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This paper summarises research that evaluates the precision of determining a ship’s position
by comparing an omnidirectional map to a visual image of the coastline. The first part of the
paper describes the equipment and associated software employed in obtaining such estimates.
The system uses a spherical catadioptric camera to collect positional data that is analysed by
comparing it to spherical images from a digital navigational chart. Methods of collecting
positional data from a ship are described, and the algorithms used to determine the statistical
precision of such position estimates are explained. The second section analyses the results of
research to determine the precision of position estimates based on this system. It focuses on
average error values and distance fluctuations of position estimates from referential positions,
and describes the primary factors influencing the correlation between spherical map images
and coastline visual images.
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1. INTRODUCTION. Comparing the coastline as seen from a ship with the cor-
responding image on a nautical navigational map is an action familiar to every navi-
gator. The navigator visually searches the shoreline for features identified by their
unique shape, locates such features on a map, and plots the ship’s position relative
to the feature. Further offshore, a radar image is also used in conjunction with a
map. Distortions affecting radar images covering small areas are insignificant, and
the images of the coastline provided by the map and the radar are quite similar.
Safety issues associated with this navigational approach are highlighted when the

navigator must steer the ship from harbour to a named port on an unfamiliar coast.
In such an instance, the navigator is responsible for the following actions:
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. First, the navigator must plot the route on the map by analysing shapes and the
location of the target port, taking note of the moles, entrance beacons, wharfs,
embankments and port structures along the way.

. Second, during navigation, the navigator must determine the ship’s position rela-
tive to coastline features identified on the map (Figure 1).

. Finally, during berthing manoeuvres at the end of the journey, the navigator must
estimate the vessel’s speed of approach and the position of the ship’s hull relative
to the edge of the port embankment (Figure 1).

The role of the navigator in this process can be duplicated by a mechanical system.
Specifically, a system comprised of a specialised camera, a computer, digitized maps
and processing algorithms can be developed that can compute a ship’s position by com-
paring on board camera images of the coastline to the same features on a digitised map.
This paper summarises research evaluating the accuracy of using such a system to

determine a ship’s position by analysing the relationship of a spherical map to a
visual image of the shoreline. The visual image is created with a Spherical
Catadioptic Camera System (SCCS). The mapped image is generated by computer
from an Electronic Navigational Chart (ENC) corresponding to the visual image of
a dynamic spherical projection (Naus, 2015).
This study grew out of the authors’ thesis work in the development of an automated

comparative optical system intended to provide navigational data for ships manoeuv-
ring near ports. Test methods described here reflect the authors’ prior experience in es-
timating a ship’s position from radar images of the coast. (Wą ż, 2010a; 2010b). The
processes described here complement the workof other groups developing navigational
systems based on processed imagery. The authors’ research group currently is research-
ing automated imagery-based navigation system for vessels sailing along a track or a
coastline (Hoshizaki et al., 2004; Snyder et al., 2004; Ryynanen et al., 2007).
The use of automated comparative optical systems to estimate the coordinates of

a ship’s position while manoeuvring in harbour areas has received little study until
recently. Interest is growing now because of the recent growth in the use of
imagery as a source of information on a ship’s surroundings. Research has increased
in the areas of nautical photogrammetry and robotics, disciplines at the intersection
of mechanical technology, automated technology, electronic engineering, cybernetics
and computer engineering. The following studies are particularly noteworthy in this
sector:

Figure 1. Left to right, images of coastline as seen from a ship with a perspective camera, the same
coastline as seen on a navigational chart, and as seen by radar.
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. Active visual information analyses conducted by Robotic Research Group
University (Knight, 2002; Davison, 2003) of Oxford University and of Texas
(Stronger and Stone, 2007; Sridharan et al., 2005);

. Automation of the process in the designation of external orientation elements,
conducted within the OEEPE test (OEEPE, 1999; Jędryczka 1999);

. 3D model reconstruction use to localisation (Mouragnon, 2006; Yuanand and
Medioni, 2006);

. Simultaneous Localisation and Mapping (SLAM) techniques conducted by
Carneggie Mellon University Laboratory (Montemerlo, 2003; Stachniss et al.,
2004; Wang, 2004); researches concerning the use of omnidirectional cameras
(Xiaojin, 2008; Winters et al., 2001; Benhimmane and Mailis, 2006).

2. METHODS. The primary objectives of this study were to determine the geo-
graphical position coordinates of a ship using correlations between on board visual
images, map images, and radar images. The visual images will be recorded with
SCCS. The SCCS gear will be mounted high on the ship’s hull. The map images will
be computer-generated with ENC equipment. Only selected coastline features
will be drawn using spherical dynamic projection (Naus, 2015). Radar images will
be obtained from the radar by means of a print screen saved in computer memory.
The procedure for mapping out coordinates will be implemented at regular time

intervals in order to generate a collection of map images to be used for comparison
with simultaneous visual images.
The visual geographical centre of map coordinates that maintains the largest prob-

ability to the visual image will be recognised as representing the best estimate of the
coordinates of the ship’s position. Both the visual and map images will be plotted to
conform to the route of the ship as displayed on the ship’s gyrocompass. The precision
of the geographical coordinates for the ship’s position will be evaluated by correlating
shoreline images with constitutive coordinates over regular time intervals with a
TOPCON Global Positioning System (GPS) receiver operating in the ASG-EUPOS
system (mean error level of coordinates will not exceed 2 cm).
Adjusting the radar image to the map will only be performed for comparison pur-

poses. Because of expected high resolution, the authors anticipated that a position
obtained in this manner would be more precise than for low resolution radar images.
These assumptions are the basis for depicting geographical coordinates, choosing

the most adequate experimental methods, and for deciding what instruments should
be used. Because of the unique nature of this research, it was decided that the
methods and equipment should be largely designed or modified by the authors.
The ship was equipped with an SCCS system for collecting data while manoeuvring

in port. To process and analyse collected data, four program modules were designed:

. Electronic navigational chart generation on a spherical dynamic projection;

. A program to convert real images to edge images (for images registered by SCCS
and obtained from the radar);

. A program to compare collections of real and map images;

. A program to evaluate precision in estimated ship positions with the shoreline to
reference position correlation method (obtained from TOPCON GPS).
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2.1. Data collection for research aboard ship. The Vessel Data Collection System
included modules for recording real images as well as state vector parameters
(Figure 2).
The task for the system was to record synchronised images at regular time intervals

from the SCCS (in real image recording module) and from the radar. An associated
task was the recording of state vector parameters measured with navigational appli-
ances (i.e. position coordinates SCCS-with a TOPCON GPS and course with
Gyrocompass) in parameter recording modules.
The real image recording module was equipped with an SCCS prototype. The SCCS

included the following four integrated system elements (Figure 3):

. A frame to mount camera and mirror as a single optical element;

. A 120 mm spherical mirror;

. A camera position regulator used to adjust the between the camera and the mirror
(equalling 170 mm); and

. A CCD camera (Sony type HDR-CX130).

The registration also required recording the entire raster radar image from the index.
In addition to the conditional vector record made for each measurement session, the
hydro-meteorological conditions of the basin were recorded. Thus, the radar had to
be connected to both the oscilloscope and the computer. The connection required
the use of a specialist PC RadarKit card capable of communicating between the com-
puter and the radar. The computer and the oscilloscope were connected to a Bridge
Master 250 radar (on the vessel ORP Arctowski). In order to be able to observe the
video signals from the radar located on the computer screen, the following signals
had to be connected to the computer: Video, Trigger, Bearing and Heading.

2.2. Generating map images. To safeguard the process of generating a set of map
images (consisting of a visualised electronic navigational chart in a dynamic spherical
projection) around an established ship position, a special software application was pre-
pared. Its function was based on two program threads: the transformation of spatial
objects in an ENC, and plotting and archiving map images.

Figure 2. Schematic of shipboard data collection system.
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The first function estimated ellipsoidal coordinates for all points representing the
geographical location of spatial objects in ENC code (possessing geometrical represen-
tation and drawn on map images) for the transformation of ellipsoidal coordinates into
ortho-Cartesian coordinates (IHO-3, 2002). The second function plotted archived map
images that had been processed into ENC images of a spherical dynamic projection.
Secondly, the function stored the images on a computer disc in Bitmap (BMP)
format with a coded time index in their nominees.
Map images were based on mapping through a spherical surface on selected linear

spatial objects level ENC (Figure 4)(Naus and Jankiewicz, 2006a; 2006b; Naus, 2015).
ENC spatial objects represented abutment points between water and land areas.

Objects that were classified as such (IHO-1, 2000) included:

Figure 3. Spherical catadioptric camera system (a), and the measurement platform used during
radar image registration (b).

Figure 4. Omnidirectional shoreline image as observed aboard ship SCCS and its correlate
generated through dynamic spherical projection with ENC.
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. shoreline construction (Acronym – SLCONS, Code – 122);

. land area (Acronym – LNDARE, Code – 71);

. floating docks (Acronym – FLODOC, Code – 57);

. hulks (Acronym – HULKES, Code – 65);

. pontoons (Acronym – PONTON, Code – 95); and

. pylon/bridge supports (Acronym – PYLONS, Code – 98).

Because these features facilities should be visible, they must have visually conspicu-
ous attribute values (Acronym – CONVIS, Code – 83 equal “1”; this attribute is not
coded by LNDARE).
Todemarcatemidpointsbetween lines representing selected spatial objects inENC,a ras-

terisational algorithmofBresenham’s edge algorithmwasused.This algorithm is one of the
best both in terms of speed and in the projection of edges in rasterised form (Abrash, 1997).

2.3. Converting real images to edge images. The spherical catadioptric camera
system used was a prototype, designed with nonprofessional tools and possessing com-
ponents of average quality. Therefore it had flaws like any other prototype device. For
the device in question, the largest flaws were associated with imperfections in the shape
of the mirror’s surface, as well as the positioning of the mirror and lens in relation to
one another in the optical circuit, and the camera matrix CCD. These factors directly
influenced geometrical errors of images based on the optical circuit.
The distorted optical imaging may, however, be corrected providing the radial dis-

tortion coefficient and tangential distortion coefficient of the camera’s lens mirror is
known and the affinity and nonorthogonality of the coordinate circuit on the CCD
matrix can be determined.
As a result of the foregoing considerations, the hand-made SCCS was calibrated to

achieve the following intrinsic parameters values (Websize_1, 2014; Websize_2, 2014):
fi = 0.000067, fj = 0.000052, fs= 0.000006, ci = 2.345666, cj = 3.345789. These values
were used in a matrix known as the camera matrix, MIP, to correct the distorted loca-
tion of every pixel, P ¼ i; j; 1½ �T , of the recorded image IR0 :

MIP � PII ¼
fi fs ci
0 fj cj
0 0 1

2
4

3
5 �

i
j
1

2
4

3
5 ð1Þ

thereby gaining image IR1 .
IR0 and IR1 are digital images defined as a function in pixels space P to the colours

space C, I : ðPÞ ! ðCÞ, where (P) is a finite count of the pixels of a rectangular net
described with an index collection IS(i1, j1;i2, j2) = {(i, j)∈R2:i1≤ i≤ i2, j1 ≤ j≤ j2} .
The rules of the research required real shorelines to be compared to artificial shore-

lines. Therefore real images were subjected to edge detection in order to isolate edges
representing abutment points between water and land, piers, floating docks and other
structures encoded as spatial objects (possessing geometry) in ENC in the image.
Canny’s algorithm (Canny, 1986) was used to perform edge detection because it can
be used to calculate the following size-paired configuration parameters:

. The standard deviation, σ, white Gauss noise of the source image; and

. The High Threshold (HT) and Low Threshold (LT) of a hysteretic image contour
result (to precisely localise the most important edges and represent them as one
pixel line).
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The parameters above allowed the transformation of real images, IR1 , into images IR2 , I
R
3 ,

IR4 and finally into IR5 . The process of transforming image IR1 was achieved by iterations
of the following actions:

2.3.1. Masking and converting image colours. Corrected image IR1 , a 24-bit RBG,
is first masked and then converted to IR2 , an 8-bit grey image consistent with (ITU,
2011) (Figure 5):

IR2 ði; jÞ ¼ 0:299 �R IR1 ði; jÞ
� �þ 0:587 �G IR1 ði; jÞ

� �þ 0:114 � B IR1 ði; jÞ
� � ð2Þ

2.3.2. Removing noise from distorted images. This stage removes noise from
source image IR2 by using an intermediary adaptation filter. The changed “blurred”
IR3 was calculated with the following formula:

IR3 ði; jÞ ¼ IR2 ði; jÞ �
σ2

σ2ði; jÞ IR2 ði; jÞ �meanði; jÞ� �
; ð3Þ

where σ2 is the variance of noise in the entire image, σ2(i, j) is the variance in
pixel surrounding IR2 ði; jÞ, and mean(i, j) is the average intensity in pixels surrounding
IR2 ði; jÞ.
For unilateral areas that remain undetailed (e.g. land or water areas), σ2 = σ2(i, j),

and the image was only brought to IR3 ði; jÞ ¼ meanði; jÞ. However, for detailed areas,
σ2 < σ2(i, j), and the original images were not changed: IR3 ði; jÞ ¼ IR2 ði; jÞ.
The use of an adaptation-levelling filter instead of the Gauss filter typically used in

this method is the result of previous research conducted by the authors. This research
evaluated the effectiveness of linear and nonlinear filtration methods in removing dis-
tortion from the surface of a sea image. The levelling adaptation filter proved to be the
superior method.

Figure 5. Source image IR1 and IR2 after masking and conversion of colours.
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2.3.3. Finding gradients. The cleared image (without noise) IR3 was then pro-
cessed with a Sobel filter to produce the gradient facultative value. The gradient on
a lateral level is

∇~i i; jð Þ ¼ ∂IR3 ði; jÞ
∂i

; 0
� �

mask
�1 0 1
�2 0 2
�1 0 1

2
4

3
5: ð4Þ

The gradient on the horizontal level is:

∇~j i; jð Þ ¼ 0;
∂IR3 ði; jÞ

∂i

� �
mask

1 2 1
0 0 0
�1 �2 �1

2
4

3
5: ð5Þ

Based on the relationships above, values for every pixel IR3 ði; jÞ were found that satisfy
the conditions below

∇ði; jÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇~iði; jÞ2 �∇~jði; jÞ2

q
ð6Þ

and also (rounded to: 0°, 90°, 45° or 135°)

∇θði; jÞ ¼ arctg
∇~iði; jÞ
∇~jði; jÞ

ð7Þ

of incidental vector gradient. The calculation for the collection of gradients for image
IR3 was used on concomitant levels of detection.

2.3.4. Filtering pixels of non-maximum suppression. Image IR3 becomes distorted
as distance increases from the real edge line and by thicknesses exceeding 1. This dis-
tortion was corrected by applying procedures to suppress non-maximal value pixels.
The operation entails examining each pixel of the local maxima for consistency in
their relationship to the edge. Neighbouring pixels on lines perpendicular to their gra-
dients were also examined (∇θði; jÞ). Pixels with values different from their neighbours
were eliminated, thereby producing image IR4 .

2.3.5. Hysteretic edging. The final stage consisted of hysteretic edging based on
two previously determined verges: lower (posited at the value of 30), and upper
(posited at the value of 60). The final choice of edge line pixels was based on these
verges. This process entailed the analysis of the pixel gradient of the ∇ði; jÞj j candidate
in relation to established verges. If the gradients exceeded the posited upper value, the
candidate pixel became a component of the edge; but if the value was less than the
posited lower value, it was eliminated. Whenever a pixel was between the upper and
lower values, it was accepted only if it was a component of a pixel row with a value
above the hysteretic edge. The final edge image IR5 was obtained in thismanner (Figure 6).

3. RESEARCHMETHODS. Before beginning the research, a record was made of
metrological data aboard the vessel ORPArctowski on 25 October 2013.
The vessel manoeuvred around the XI naval port basin in Gdynia. It sailed round

the wharf surrounding the basin, and then berthed on the wharf. Average speed of
the vessel was 3·5 knots and the manoeuvre lasted 26 minutes. The vessel had
covered a distance of about 16 cables (Figure 8).

398 KRZYSZTOF NAUS AND MARIUSZ WAZ VOL. 69

https://doi.org/10.1017/S0373463315000739 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000739


Figure 6. Image IR2 after masking and conversion and IR5 after edge detection.

Figure 7. Location of the SCCS mounting on the ship.

Figure 8. The vessel manoeuvring route. (Map: https://maps.google.pl).
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Metrological data was recorded with a hand-made collecting system (see Section
2.1) in groups representing every second (Figure 7). Every data group contained
recording time and one spherical real image including vector state parameters (pos-
ition coordinates and course). The collection of all metrological data groups repre-
sented source material for our research, which focused on two primary issues:

1. Localizing vessel position in post-processing through comparing real images to
map images generated about a previously determined position.

2. Determining the precision of every determined post-processing position through
comparison with a referential position (determined by a TOPCOMGPS receiver
at the exact same time as the real image).

This work was conducted in accordance with the algorithm illustrated in Figure 9.
As the research progressed, additional comparisons were conducted on each real

image (or radar image) IR6 recorded at time t (after processing) with n map images
IA1
1 ; IA2

1 ; . . . ; IAn
1 (also after processing). Every map image was generated from a different

position ~φ1;
~λ1

	 

; ~φ2;

~λ2
	 


; � � � ; ~φn;
~λn

	 

, along the borders of the circle of radius r (here-

after called the “search circle”) measured from the position of the ship (φold, λold) deter-

mined by previous estimates. All potential positions ~φ1;
~λ1

	 

; ~φ2;

~λ2
	 


; � � � ; ~φn;
~λn

	 

were distributed on a regular distance to the circle centre positioned in a permanent Δ
(offset) from one another (measured horizontally and vertically) (Figure 10).
Position ~φ; ~λ

	 

, which represents the closest correspondence between a map image

and a real image was generated in time t and recognised as the new position of the ship

φ ¼ ~φ; λ ¼ ~λ
	 


. As a further step, n, another map image was generated to compare

with another recorded real image. Before conducting the comparison, image IR0 was
transformed into edge image IR5 . Then the out-coming IR5 image and the map image
IA1
0 ; IA2

0 ; . . . ; IAn
0 were transformed into images IR6 ; I

A1
1 ; IA2

1 ; . . . ; IAn
1 containing only

edges localised closer to their centre (Figures 11 and 13). The last transformation
concerned coordinate transformation (i, j) of the edge pixel of the images
IR6 ; I

A1
1 ; IA2

1 ; . . . ; IAn
1 on the polar coordinates (α, d). The transformation was carried

out in such a way that the polar coordinates (angle α and distances d) defined edge
shapes in relation to the centre of the image (Figures 12 and 14).
The course of the test was analogical for radar images. The image obtained was then

transformed into the contour form saved in the polar system. Literature refers to such
an image as the “contour invariant” (Praczyk, 2007).
The function describing the contour invariant dα is:

dα ¼
A dla DcðαÞ ¼ ∅

min
Pc∈DcðαÞ

PoPcj j
(

α ¼ 0; 1; ::; nð360Þ
ð8Þ

where Dc(α) is a set of visible image points (pixels) located on a specific bearing (α),
thus representing radar echoes at a specific bearing; |PoPc| is the distance of the indi-
cated pixel from midpoint of the image or the distance of the radar echo from the
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antenna; n is the extent of the applied resolution of the radar image invariant andA is a
certain assumed distance larger than the observation scope.
By using the above dependency we entirely omit the process of edge detection. This

is only possible for black and white radar images (1 bit).
Edge shapes described in this manner for real radar images were then com-

pared for similarity to edge shapes of the map image. The first similarity measure

Figure 9. Research algorithm used.
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applied was the minimal nonconformity factor metric (Borgefors, 1986; Danielsson,
1980):

rm ¼
X

α∈ð0○;360○Þ
dIA1 ðαÞ � dIR6 ðαÞ
��� ��� ð9Þ

Where dIA1 ðαÞ is the distance to the edge in the direction of α on map image IA1 and
dIR6 ðαÞ is the distance to the edge in the direction of α on real image IR6 .
The second measure of similarity, the linear correlation factor, was applied to rk, and

was calculated according to the following formula from Krysicki and Włodarski
(1983):

rk ¼

P
α∈ð0○;360○�

ðdIA1 ðαÞ �MðIA1 ÞÞðdIR6 ðαÞ �MðIR6 ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
α∈ð0○;360○�

ðdIA1 ðαÞ �MðIA1 ÞÞ
2 P
α∈ð0○;360○�

ðdIR6 ðαÞ �MðIR6 ÞÞ
2

s ð10Þ

Figure 10. The position search circle.

Figure 11. Real images IR5 and IR6 .
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In Equation (10) we posited that MðIR7 Þ is the distance arithmetic mean dIR6 ðαÞ for I
R
6 ,

and MðIA1 Þ is the arithmetic mean dIA1 ðαÞ for I
R
6 . Additionally Equations (9) and (10)

were applied as distance input data dIR6 ðαÞ and dIA1 ðαÞ to the existing values for the

IR6 edge. Of course, there might be situations when edges will not be isolated at all direc-
tions α. The coastline can be invisible at those directions. For angular intervals not
maintaining continuity of edge in IR6 , distances dIR6 ðαÞ and dIA1 ðαÞ no posits were

cited (Figure 16).
In the earlier efforts in adjusting radar images to a map, the ranges of inconsistencies

of the contour image were entirely eliminated. These ranges illustrated that no radar
echo was detected in the specified directions. These ranges were also not taken into
account in the course of creating the invariant of the marine map.
For an edge appearing in all directions α∈ (0°;360°), calculations were made for only

one interval.

4. ANALYSIS OF RESULTS. Input data consisted of 1,560 groups of data
recorded at time intervals of one second. Thus, in accordance with the algorithm of
Figure 9, 1,560 positions were determined – (φ1, λ1),…, (φ1560, λ1560) (with an assump-
tion that: r= 25 m, Δ = 0.1 m). These positions were examined for their accuracy by

Figure 12. Graph of distance d of edge IR6 in angle function α.

Figure 13. Map image IA0 and IA1 .
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comparing them to referential positions φT
1 ; λ

T
1

� �
; . . . ; φT

1560; λ
T
1560

� �
, determined by

the use of a TOPCON GPS Receiver operated on the same time intervals
(Figures 14 and 15). The following were applied as measures of assessment:

. Distance of every estimated position (φt, λt) from the referential position φT
t ; λ

T
t at

one second intervals t= 1, 2…1560,
. Mean error of estimated position (φt, λt), calculated on the basis of all esti-

mated positions (φ1, λ1), …, (φ1560, λ1560) in relation to all reference positions
φT
1 ; λ

T
1

� �
; . . . ; φT

1560; λ
T
1560

� �
.

Results in comparing estimated positions to reference position with the minimal mal-
adjustment factor rm are presented in a graphic form in Figure 17.

Figure 14. Graph of distance d of edge IA1 in angle function α.

Figure 15. An example of a radar image and its contour invariant.
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Figure 18 shows a diagram of minimal value rm, for which the map image (chosen
from nmap images IA1

1 ; IA2
1 ; . . . ; IAn

1 , generated within the position search circle) is most
similar to the real image IR6 ; as recorded by SCCS in every consecutive second t on
board ship.
The mean error of the coordinate values of position (φt, λt), determined by the use of

rm, totalled 5·72 m.
For radar images, such high precision of the selected position has not been achieved.

After the digital processing and after removing unnecessary graphical information

Figure 16. Graph of edge shapes IR6 with accepted angle count/computation intervals dIR6 ðαÞ and
dIA1 ðαÞ for the real and radar image.

Figure 17. Graphic representation of distance to the referential position φT
t ; λ

T
t

� �
from position

(φt, λt) determined with application of rm in consecutive seconds t= 1, 2…1560.
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unrelated to radar imaging, the radar imageswere recorded at 640 × 640pixels resolution.
For a radar observation scope at 1·5 nautical miles, the distance between the centres
of neighbouring pixels measured on the earth surface, referred to as GSD, was about
8·7 m. As a result of the tests on radar images, it has been determined that the value of
the average position error was in the order of 3 pixels. This amounts to an error of
about 26 m. As can be observed, this value exceeds the average error of the position
based on the real image obtained from the SCCS by a factor of nearly five.
Analysing the graphs in Figures 17 and 18, one notices a dependency of the position

precision on the minimal maladjustment value factor rm for images IA1 and IR6 . Figure 17
contains points for which position precision is distinctly greater, e.g., at time intervals
where t ∈ 200 s; 300 sð Þ ∧ 1200 s; 1300 sð Þ. Similarly, points exist for which precision
falls markedly, such as during intervals where t ∈ 700 s; 800 sð Þ ∧ 1450 s; 1560 sð Þ.
This is also confirmed by the graph in Figure 18 in which the rm value falls for the pos-
ition with greater precision and increases for reference positions with little precision.
In Figures 19 and 20, two preferable pairs of images are shown consisting of a real

image and a map image most similar to it. Real images were recorded at time intervals
of t= 250 s and t= 1250 s, which were times during which position accuracy was rela-
tively high.
Figures 19 and 20 clearly show that the shoreline in images IR6 and IA1 possesses an

irregular shape, and that image IR6 does not possess any distortion whatsoever. The ir-
regular shape is as a result of the ship manoeuvring past a port area that encroaches

Figure 18. Graphical representation of minimal maladjustment factor rm of the image IA1 which is
most similar to image IR6 over consecutive seconds t = 1,2…1560.

Figure 19. Real image IR2 after masking and IR6 at the end converted and the best correlated map
image IA1 at time t = 250s.

406 KRZYSZTOF NAUS AND MARIUSZ WAZ VOL. 69

https://doi.org/10.1017/S0373463315000739 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463315000739


into the water area. The slight distortion of IR6 resulted from the fact that after edge IR2
only the plotline pixels could gain gradient value ∇ i; jð Þj j to an acceptable level for hys-
teretic interval edging (30;60). These results indicate the effectiveness of the algorithm
applied for edge detection (presented in Section 3).
Two other preferred images are presented in Figures 21 and 22. In this case real

images were recorded at time t= 750 s and t= 1500 s, which were time intervals
when position accuracy was low.
One conclusion can be drawn from the analysis of the results: both real pictures were

different. As seen in Figure 21, the differences were caused by a shadow on the
harbour. An additional factor affecting Figure 22 was the masking that cut across
the real image and intercepted the harbour line. Another factor was the Sun’s rays
reflecting on the water’s surface. This proves that the edge detection algorithm is some-
what prone to such forms of disturbance.
Of course, such disturbances are not possible for radar images. However, despite the

growth of the average error value of the position based on real SCCS images, this
method is much more precise than those based on radar observations. Elements intro-
ducing radar image distortions include radar echoes from other moving floating units.

Figure 20. Real Image IR2 after masking and IR6 at the end converted, also the best correlated map
image IA1 at time t = 1250s.

Figure 21. Real Image IR2 after masking and IR6 at the end converted and the best fitted map image
IA1 at time t = 750s.
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For low observation scopes and for close distances, echoes introduce significant distor-
tions. This is illustrated in Figure 23.
Figure 24 shows distance to the reference φT

t ; λ
T
t

� �
from the position (φt, λt) deter-

mined by the use of rk in consecutive seconds.
Like Figure 18, Figure 25 shows the maximum linear correlative factor value, rk,

between the best fitted map image and the real image recorded by SCCS.
The mean error value of position coordinates (φt, λt) determined by the use of rk

amounted to 6·24 m.
Based on the analysis of Figures 24 and 25, it can be asserted that, as was the case for

the minimal maladjustment factor rm, there is a connection between the linear correla-
tive factor value, rk, of images IA1 and IR6 , and the accuracy of position determination.
Figure 24 contains local extremes at which position precision is either minimal or
maximal; these points are consistent with the linear correlative factor value, rk. In
Figure 25, the accuracy in position localisation indicated by the linear correlative
factor value was lower than the precision attained by using the minimal maladjustment
factor. This is clearly visible from the graphical representation of estimated position
recession from the referential position (Figures 17 and 24), and also from the average
error value of the position (for rm at 5·72 m, and for rk at 6·24 m). On Figures 24
and 25, respectively, it can be seen that the time intervals in which position accuracy
increases or decreases are almost identical to the intervals seen in Figures 17 and 18.
This supports the contention that both measures of similarity assessment, rm and rk,
react identically to the distortion affecting real images.

5. CONCLUSIONS. On the basis of empirical research, the following hypothesis is
supported.
The accuracy of estimating the coordinates of a ship manoeuvring in port using the

map image to shoreline image correlation method (as generated from an ENC and
compared to real camera images) may be quite high. The accuracy in this study was
about 6 m (RME). For comparison purposes, the error of positions estimated by
radar observations is a few times higher (about 26 m). This improvement of precision
in estimating precision was anticipated, because of the reduction or complete elimin-
ation of the factors that affect it negatively.

Figure 22. Real Image IR2 after masking and IR6 at the end converted and the best fitted map image
IA1 at time t = 1500s.
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Figure 23. Radar image disturbed by radar echo from a foreign unit and more adjusted to it map
image.

Figure 24. Graphical representation of distance to the referential φT
t ; λ

T
t

� �
from the position (φt, λt)

determined by the use of rk in consecutive seconds t= 1, 2…1560.
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This study showed that the most important factors affecting the accuracy of position
estimates are:

5.1. The quality of the shoreline image in real images. The quality of a real shore-
line image depends mainly on the number of distortions affecting it. Such distortions
can be caused by the shadow of the ship on the harbour, as well as by the reflection of
the Sun’s rays off the water surface. For these reasons, the quality of shoreline detection
should be associated with modification of edge detection methods and minimising
defined distortion.

5.2. Irregular shoreline shape. Irregular shoreline features cannot be changed.
However, ENC-based analysis can be conducted on the level of irregularity of shore-
line objects present in a given port, and on that basis subject them to prognosis. In add-
ition, the height of the SCCS montage on board can be lengthened (measured height
against water surface reflection). The benefits obtained by such manipulations are
shown in Figure 26.

5.3. Accuracy of Coordinate Points Representing Shoreline Objects in ENC. The
precision of coordinate points (knots) representing shorelines in ENC is theoretically

Figure 25. Graphical representation of linear correlative factor rk of image IA1 most fitted to image
IR6 in consecutive seconds t= 1, 2…1560.

Figure 26. The same map image IA0 generated from SCCS fixed at the height of 12 m (left) and 30 m
(right) above water level.
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dependent on the compilation scales of the ENC (IHO-2, 2002). When ports are
involved, we witness enhanced scales of ENC compilation, often 1:5 000, 1:10 000,
or 1:15 000. A scale of 1:5 000 and a resolution of 360 dpi pixels represents about
3·5 m on a map image. Accuracy of coded coordinate points in ENC is actually signifi-
cantly higher. This is a result of the fact that the appliance currently used for port land
surveying measures position coordinates with accuracy in terms of millimetres.
For that, map images can be generated at a much larger scale. For 1:500 scale and a

resolution of 360 dpi, it is possible to obtain a map image with a pixel representation of
about 0·4 m. In such a case, it should be noted that a HD camera would then record a
circular image within an area of a mere 216 m2.

5.4. Course measurement accuracy. Error in course estimation certainly has an
influence on the disparity between a map image rotation (rotating in line with
course) and a real image. It also influences the malfunction of the entire comparing
and position-plotting algorithm, thereby resulting in a large error margin.
Regarding the use of a ship’s gyrocompass, the maximal difference in rotation might
even be 3° with a 99% probability. This approximates to a 3 RME course estimation
with this appliance.
The effect of this error was greater when the ship was manoeuvring at a large dis-

tance from the port area (edges for comparison were at the borders of images). The
effect of the error decreased during manoeuvres close to the port area (edges for com-
parison were closer to the middle of the images).
Position estimates based on radar images were relatively imprecise. The value of the

average error of the position estimates indicated that this method cannot be used in the
case of manoeuvring the unit in tightly confined port basins (for example, while
mooring or approaching the quay). Using the video system makes such manoeuvres
feasible. However, the algorithm used in this work for estimating position (Figure 9)
entails very complex calculations. This is mainly as the result of the necessity of gen-
erating and comparing a large number of map images with the real images. For
example, to estimate a position at a distance of 25 m from the point of a similar dis-
tance (for an area of a square shape) with a 10 cm resolution capacity (establishing
offset Δ of a slide between map images), it is necessary to generate and compare
250,000 map images with the real images. For this reason the algorithm must be opti-
mised before undertaking practical application. This optimisation might entail the use
of a few resolution levels for image generation (use of so-called hierarchical method)
(Naus and Wąż, 2012). On the level of low general resolution (Δ= 50 m), through
intermediate levels, to the highest, most detailed level of resolution (Δ= 0.1 m), the
area of position localisation can be gradually diminished (lessening the length of r
for the position localisation circle). In this way, the total number of map images gen-
erated for specific levels of resolution would be much smaller than the number of all
map images generated for only one resolution at the highest level.
Furthermore, optimisation might entail solving the average error in determining

position using the image comparison method. This is so because its value might also
be dependent on the length of radius in the position-plotting circle, thereby increasing
the possibility of locating the ship’s real position on the circle. The radius might be
equal to the ratio of ∼3 RME in position determination, which in turn is equal to a
99% probability of localising of the ship’s real position on the circle.
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Jędryczka, R. (1999). Semi-Automatic Exterior Orientation Using Existing Vector. OEEPE Official
Publication, No 36.

Knight, J. (2002). Robot navigation by active stereo fixation. Robotics Research Group, Department of
Engineering Science, University of Oxford, Report No. OUEL 2220/00.

Krysicki, W. and Włodarski, L. (1983). Analiza matematyczna w zadaniach, Część I i II. PWN, Warszawa.
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