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ABSTRACT

A new two-parameter family of analytical functions will be introduced for the model-
ling of loss distributions and exposure curves. The curve family contains the Maxwell-
Boltzmann, the Bose-Einstein and the Fermi-Dirac distributions, which are well
known in statistical mechanics. The functions can be used for the modelling of loss
distributions on the finite interval [0, 1] as well as on the interval [0, <*>]• The functions
defined on the interval [0, 1 ] are discussed in detail and related to several Swiss Re
exposure curves used in practice. The curves can be fitted to the first two moments /z
and a of a loss distribution or to the first moment fi and the total loss probability p.

1. INTRODUCTION

Whenever possible, the rating of non proportional (NP) reinsurance treaties should not
only rely on the loss experience of the past, but also on actual exposure. For the case
of per risk covers, exposure rating is based on risk profiles. All risks of similar size
(SI, MPL or EML) belonging to the same risk category are summarized in a risk band.
For the purpose of rating, all the risks belonging to one specific band are assumed to
be homogeneous. They can thus be modelled with the help of one single loss distribu-
tion function.

The problem of exposure rating is how to divide the total premiums of one band be-
tween the ceding company and the reinsurer. The problem is solved in two steps. First,
the overall risk premiums (per band) are estimated by applying an appropriate loss
ratio to the gross premiums. In a second step, these risk premiums are divided into risk
premiums for the retention and risk premiums for the cession. Due to the nature of NP
reinsurance, this is possible only with the help of the loss distribution function.

However, the correct loss distribution function for an individual band of a risk profile
is hardly known in practice. This lack of information is overcome with the help of
distribution functions derived from large portfolios of similar risks. Such distribution
functions are available in the form of so-called exposure curves. These curves directly
permit the extraction of the risk premium ratio required by the reinsurer as a function
of the deductible.

' Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac distribution

ASTIN BULLETIN, Vol 27, No. 1, 1997, pp. 99-111

https://doi.org/10.2143/AST.27.1.563208 Published online by Cambridge University Press

https://doi.org/10.2143/AST.27.1.563208


100 STEFAN BERNEGGER

Often, underwriters have only a finite number of discrete exposure curves at their
disposal. These curves are available in graphical or tabulated form, and are also im-
plemented in computerized underwriting tools. One of the curves must be selected for
each risk band, but it is not always clear which curve should be used. In such cases,
the underwriter might also want to use a virtual curve lying between two of the dis-
crete curves available to him.

This can be achieved by replacing the discrete curves with analytical exposure curves.
Each set of parameters then defines another curve. If a continuous set of parameters is
available, the exposure curves can be varied smoothly within the whole range of avai-
lable curves. However, the curves must fulfill certain conditions which restrict the
range of the parameters. In addition, practical problems can arise if a curve family
with many (more than two) parameters is used. It might then become very difficult to
find a set of parameters which can be associated with the information available for a
class of risks. This problem can be overcome if a curve family is restricted to a one- or
two-parameter subclass and if new parameters are introduced which can easily be
interpreted by the underwriters.

In the following, the MBBEFD class of analytical exposure curves will be introduced.
As will be seen, this class is very well suited for the modelling of exposure curves
used in practice. Before analysing the MBBEFD curves in detail, some general rela-
tions between a distribution function and its related exposure curve will be discussed
in section 2. These relations permit the derivation of the conditions to be fulfilled by
exposure curves. The new, two-parameter class of distribution functions will then be
introduced in section 3. Finally, several practical aspects, and the link to the well
known Swiss Re property exposure curves Yi; will be discussed in section 4.

Conventions

Following the notation used by Daykin et al in [1], we will denote stochastic variables
by bold letters, e.g. X or x. Monetary variables are denoted by capital letters, for in-
stance, X or M, while ratio variables are denoted by small letters, for instance, x =
X/M.

2. DISTRIBUTION FUNCTION AND EXPOSURE CURVE

2.1. Definition of the exposure curve

In the following, the relation between the distribution function F(x) defined on the
interval [0, 1] and its limited expected value function L(d) = E[min(d, x)] will be dis-
cussed. Here, d = D/M and x = X/M represent the normalized deductible and the nor-
malized loss, respectively. M is the maximum possible loss (MPL) and X < M the
gross loss. The deductible D is the cedent's maximum retention under a non propor-
tional reinsurance treaty. M • L (d) is the expected value of the losses retained by the
cedent while M • (L(l) - L(d)) is the expected value of the losses paid by the reinsurer.
Thus, the ratio of the pure risk premiums retained by the cedent is given by the relative
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limited expected value function G(d) = L(d)/L(l) [1]. The curve representing this
function is also called the exposure curve:

d d

\{\-F(y))dy j{l-F(y))dy

E[x]
j{l-F(y))dy

Because of 1 - F(x) > 0 and F'(x) = f(x) > 0, G(d) is an increasing and concave func-
tion on the interval [0, 1]. In addition, G(0) = 0 and G(l) = 1 by definition.

2.2. Deriving the distribution function from the exposure curve

If the exposure curve G(x) is given, the corresponding distribution function F(x) can
be derived from:

^ ^ (2.2)
E[x]

With F(0) = 0 and G'(0) = 1/E[x] one obtains:

fl x = l

G\x) 0 < x < 1 (2-3)
G'(0)

Thus, F(x) and G(x) are equivalent representations of the loss distribution.

2.3. Total loss probability and expected value

The probability p for a total loss equals 1 - F(l~) and the expected (or average) loss \i
equals E[x]. These two functionals of the distribution function F(x) can be derived
directly from the derivatives of G(x) at x = 0 and x = 1:

= E[x] = —
G'G'(0)

rvn (2-4)

G'(0)

The fact that G(x) is a concave and increasing function on the interval [0,1] with
G(0) = 0 and G(l) = 1 implies:

G ' (0)>l>G' (D>0 (2.5)

This is also reflected in the relation:

0 < p < p. < 1 (2.6)
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2.4. Unlimited distributions

If the distribution function F(X) is defined on the interval [0, °°], the above relations
have to be slightly modified. In this case there is no finite maximum loss M. However,
the deductible D and the losses X can be normalized with respect to an arbitrary refe-
rence loss Xo, i.e. x = X/XQ and d = D/Xo. G(d) is still a concave and increasing func-
tion with G(0) = 0 and G(°°) = 1. The expected value fi = E[x] is also given by
l/G'(0), but there are no total losses, i.e. G'(°°) = 0.

3. THE MBBEFD CLASS OF TWO-PARAMETER EXPOSURE CURVES

3.1. Definition of the curve

In this section we will investigate the exposure curves and the related distribution
functions defined by:

ln(fl + » ) l n ( f l + l)

l ( fc)l( l)

The distribution function belonging to this exposure curve is given by:

fl x = \

: 0 S i ( 3 l b )
0 S x

a + bx

The denominator and the term -ln(a + 1) in the nominator of (3.1 a) ensure that the
boundary conditions G(0) - 0 and G(l) = 1 are fulfilled. As will be seen below, the
cases a= {-1,0, °°) o rb= {0, 1,°°} have to be treated separately.

Distribution functions of the type (3.1), defined on the interval [0, °°] or [-°°, °°], are
very well known in statistical mechanics (Maxwell-Boltzmann, Bose-Einstein, Fermi-
Dirac and Planck distribution). The implementation of these functions in risk theory
does not mean that the distribution of insured losses can be derived from the theory of
statistical mechanics. However, the MBBEFD distribution class defined in (3.1) shows
itself to be very appropriate for the modelling of empirical loss distributions on the
interval [0, I].

3.2. New parametrisation

The parameters {a, b} are restricted to those values, for which Gab(x) is a real, increa-
sing and concave function on the interval [0, 1]. It is easier to fulfill this condition by
using the inverse g = 1/p of the total loss probability p as a curve parameter and to
replace the parameter a in (3.1):

; a=
(-^^ (3.2)

(a + \)b l-gb
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On the one hand, the condition 0 < p < 1 is fulfilled only for g > 1. On the other hand,
G(x) is a real function only for b > 0. It can be shown that no other restrictions regar-
ding the set of parameters are necessary.

However, cases b = 1 (i.e. a = -1), b = 0 or g = 1 (i.e. a = 0) and b • g = 1 (i.e. a = °°)
must be treated as special cases. The cases b • g = 1 (i.e. a = °°), b • g > 1 (i.e. a < 0)
and b • g < 1 (i.e. a > 0) correspond to the MB, the BE and the FD distribution,
respectively (cf. figure 4.1). By considering special cases b = 1, g = 1 and b • g = 1
separately, all real, increasing and concave functions G(x) on the interval [0, 1] with
G(0) = 0 and G(l) = 1 belonging to the MBBEFD class (3.1) can be represented as
follows:

Hg)
1-
\-b

J

= \/\g>\

= \/\g>\ (3.3)

-gb)bx

\-b

\n(gb)
b>

0 0 D 2 0 6 0 9 1 0

FIGURE 3 1 a) Set of MBBEFD exposure
curves with constant parameter

g= l/p= 10and/i = E[x]=0 11,
0 2, 0 4, 0 6, 0 8, 0 99

FIGURE 3 1 b) Set of MBBEFD exposure
curves with constant \i = E[x] = 0 1 and

p = 1/ g = 0.099, 0 031, 0 01, 0 0031, 0 001
The dashed line with slope 1/ fl represents

the tangent at d = 0
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0 0 0 2

FIGURE 3 2 a) Distribution functions
belonging to exposure curves

of figure 3 1 a)

00 02 0* 06 OB 10

FIGURE 3 2 b) Distribution functions
belonging to exposure curves

of figure 3 1 b)

Examples of MBBEFD exposure curves are shown in figure 3.1. A set of curves with
constant total loss probability p = 0.1 (i.e. g = 10) is represented in figure 3.1 a).
Figure 3.1 b) contains a set of curves with constant expected value fi = 0.1. The cor-
responding distribution functions are shown in figures 3.2 a) and b).

3.3. Derivatives

The derivatives of the exposure curves are given by:

+ (*-!)*)
b=\Ag>\

\n(b)bx

\n(b)(l-gb)

with

G'(0) =

r-1
ln(g)

\n(b) \n(g)g

g=ivb=0

b=\Ag>l

b-\ g-\
ln(b)(l-gb)
ln(gb)(l-b)

(3.4)

(3.4 a)
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and

r-1
= \/\g>\

ln(b)b ]n(g) (3.4 b)

b-\ g-\
\n{b)(\-gb)

[\n(gb)g(l-b)

The relation p = G'(1)/G'(O) = 1/g is obtained immediately from (3.4 a) and (3.4 b).

3.4. Expected value

According to (2.4) the expected value fi is given by:

g= lv fc=O

b=1Ag>1

G'(0) 1 b-\ g-\

ln(fe) \n(g)g

\n{gb){\-b)

= \Ag>\
(3.5)

ln(b)(l-gb)

The expected value fi is represented as a function of the parameters b and g in figure
3 3 and discussed below in section 3.7.

= 0.3 p - 0 2 - 0.1

parameter g 1 / p

f'iGURE 3 3 Parameter b as a function of g = 1 /p for jl - E[x] = 0 1 , 0 2 , 0 9
The dashed line at g = 1 and the horizontal line at b = 0 represent

the parameter sets (b, g) with \l = 1
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3.5. Distribution function

According to (2.3), the distribution function belonging to the exposure curve Gb g(x) is
given by:

1 ' x = \

F(x) =
\-bx

1--
\-b

= \ Ag>\

The distribution functions belonging to the exposure curves of figure 3.1 are repre-
sented in figure 3.2. The set of distribution functions with constant total loss proba-
bility p = 0.1 (g = 10) is shown in figure 3.2 a). Figure 3.2 b) contains the set of
distribution functions with constant expected value fi - 0.1.

3.6. Density function

Because of the finite probability p = 1/g for a total loss, the density function f(x) =
F'(x) is defined only on the interval [0, 1):

/(*) =

0

8-

-ln(b)bx

(b-l)(i

((g-l)b

1

! -
\-x

]

+(l-gb)f

b=1Ag>1

(3.7)

3.7. Discussion

It is instructive to analyse the expected value /i = fj,(b, g) as a function of the parame-
ters b and g (3.5). Figure 3.3. shows the range of permitted parameters in the {b, gj
plane and the curves with constant expected value fi. One can see in figure 3.3 that
/ig(b) is a decreasing function of b (for g > 1 constant) and that fib(g) is a decreasing
function of g (for b > 0 constant):

> 0 (3.8)
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The expected value fi is related as follows to the extreme values of the parameters b
andg:

lim/i
b->0 * (3.9)

3.8. Unlimited distributions

So far, only distributions defined on the interval [0, 1] have been discussed. However,
as the MB, the BE and the FD distributions are defined on the interval [-<», oo] or
[0, oo], the MBBEFD distribution class can also be used for the modelling of loss dis-
tributions on the interval [0, oo]. if the losses X and the deductible D are normalized
with respect to an arbitrary reference loss Xo, then x = X/XQ and d = D/Xo. The above
formula can now be modified as follows:

\-bx

In
\-b

G\x) =

In

-\n(b)bx

l-b

\n(b)(l-gb)

(3.10)

bg = lAg>l

0<b<lAbg±lAg>l (3-11)

C'(0) =
ln(b)(l-gb)

G'(D =

-ln(o)o

bg = 1 A g > 1

0<O<lAOg*lAg>l

bg = IA g > [

(3.11a)

C'(°°) = 0

F(x) =

= \Ag>\

l-o

(3.11b)

(3.11c)

(3.12)

(g-\)b'-x+(\-gb)
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The restriction 0 < b < 1 is obtained immediately from (3.12) and the condition
F(oo) = l, while the restriction g > 1 is obtained from (3.10), where the argument of the
logarithm in the denominator must be greater than 0. The same restriction is also ob-
tained from the relation p = G'(l)/G'(0) = l/g, which is still valid. The parameter g is
thus the inverse of the probability p of having a loss X exceeding the reference loss
Xo.

4. CURVE FITTING

4.1. Expected value fi and total loss probability p

Because of (3.8) and (3.9), there exists exactly one distribution function belonging to
the MBBEFD class for each given pair of functionals p and fi (cf. figure 3.3), provided
that p and fi fulfill the conditions (2.6). The curve parameter g = 1/p is obtained di-
rectly. The second curve parameter b can be calculated with the help of (3.5). Here,
the following cases must be distinguished:

a) fi = l =>b = 0

b) fi ^

c) ^=
1JM ^ = , (4.1)

d) fi = \l g =>/? = oo

e) else =$0<b<o°/\b*l/gAb^l

In the general case e), the parameter b has to be calculated iteratively by solving the
equation:

in^Xl^)
ln(b)(l-gb)

Because fig(b) is a decreasing function of b (3.8), the iteration causes no problems. An
upper and a lower limit for b can be derived directly from (4.1).

4.2. Expected value fi and standard deviation a

It is also possible to find a MBBEFD distribution assuming the first two moments (e.g.
fi and a) are known, provided the moments fulfill certain conditions. The first two
moments of a distribution function with total loss probability p are given by:

r
fl = E[x] = p+ jxf(x)dx

(4.3)
r

fi2 + a2 = E[x2 ] = p + J x2f(x)dx < fi
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According to (4.3) the first two moments of F(x) and p must fulfill the following con-
ditions:

" 2 S £ I * 2 l S " ,4.4,
p<E[x2]

Calculation of g and b

Basic idea: 1. Start with p* = E[x2] > p as a first estimate (upper limit) for p, and
calculate b* and g* for the given functionals n and p* with the method
described in 4.1 above.

2. Compare the second moment E*[x2] with the given moment E[x2] and
find a new estimate for p*.

3. Repeat until E*[x2] is close enough to E[x2].

If the first moment /J is kept constant, then the second moment E*[x2] will be an in-
creasing function of p*. Thus the parameters g and b can be calculated without compli-
cations.

Remark: The second moment of the MBBEFD distribution has to be calculated
numerically. This is best done by replacing F(x) with a discrete dis-
tribution function which has the same upper tail area L(x1+1) - L(x,) as
F(x) on each discretized interval [x,, x1+,].

4.3. The MBBEFD distribution class and the Swiss Re Yt property exposure
curves

The Swiss Re Y, exposure curves (i = 1 ... 4) are very well known and widely used by
non proportional property underwriters. As will be shown in this section, all these
curves can be approximated very well with the help of a subclass of the MBBEFD
exposure curves. In a first step, the parameters b, and g, have been evaluated for each
curve i. By plotting the points belonging to these pairs of parameters in the {b, g}
plane, we found that the points were lying on a smooth curve in the plane. In a next
step, this curve was modelled as a function of a single curve parameter c. Finally, the
parameters c, representing the curves Y, were evaluated.

The subclass of the one-parameter MBBEFD exposure curves is defined as follows:

G((x) = Gb(,gc(x) (4.5)

with:

b=b(c) = e3i-Oi*l+')c

(4.6)
. 2 £ *
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10 10 10 10 10 10 10 10 10 10 10
total loss probability p - 1/q

FIGURE4 1 Range of parameters of the exposure curves Gb g(x) The expected value //
is shown as a function of p = 1/g for special cases b = 0, b = p, b = 1 and b = •*>

In addition, p and n are shown as a function of the curve parameter c for c = 0 10
The dashed part of this curve has no empirical counterparts

The position of the curves c - 0 ... 10 in the {p, /i} plane is shown in figure 4.1 Here,
the special cases b = 0, p, 1, °° and g = 1 are also shown.

The curves defined by c = 0.0, ..., 5.0, which are shown in figure 4.2, are related as
follows to several exposure curves used in practice:

• The curve c = 0 represents a distribution of total losses only because of g(0) = 1.

• The four curves defined by c = {1.5, 2.0, 3.0 and 4.0} coincide very well with the
Swiss Re curves {Y,, Y2, Y3, Y4}.

• The curve defined by c = 5.0 coincides very well with a Lloyd's curve used for
the rating of industrial risks.
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- o
0.0

I " I ' '
0.2 0.4 0.6 O.i

relative deductible d = D/ti
1.0

FIGURE 4.2: One-parameter subclass of the MBBEFD exposure curves, shown for
c = 0.0, 1.0, 2.0, 3.0, 4.0 and 5.0.

Thus, the exposure curves defined in (4.6) are very well suited for practical purposes.
The underwriter can use curve parameters which are very familiar to him. In addition,
the class of exposure curves defined by (4.6) is continuous and the underwriter has at
his disposal all curves lying between the individual curves Y,, too.
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