Then, by using this general inequality, we derive
the following result.

THEOREM 1.1. For a domain � in an n-dimensional complete Riemannian manifold
M, denote by �i the i-th eigenvalue of the eigenvalue problem (1.10). Set σ = (inf

�

ρ)−1

and τ = (sup
�

ρ)−1. Then there exists a constant H0 which only depends on the mean

curvature of M such that the following inequality

k∑
i=1

(�k+1 − �i)2

≤ 1
n2τ 2

k∑
i=1

(�k+1 − �i)
[
n2σH2

0 + (2n + 4)Ei + naσ
]
(n2σ 2H2

0 + 4σEi) (1.11)

holds, where

Ei = 1
2

[
− aσ +

√
a2σ 2 + 4σ (�i − bτ )

]
.

The inequality (1.10) is a quadratic inequality of �k+1. It yields a more explicit
inequality which gives an upper bound of �k+1.

THEOREM 1.2. Under the same assumptions as Theorem 1.1, we have

�k+1 ≤ Ak +
√

A2
k − Bk, (1.12)

where

Ak = 1
k

{
k∑

i=1

�i + 1
2n2τ 2

k∑
i=1

[
n2σH2

0 + (2n + 4)Ei + naσ
](

n2σ 2H2
0 + 4σEi

)}
,

Bk = 1
k

{
k∑

i=1

�2
i + 1

n2τ 2

k∑
i=1

�i
[
n2σH2

0 + (2n + 4)Ei + naσ
](

n2σ 2H2
0 + 4σEi

)}
.
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Putting a = b = 0 and σ = τ = 1 in (1.11), we can get (1.9) in [6]. Namely, it is
a corollary of Theorem 1.1. As applications of Theorems 1.1 and 1.2, we also obtain
some results for an n-dimensional complete minimal submanifold M in an Euclidean
space, and an n-dimensional unit sphere M = Sn(1) (see Corollary 3.1–3.4). Moreover,
these results also contain the inequalities (1.6) and (1.7) .

2. Proof of Theorem 1.1. The main goal of this section is to give the proof of
Theorem 1.1. Firstly, we establish a lemma which will be used to estimate some terms
in the proof of Theorem 1.1.

LEMMA 2.1. Under the same assumptions as Theorem 1.1, let ui be i-th weighted
orthonormal eigenfunctions of problem (1.10) corresponding to eigenvalues �i, i =
1, 2, . . . , k. Namely, ui satisfies

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�2ui − a�ui + bui = �iρui, in �,

ui|∂� = ∂ui

∂ν

∣∣∣∣
∂�

= 0,∫
�

ρuiuj = δij.

(2.1)

Then we have ∫
�

|∇ui|2 ≤ Ei, (2.2)

where

Ei = 1
2

[
− aσ +

√
a2σ 2 + 4σ (�i − bτ )

]
.

Proof. According to the assumptions, it is easy to find

0 < τ = τ

∫
�

ρu2
i ≤
∫

�

u2
i ≤ σ

∫
�

ρu2
i = σ. (2.3)

Noticing the constants a, b ≥ 0 and the weight function ρ > 0, and utilizing

∫
�

|∇ui|2 =
∫

�

ui(−�ui) ≤
[∫

�

u2
i

∫
�

(�ui)2
] 1

2

≤
[
σ

∫
�

(�ui)2
] 1

2

, (2.4)

we know

a2σ 2 + 4σ (�i − bτ ) ≥ 0.

Substituting (2.4) into

�i =
∫

�

ui(�2ui − a�ui + bui) =
∫

�

(�ui)2 + a
∫

�

|∇ui|2 + b
∫

�

u2
i , (2.5)
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we have (∫
�

|∇ui|2
)2

+ aσ

∫
�

|∇ui|2 − σ (�i − bτ ) ≤ 0.

This is a quadratic inequality of
∫
�

|∇ui|2 which yields (2.2). �
Now we prove a general inequality for eigenvalues of problem (1.10) which plays

an important role in the proof of Theorem 1.1.

THEOREM 2.2. Under the same assumptions as Lemma 2.1, for any function h ∈
C4(M)

⋂
C3(M), we have

−2
k∑

i=1

(�k+1 − �i)2
∫

�

hui(〈∇h,∇ui〉 + 1
2

ui�h)

≤
k∑

i=1

δi(�k+1 − �i)2wi +
k∑

i=1

1
δi

(�k+1 − �i)
∫

�

1
ρ

(
〈∇h,∇ui〉 + 1

2
ui�h
)2

, (2.6)

where the positive constants δi (i = 1, . . . , k, . . . → ∞) construct a monotonic decreasing
sequence and

wi =
∫

�

[
(ui�h + 2〈∇h,∇ui〉)2 − 2ui�ui|∇h|2 − 2ahui〈∇h,∇ui〉 − au2

i h�h
]
.

Proof. Define the trial functions ϕi by

ϕi = hui −
k∑

j=1

rijuj, i = 1, . . . , k, (2.7)

where

rij =
∫

�

ρhuiuj = rji. (2.8)

Then, it is easy to check ∫
�

ρϕiuj = 0 (2.9)

and ∫
�

ρϕihuj =
∫

�

ρϕ2
i . (2.10)

It yields from (2.1) that

�2ϕi − a�ϕi + bϕi = qi + h�iρui −
k∑

j=1

rij�jρuj, (2.11)
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where

qi =ui�
2h + 2〈∇�h,∇ui〉 + 2〈∇h,∇�ui〉 + 2�(〈∇h,∇ui〉)

+ 2�h�ui − 2a〈∇h,∇ui〉 − aui�h.

From (2.9), (2.10) and (2.11), we have

∫
�

ϕi(�2ϕi − a�ϕi + bϕi) =
∫

�

ϕiqi + �i

∫
�

ρϕihui −
k∑

j=1

rij�j

∫
�

ρujϕi

=
∫

�

huiqi −
k∑

j=1

rijsij + �i

∫
�

ρϕ2
i , (2.12)

where

sij =
∫

�

qiuj.

Substituting (2.12) into the Rayleigh–Ritz inequality

�k+1 ≤
∫
�

ϕi(�2ϕi − a�ϕi + bϕi)∫
�

ρϕ2
i

, (2.13)

it follows that

(�k+1 − �i)
∫

�

ρϕ2
i ≤
∫

�

huiqi −
k∑

j=1

rijsij. (2.14)

Moreover, using Stokes’ theorem, we obtain

∫
�

huiqi = wi. (2.15)

At the same time, from the definitions of sij and qi, we can deduce

sij =
∫

�

uj
[
�2(hui) − a�(hui) + bhui − h�iρui

]
=
∫

�

hui(�2uj − a�uj + buj) + �i

∫
�

ρhuiuj

= (�j − �i)rij. (2.16)

Therefore, substituting (2.15) and (2.16) into (2.14), we get

(�k+1 − �i)
∫

�

ρϕ2
i ≤ wi +

k∑
j=1

(�i − �j)r2
ij. (2.17)
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Then it follows from (2.7) that

−2
∫

�

ϕi

(
〈∇h,∇ui〉 + 1

2
ui�h
)

= −2
∫

�

hui

(
〈∇h,∇ui〉 + 1

2
ui�h
)

+ 2
k∑

j=1

rijtij, (2.18)

where

tij =
∫

�

uj

(
〈∇h,∇ui〉 + 1

2
ui�h
)

= −tji.

Multiplying (�k+1 − �i)2 in the both sides of (2.18), taking sum on i from 1 to k, and
using the following inequality

2
k∑

i,j=1

(�k+1 − �i)2rijtij = −2
k∑

i,j=1

(�k+1 − �i)(�i − �j)rijtij

≥ −
k∑

i,j=1

δi(�k+1 − �i)(�i − �j)2r2
ij −

k∑
i,j=1

1
δi

(�k+1 − �i)t2
ij,

we have

−2
k∑

i=1

(�k+1 − �i)2
∫

�

ϕi

(
〈∇h,∇ui〉 + 1

2
ui�h
)

≥ −2
k∑

i=1

(�k+1 − �i)2
∫

�

hui

(
〈∇h,∇ui〉 + 1

2
ui�h
)

−
k∑

i,j=1

δi(�k+1 − �i)(�i − �j)2r2
ij −

k∑
i,j=1

1
δi

(�k+1 − �i)t2
ij. (2.19)

On the other hand, utilizing (2.17), we can get

(�k+1 − �i)2
[
−2
∫

�

ϕi

(
〈∇h,∇ui〉 + 1

2
ui�h
)]

= −2(�k+1 − �i)2
∫

�

√
ρϕi

⎡
⎣ 1√

ρ

(
〈∇h,∇ui〉 + 1

2
ui�h
)

− √
ρ

k∑
j=1

tijuj

⎤
⎦

≤ �k+1 − �i

δi

∫
�

⎡
⎣ 1√

ρ

(
〈∇h,∇ui〉 + 1

2
ui�h
)

− √
ρ

k∑
j=1

tijuj

⎤
⎦

2

+ δi(�k+1 − �i)3
∫

�

ρϕ2
i
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≤ �k+1 − �i

δi

⎡
⎣∫

�

1
ρ

(
〈∇h,∇ui〉 + 1

2
ui�h
)2

−
k∑

j=1

t2
ij

⎤
⎦

+ δi(�k+1 − �i)2

⎡
⎣wi +

k∑
j=1

(�i − �j)r2
ij

⎤
⎦ . (2.20)

Since {δi} is monotonic decreasing, it follows

k∑
i,j=1

δi(�k+1 − �i)2(�i − �j)r2
ij ≤ −

k∑
i,j=1

δi(�k+1 − �i)(�i − �j)2r2
ij. (2.21)

Taking sum on i from 1 to k in (2.20), and using (2.19) and (2.21), we can obtain
(2.6). �

By using Lemma 2.1 and Theorem 2.2, we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. Nash’s theorem [14] says that an n-dimensional complete
Riemannian manifold M can be isometrically immersed in �N . For an arbitrary point
p ∈ M, let (x1, . . . , xn) be an arbitrary coordinate system in a neighborhood U of
p ∈ M. Let y be the position vector of p ∈ M which is defined by

y = (y1(x1, . . . , xn), . . . , yN(x1, . . . , xn)).

Putting h = yα in (2.6), we have

−2
k∑

i=1

(�k+1 − �i)2
∫

�

yαui

(
〈∇yα,∇ui〉 + 1

2
ui�yα

)

≤
k∑

i=1

1
δi

(�k+1 − �i)
∫

�

1
ρ

(
〈∇yα,∇ui〉 + 1

2
ui�yα

)2

+
k∑

i=1

δi(�k+1 − �i)2ωα
i ,

(2.22)

where

wα
i =
∫

�

[
(ui�yα + 2〈∇yα,∇ui〉)2 − 2ayαui〈∇yα,∇ui〉

− 2ui�ui|∇yα|2 − au2
i yα�yα

]
.

By calculating, one can get the following equalities (see [4]):

N∑
α=1

(〈∇yα,∇u〉)2 = |∇u|2,
N∑

α=1

|∇yα|2 = n,

N∑
α=1

(�yα)2 = n2|H|2,
N∑

α=1

�yα∇yα = 0, (2.23)
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where |H| is the mean curvature of M. Utilizing Lemma 2.1 and (2.23), we have

∫
�

1
ρ

N∑
α=1

(
〈∇yα,∇ui〉 + 1

2
ui�yα

)2

=
∫

�

1
ρ

|∇ui|2 + 1
4

n2
∫

�

1
ρ

u2
i |H|2

≤ σEi + 1
4

n2σ 2sup
�

|H|2, (2.24)

N∑
α=1

wα
i =
∫

�

[
N∑

α=1

(ui�yα + 2〈∇yα,∇ui〉)2 − 2ui�ui

N∑
α=1

|∇yα|2
]

− 2a
N∑

α=1

∫
�

yαui

(
〈∇yα,∇ui〉 + 1

2
ui�yα

)

= n2
∫

�

|H|2u2
i + 4

∫
�

|∇ui|2 − 2n
∫

�

ui�ui + na
∫

�

u2
i

≤ n2σ sup
�

|H|2 + (2n + 4)Ei + naσ, (2.25)

and

−2
N∑

α=1

∫
�

yαui

(
〈∇yα,∇ui〉 + 1

2
ui�yα

)
=
∫

�

u2
i

N∑
α=1

|∇yα|2 = n
∫

�

u2
i ≥ nτ. (2.26)

Taking sum on α from 1 to N in (2.22) and using (2.24)–(2.26), we have

nτ

k∑
i=1

(�k+1 − �i)2 ≤
k∑

i=1

δi(�k+1 − �i)2
[

n2σ sup
�

|H|2 + (2n + 4)Ei + naσ

]

+
k∑

i=1

1
δi

(�k+1 − �i)
[

1
4

n2σ 2sup
�

|H|2 + σEi

]
. (2.27)

Putting

δi = δ

n2σ sup
�

|H|2 + (2n + 4)Ei + naσ

in (2.27), where δ is a positive constant, it yields

nτ

k∑
i=1

(�k+1 − �i)2 ≤ δ

k∑
i=1

(�k+1 − �i)2

+ 1
δ

k∑
i=1

(�k+1 − �i)
[

n2σ sup
�

|H|2 + (2n + 4)Ei + naσ

] [
1
4

n2σ 2sup
�

|H|2 + σEi

]
.

(2.28)
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Then putting

δ =

⎧⎪⎪⎨
⎪⎪⎩
∑k

i=1(�k+1 − �i)
[

n2σ sup
�

|H|2 + (2n + 4)Ei + naσ

] [
n2σ 2sup

�

|H|2 + 4σEi

]
4
∑k

i=1(�k+1 − �i)2

⎫⎪⎪⎬
⎪⎪⎭

1
2

in (2.28), we have

k∑
i=1

(�k+1 − �i)2

≤ 1
n2τ 2

k∑
i=1

(�k+1 − �i)
[

n2σ sup
�

|H|2 + (2n + 4)Ei + naσ

] [
n2σ 2sup

�

|H|2 + 4σEi

]
.

(2.29)

Now we define

F = {φ|φ is an isometric immersion from M into a Euclidean space
}
.

Putting

H0 = inf
φ∈F

sup
�

|H|2

in (2.29), we infer (1.11).

�

3. Some Applications. When M is an n-dimensional complete minimal
submanifold in a Euclidean space, and an n-dimensional unit sphere Sn(1), it yields
H0 = 0 and H0 = 1, respectively. Therefore, as the applications of Theorem 1.1, we
easily give the following corollaries.

COROLLARY 3.1. Under the same assumptions as Theorem 1.1, assume that M is an
n-dimensional complete minimal submanifold in a Euclidean space. Then we have

k∑
i=1

(�k+1 − �i)2 ≤ 4σ

n2τ 2

k∑
i=1

(�k+1 − �i)
[
(2n + 4)Ei + naσ

]
Ei. (3.1)

COROLLARY 3.2. Under the same assumptions as Corollary 3.1, we have

�k+1 ≤ Ck +
√

C2
k − Dk, (3.2)
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where

Ck = 1
k

{
k∑

i=1

�i + 2σ

n2τ 2

k∑
i=1

[
(2n + 4)Ei + naσ

]
Ei

}
,

Dk = 1
k

{
k∑

i=1

�2
i + 4σ

n2τ 2

k∑
i=1

[
(2n + 4)Ei + naσ

]
Ei�i

}
.

COROLLARY 3.3. Under the same assumptions as Theorem 1.1, assume that M is an
n-dimensional unit sphere Sn(1). Then we have

k∑
i=1

(�k+1 − �i)2

≤ 1
n2τ 2

k∑
i=1

(�k+1 − �i)
[
n2σ + (2n + 4)Ei + naσ

]
(n2σ 2 + 4σEi). (3.3)

COROLLARY 3.4. Under the same assumptions as Corollary 3.3, we have

�k+1 ≤ Fk +
√

F2
k − Gk, (3.4)

where

Fk = 1
k

{
k∑

i=1

�i + σ

2n2τ 2

k∑
i=1

[
(2n + 4)Ei + n2σ + naσ

]
(4Ei + n2σ )

}
,

Gk = 1
k

{
k∑

i=1

�2
i + σ

n2τ 2

k∑
i=1

[
(2n + 4)Ei + n2σ + naσ

]
(4Ei + n2σ )�i

}
.

When a = b = 0 and ρ = 1, it follows Ei = �
1
2
i . As the special cases of Corollary

3.1 and 3.3, we can easily get (1.6) and (1.7).

ACKNOWLEDGEMENTS. The authors would like to thank the referee for his (or
her) valuable comments and suggestions. This work was supported by the National
Natural Science Foundation of China (No.11001130) and the NUST Research Funding
(No.2010ZYTS064).

REFERENCES

1. M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, in Spectral
theory and geometry (Davies E. B. and Safarov Y., Editors) (Edinburgh, 1998), London Math.
Soc. Lecture Notes, Vol. 273 (Cambridge Univ. Press, Cambridge, 1999), 95–139.

2. M. S. Ashbaugh, Universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter
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