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The class of finite groups having a subgroup of order 4 which is its
own centralizer has been studied by Suzuki [9], Gorenstein and Walter [6],
and the present author [11]. The main purpose of this paper is to strengthen
Theorem 5 of [11] by using an early result of Zassenhaus [12]. In particular,
we find all groups of the class which are core-free, i.e. which have no non-
trivial normal subgroup of odd order. As an application, we make a deter-
mination of a certain class of primitive permutation groups.

Our proofs are a little longer than strictly necessary, as we have repeated
some of the arguments of Gorenstein and Walter rather than rely on their
slightly inaccurate proof of their Theorem II [6].

1

We say that a 2-group is of semi-dihedral type if it has two generators
a, /? with the defining relations

a2" = 0* = 1, a" = a2""'-1, a ^ 3.

Also, if q — r2, where r is a power of an odd prime number, then, as in [11],
we denote by H(q) the group of all transformations of the projective line
GF(q) u {GO} over GF(q) of the forms

ax-\-b
(1)

(2)

cx-\-d'

axr+b
cxr+d'

where a, b, c, d e GF(q), and ad—be is a square in (1) and not a square
in (2). The 2-Sylow subgroups of H(q) are of semi-dihedral type, and the
transformations of form (1) constitute the group PSL(2, q), a subgroup of
index 2 in H(q).
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THEOREM 1. Let G be a finite group with a non-cyclic subgroup T of order
4 which is its own centralizer in G. If K is the largest normal subgroup of odd
order in G, then GjK is isomorphic with PSZ.(3,3), Mn, GL(2,3), H(q),
PGL(2, q), PSL(2, q)(q odd), A7, or a 2-group of dihedral or semi-dihedral
type.

PROOF. Let S be a 2-Sylow subgroup of G containing T. Then S is of
dihedral or semi-dihedral type [8, Lemma 4]. There is an involution r
of T lying in the centre of S. Let JX be one of the other involutions of T.

First suppose that S is of dihedral type. Then CG(T) has a normal 2-
complement U [6, Lemma 8]. Since /u centralizes T, JU normalizes U. Since
T is self-centralizing, the automorphism of U induced by [i has no non-
trivial fixed points, so that U is Abelian. Hence GjK is isomorphic with
PSL(2, q), PGL(2, q) (q odd), A7, or S [6, Theorem I].

Now suppose that S is of semi-dihedral type. We have four possibilities
[11, Theorem 2]:

I. GjK is isomorphic with S.
II. G has a normal subgroup H of index 2, such that H has no normal

subgroup of index 2 and has 2-Sylow subgroup of dihedral type.
III. G has a normal subgroup H of index 2, such that H has no normal

subgroup of index 2 and has 2-Sylow subgroup of generalized quaternion
type.

IV. G has no normal subgroup of index 2, all involutions of G are
conjugate, and the centralizer of any involution is a group of type III.

In case II, T lies in H and we see as before that CH(r) has a normal
Abelian 2-complement, which is also a 2-complement for CG(r). Then GjK
is isomorphic with H(q) (q odd) [11, Theorem 3].

In case III, K is the largest normal subgroup of odd order in H, and
xK lies in the centre of HjK, by a theorem of Brauer and Suzuki [3, Theorem
2]. Since TKjK is self-centralizing in GjK [6, Lemma 5], JX induces an
automorphism of HjK of order 2, with exactly one non-trivial fixed point.
The structure of HjK and the automorphism induced by fi are then deter-
mined by a result of Zassenhaus [12, Satz 9]; HjK is isomorphic with
SL(2,3), and GjK is isomorphic with GL(2,3).

In case IV, CG(r) is a group of type III, so that, by what has just been
proved, CG(r) has a normal subgroup A of odd order such that CG(r)jA
is isomorphic with GZ,(2,3). By the proof of [11, Theorem 3], GjK is isomor-
phic with PSL (3,3) or Mu. This completes the proof of Theorem 1.

As in [11], let / denote the non-split extension of SL(2,3) by a group
of order 2 inducing an outer automorphism of SL(2,3).

THEOREM 2. Let G be a finite group with a cyclic subgroup T of order 4
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which is its own centralizer in G. If K is the largest normal subgroup of odd
order in G, then GjK is isomorphic with Si(2,3), SL(2,5), A7, PSL{2,1),
PSL(2,9), PGL{2,Z), PGL(2,5), H(9), J, a 2-group of semi-dihedral or
generalized quaternion type, a dihedral group of order 8, or a cyclic group
of order 4.

PROOF. Let 5 be a 2-Sylow subgroup of G containing T. Then S is of
one of the following types [9, Prop. 1]:

I. dihedral of order 8;
II. semi-dihedral;
III. generalized quaternion;
IV. cyclic of order 4.

The involution r of T lies in the centre of 5. Let / i b e a generator of T.
By Suzuki's results [9], either GjK is isomorphic with SZ.(2,3), SL(2,5),

A7, PSL(2,1) or PSL(2,9), or else G has a normal subgroup H of index 2
which does not contain JU. We may suppose that the latter is true, and
further that G does not have a normal 2-complement. In particular, we do
not have case IV.

In cases I and II, the 2-Sylow subgroup 5 n H oi H is of dihedral
type, and we find as in the proof of Theorem 1 that CG(r) has an Abelian
2-complement. Hence GjK is isomorphic with PGL(2,q) or H(q) (q odd)
[6, Theorem I], [11, Theorem 3]. The centralizer in PGL(2, q) of an element
of order 4 has order j ± l , and the centralizer in H(q) of an element of order
4 not in the subgroup PSL(2, q) has order 2(r—1), where q = r2. Since
TKjK is self-centralizing in GjK, it follows that GjK must be isomorphic
with PGL(2, 3), PGL(2, 5), or #(9).

In case III, the 2-Sylow subgroup S n H of H is of generalized quater-
nion type. By the theorem of Brauer and Suzuki [3, Theorem 2], xK lies
in the centre of HjK. Since TKjK is self-centralizing in GjK, fi induces an
automorphism of HjK of order 2, with exactly one non-trivial fixed point.
By the result of Zassenhaus [12, Satz 9], HjK is isomorphic with SL(2, 3),
and GjK is isomorphic with / . This completes the proof of Theorem 2.

In both the above theorems, the structure of the group K is quite
restricted. Since T induces a group of automorphisms of K having no non-
trivial fixed points, the derived group of K is nilpotent, by results of
Gorenstein and Herstein [5] and Bauman [1]. More can be said about K
in special cases. For example, in the situation of Theorem 2, K is Abelian
if GjK is isomorphic with SL(2, 3), SL(2, 5), PSL(2, 7) or PSL{2, 9), and
K is trivial if GjK is isomorphic with ^47[9]. The following is another result
of this type.
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THEOREM 3. In Theorem 1, if G\K is isomorphic with Mn or A7, then
K = {1}.

PROOF. Suppose that K is non-trivial. Let L be a normal subgroup of
K such that KjL is a chief factor of G. Since K is solvable, KjL is an elemen-
tary Abelian ^>-group for some prime number p, and the action of G\K on
K\L may be regarded as an irreducible representation of G\K over the
field of p elements. The restriction of this representation to the group TKjK
does not contain the 1-representation as a constituent, since TLjL is self-
centralizing in G\L. This will be true also of any absolutely irreducible
constituent of the representation. Hence we obtain an absolutely ir-
reducible Brauer character of GjK, the sum of whose values on the elements
of TKjK is 0. Since Mn and A7 each have only one class of involutions,
we have an absolutely irreducible Brauer character q> of M u or A7 such that

(3) vW + Mr) = 0.
where r is any involution. Thus it is enough to show that M n and A7 do
not have such a Brauer character for any odd prime p.

The ordinary character tables of M u and A7 are known. (For example,
they are partly computed in [11] and [9] and can easily be completed by
using the orthogonality relations.) The Brauer characters for any odd
prime other than 3 can easily be found by using results of Brauer on blocks
of defect 1 [2]. In all cases one can check that no Brauer character with
property (3) exists. Thus we may assume that p = 3.

Since we now have blocks of defect 2, it is more difficult to find the
Brauer characters explicitly. However, Mn has a subgroup isomorphic with
PSL(2, 11), for which the ordinary character table is known [7], and whose
Brauer characters 6 for the prime 3 can easily be found. For every 6 we
find that 0(1) + 30(T) > 0, for any involution T, SO that no Brauer character
of Mn can have the property (3). For A7, we have a subgroup isomorphic
with the symmetric group S5, for which the ordinary character table is
well known or easily calculated, and whose Brauer characters for the prime 3
can easily be found. We find that there is no linear combination <p of ir-
reducible Brauer characters of S5 with positive integer coefficients such that
(3) holds for every involution T of 55 . Hence A7 has no Brauer character
of the required type. This completes the proof of Theorem 3.

As an application of Theorem 1, we have the following result.

THEOREM 4. Let Gbea primitive permutation group such that the subgroup
H leaving one letter fixed is isomorphic as an abstract group with the symmetric
group S4 of degree 4. Then one of the following holds:
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(i) G has a regular normal elementary Abelian subgroup of order p3,
p an odd prime number.

(ii) G is isomorphic with PSL(2, q), where q is a prime number, q = ± 1
(mod 8).

(iii) G is isomorphic with PGL(2, q), where q is a prime number greater
than 3 and q = ± 3 (mod 8), or q = 3*, t an odd prime number.

(iv) G is isomorphic with PSL(3, 3).

PROOF. By primitivity of G, H is a maximal subgroup of G containing
no non-trivial normal subgroup of G. It follows that if T is the normal
subgroup of order 4 in H then H = NG(T). Hence CG(T) = CH(T) = T,
and we have the situation of Theorem 1.

If K is a non-trivial normal subgroup of odd order in G, then K is a
transitive subgroup [10, Theorem 8.8]. Since 54 has no non-trivial normal
subgroup of odd order, H n K = {1}, so that K is regular. Since K is solvable,
K is an elementary Abelian ^>-group for some odd prime p [10, Theorem
11.5]. The action of H on K may be regarded as a faithful irreducible
representation of H over the field of p elements. From the character table
of S4, we easily see that H has precisely two faithful irreducible representa-
tions over any field of odd characteristic, both of degree 3. Hence K has
order p3, and we have case (i) of the theorem.

If G has no non-trivial normal subgroup of odd order, then Theorem 1
implies that G is isomorphic with PSL(3, 3), Mn, GL(2, 3), H(q), PGL(2, q),
PSL(2,q),orA7.

Since Mn has semi-dihedral 2-Sylow subgroups it has only one con-
jugacy class of non-cyclic subgroups of order 4, which are all self-centralizing.
Hence there can be only one class of subgroups isomorphic to 54, viz.
the normalizers of these subgroups of order 4. Since Mn has a subgroup
isomorphic with A6, which in turn has a subgroup isomorphic with S4, it
follows that M n has no maximal subgroup isomorphic with 54.

The only subgroup of GL(2, 3) of order 24 is SL(2, 3), which is not
isomorphic with S4.

Since S4 is generated by involutions, and all the involutions of H{q)
are contained in the normal subgroup PSL(2,q), H{q) cannot have a
maximal subgroup isomorphic with 54.

In the permutation representation of A7 of degree 7, a self-centralizing
non-cyclic subgroup T of order 4 leaves exactly one letter fixed. Hence the
normalizer of T in A7 is contained in a subgroup isomorphic with A6,
and is not a maximal subgroup of A7.

Hence G is isomorphic with PSL{3, 3), PGL(2, q) or PSL(2, q) (q odd).
The subgroups of PSL(2, q) and PGL{2, q) are known [4], and it is straight-
forward to verify that there is a maximal subgroup isomorphic to S4 for
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exactly the values of q given in the statement of the theorem. This completes
the proof of Theorem 4.

REMARKS. 1. To see that case (iv) of Theorem 4 does occur, consider
PSL(3, 3) = SL(Z, 3) in its natural representation on a 3-dimensional
vector space over the field GF(3). If Lx, L2, L3 are three independent one-
dimensional subspaces, then the elements of PSL(3, 3) which leave Lx,
L2, L3 invariant form a non-cyclic subgroup T of order 4, whose normalizer
H consists of all elements of PSZ.(3, 3) which permute Llt L2, L3 among
themselves. Thus H is isomorphic with S4. If H were not maximal in
PSZ.(3, 3), then PSL(3, 3) would contain a subgroup of one of the types
(i), (ii), (iii) of Theorem 4. A comparison of orders shows that this is im-
possible. Hence H is maximal in PSL(3, 3), and we have case (iv).

2. We saw in the proof of Theorem 4 that there are exactly two non-
isomorphic groups of type (i) for each odd prime p. In each case there is
only one conjugacy class of subgroups isomorphic with Si, and so there
is essentially only one representation as a permutation group satisfying
the hypotheses of Theorem 4. In case (ii) there is essentially only one
permutation group for each q, since the subgroups of PSL(2, q) isomorphic
to S4 are all conjugate in PGL(2, q) [4]. In cases (iii) and (iv) all sub-
groups isomorphic with 54 are conjugate, so that again in each case there is
essentially only one representation as a permutation group of the type
considered.

Note added in proof. It has come to the author's notice that part of
the results of this paper have been obtained by V. D. Mazurov in his
article "Finite groups with a given Sylow 2-subgroup", Doklady Akad.
Nauk 168 (1966) 519-521, (Soviet Math. 7 (1966), 678-680). His proofs
appear rather longer and less elementary than those of the present paper,
since he uses the classification by Gorenstein and Walter of all finite
groups with dihedral 2-Sylow subgroups, instead of the result of Zassenhaus.
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