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(e 2019 coronavirus disease (COVID-19) pandemic has demonstrated the importance of predicting, identifying, and tracking
mutations throughout a pandemic event. As the COVID-19 global pandemic surpassed one year, several variants had emerged
resulting in increased severity and transmissibility. Here, we used PCR as a surrogate for viral load and consequent severity to
evaluate the real-world capabilities of a genome-based clinical severity predictive algorithm. Using a previously published al-
gorithm, we compared the viral genome-based severity predictions to clinically derived PCR-based viral load of 716 viral genomes.
For those samples predicted to be “severe” (probability of severe illness >0.5), we observed an average cycle threshold (Ct) of 18.3,
whereas those in in the “mild” category (severity probability <0.5) had an average Ct of 20.4 (P � 0.0017). We also found a
nontrivial correlation between predicted severity probability and cycle threshold (r� −0.199). Finally, when divided into severity
probability quartiles, the group most likely to experience severe illness (≥75% probability) had a Ct of 16.6 (n� 10), whereas the
group least likely to experience severe illness (<25% probability) had a Ct of 21.4 (n� 350) (P � 0.0045). Taken together, our
results suggest that the severity predicted by a genome-based algorithm can be related to clinical diagnostic tests and that relative
severity may be inferred from diagnostic values.

1. Introduction

A classic model of disease causation is the epidemiologic triad
of host, agent, and environment. Stated differently, the severity
of an illness is based on an interplay between the method of
exposure (environment), pathogenicity of the organism
(agent), and the host (host susceptibility and host response to
the infectious agent). (e recent SARS-CoV-2 pandemic has
demonstrated that substantial diversity in both the host and
virus can lead to a wide spectrum of clinical outcomes. Early
research into symptom severity largely focused on host phe-
notypes, such as blood type [1], age [2], and gender [3]. As the
scale of the pandemic grew [4], the role of the geographic
region and viral mutations in severe clinical outcomes began to
emerge [5], followed by additional insights on host genetic

susceptibility [6]. Finally, efforts to predict a patient’s outcomes
using computational models developed with phenotypic, ge-
netic, and demographic data are being pursued in order to
tailor patient care and manage resources [7–10].

Early identification of patients at the increased risk of
developing severe symptoms can help preserve life and health.
Estimates of viral load upon admission have been shown to be
correlated with higher mortality [11, 12]. Using real-time PCR
data, Choudhuri and colleagues demonstrated that increased
cycle thresholds were associated with 9% reduction in the
odds of in-hospital mortality [11]. (e greatest difference was
found for those patients reporting to the hospital with a cycle
threshold below 23; these patients encountered 3.9-fold in-
creased odds of in-hospital mortality compared to patients
with cycle thresholds above 33. Overall, using PCR cycle
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thresholds as a predictor of outcome, the area under the curve
was found to be 0.68, suggesting an effective but limited
discriminative ability for severity classification by cycle
threshold at the time of admission.

(e use of SARS-CoV-2 genome-wide sequencing has
identified numerous variants that the World Health Orga-
nization has subsequently declared “variants of concern” [13].
Many of these variants are in the spike protein necessary for
host recognition [14], but many are also scattered throughout
the remainder of the viral genome [15]. Using data from the
first year of the pandemic, we previously developed an al-
gorithm to predict severity based on viral mutations [7]. In
addition, we reported 17 variants associated with severe
clinical outcomes (odds ratio (OR)≥ 2) and 67 variants as-
sociated with mild clinical outcomes (OR≤ 0.5). (e area
under the curve for our predictive algorithm was 0.91, sug-
gesting a strong discriminative ability for classifying severe
patients. Here, we present results comparing the computa-
tionally predicted probability of a severe outcome to real-
world laboratory-measured PCR values.

2. Materials and Methods

2.1. Patient Sample Selection. (is study was reviewed and
approved by the Air Force Research Laboratory’s

Institutional Review Board (FWR20190037N). Genome
sequences were downloaded from the public access GISAID
database [16, 17] restricted to sequences uploaded by the US
Air Force School of Aerospace Medicine (USAFSAM) as of
16 April 2021 (see Supplementary Materials for a complete
list of accession numbers and references). Only the
USAFSAM sequences were used as we also have access to
PCR cycle thresholds for those data. rt-PCR diagnostic tests
were performed using US Centers for Disease Control and
Prevention assay as described elsewhere [18], and the cycle
threshold (Ct) for the N1 gene was used as the comparator.

2.2. Laboratory Validation

2.2.1. Severity Predictions. For each specimen, we generated
a probability of severe illness using an algorithm that
considers variants in SARS-CoV-2 genomic sequences, the
geographic region of collection, and the patient’s age and
gender [7]. (e genomic sequences were obtained from
GISAID and matched to specimens for PCR as described
above. Once downloaded, the sequences were aligned to the
Wuhan reference strain (NCBI:NC_045512.2; GISAID:
EPI_ISL_402125) using “MiniMap2” (version 2.17) [19] and
“MAFFT” [20], while subsequent variants were called using
“SNP sites” [21]. Variants present in the algorithm but not in
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Figure 1: Process flowchart for orthogonal validation of a severity prediction algorithm. Sequences were downloaded from GISAID,
processed through reference alignment and variant calling, predicted based upon variants identified by Voss et al., and compared to
observed PCR threshold data by the t-test and correlations. (e matrix used for predictions was 716 samples with 662 variants overlapping
the Voss et al. variant list (all other variants were assigned 0 for Python predictions).
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a genomic sequence were scored as “0,” whereas observed
variants were scored as “1.” Collectively, we observed 662 of
the 4,502 variants used in the algorithm (Figure 1).

2.3. Statistical Comparisons with PCR Values. (e sample
IDs were divided into classes based upon severity prediction
probabilities generated here for analysis. (e mean observed
Ct values for each class were compared using the unequal
variance unpaired t-test. We used Welch’s corrections be-
cause of unequal sample sizes. A second approach tested for
correlation between the predicted probability of a viral se-
quence belonging to the severe class and the observed Ct
value. No modification to the original algorithm using PCR
measurements was performed. Linear correlation was tested
using Pearson’s correlation. We used GraphPad Prism 7.0c
for performing the t tests and Pearson’s correlation.

3. Results

3.1. Sample Statistics. We obtained 1,314 SARS-CoV-2 se-
quences published to GISAID by the USAFSAM Epidemi-
ology Laboratory (collection dates between 22 February 2020
and 11 June 2021). Of those sequences, 716 had corre-
sponding N gene PCR data and were used for analysis.

3.1.1. Comparing PCR Values of Predicted “Mild” to Predicted
“Severe”. Using the previously published SARS-CoV-2 ge-
nome severity prediction model [7], 636 (89%) specimens
had a ≤50% chance of being severe (“predicted mild” group)
and 80 (11%) had a probability of >50% (“predicted severe”
group). (e “predicted severe” group had a significantly
lower observed N gene Ct value (18.3± 0.6) as compared to
the “predicted mild” group (20.4± 0.2). (is difference of
2.1± 0.7 Ct (95% CI: 0.81–3.4) is consistent with differences
seen in other studies signifying highly transmissible variants
of concern [22] and is significant based on the unpaired t-
test (Figure 2, P � 0.0017).

3.1.2. Comparing PCR Values of Upper and Lower Prediction
Quartiles. A similar analysis on the upper and lower

quartiles of severity prediction revealed a more substantial
difference (Figure 3). (ose specimens with the greatest
probability of severe outcomes (≥75% probability) had a Ct
of 16.6± 1.3 (n� 10, 1.4% of samples), whereas those least
likely to be associated with severe outcomes (<25%) had a Ct
of 21.4± 0.3 (n� 350, 49% of samples) (P � 0.0045). (e
difference between the means and 95% confidence interval
was 4.9 (CI: 1.9–7.8).

4. Discussion

4.1. Principal Results. (oroughly validating predictions
from machine learning models is necessary for establishing
the credibility and power of analytics for public health. For
biology and medicine, this often means finding a testable
measurement that represents the predicted outputs. In our
case, we used an outgroup sample with an orthogonal se-
verity marker to provide strong evidence that the algorithm
can identify strains that are biologically unique and present
meaningful clinical differences.

Research on the MERS coronavirus showed that viral
load, as inferred from PCR cycle threshold, is associated with
risk of severe disease and death, with a 17% higher risk of
death for each 1 point drop in Ct after adjusting for age and
underlying illness [23]. In the context of SARS-CoV-2, data
from Brazil also suggest cycle threshold can predict severity
in a manner that is not explained by age [24]. Indeed, the
relationship between cycle threshold and COVID-19 se-
verity has also been identified in a prior systematic review of
18 studies with a positive association in a majority [25],
while also being described in a more recent narrative review
[26]. Typically, a Ct value of less than 20 is considered
“highly infective” [27]. Here, our results are consistent with
these previous observations in which those viral genomes
with the greatest predicted probability of severe clinical
outcomes had, on average, a 5 Ct difference. (is difference
corresponds to viral titers of approximately 1.1 million viable
viral particles permL for those most likely to be severe versus
only 33,000 particles per mL for those least probable to be
severe.
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Figure 2: PCR Ct values for viral specimens predicted to be from
patients withmild (open box, n� 636) or severe (dotted box, n� 80)
outcomes. ∗∗P � 0.0017.
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Figure 3: PCR Ct values for viral specimens least likely (proba-
bility< 25%, open box, n� 350) or most likely (probability≥ 75%,
dotted box, n� 10) outcomes. ∗∗P � 0.0045.
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(e practical implications of Ct differences are critical to
consider when determining future public health responses.
In a recent study of military basic trainees, Marcus and
colleagues found three interesting differences for index
patients: those index patients who were symptomatic had a 7
cycle lower Ct than those who were asymptomatic (20 vs.
27.2 cycles), symptomatic index patients had a 4 cycle lower
Ct than symptomatic patients who did not occur as part of a
cluster (20 vs. 24.4 cycles), and those who were asymp-
tomatic had a 9 cycle difference (27.2 for asymptomatic
index patients vs. 36.4 for asymptomatic nonindex patients)
[28]. Another study found a significant difference in viral
loads in a cohort of military beneficiaries associated with
obesity and inpatient or outpatient status [29]. When in-
patients and outpatients were combined, the authors did not
observe any significant difference in viral load. (e greatest
difference observed by the authors was in severely obese
outpatients, who had 77-fold higher viral loads than non-
obese patients, suggesting that in mildly ill patients, those
who are more obese can tolerate greater viral loads. Con-
sequently, it becomes apparent that viral load alone is not the
most powerful predictor of disease severity.

Ultimately, while it is likely that there are other factors
(biological or methodological) contributing to severity, it is
possible that these balance out in a large enough population
or where these factors are less likely to be different. For
example, if there are measurement errors in the Ct asso-
ciated with random differences in sample acquisition
techniques, time of day a participant was tested, or sample
type (nasopharyngeal vs. anterior nasal vs. nasal wash vs.
oropharyngeal), these factors are likely to make the asso-
ciation between Ct and predicted risk appear smaller than it
is. Alternatively, it remains plausible that the predicted
severity from the genome does not differ by time of col-
lection or bodyweight category, as both the biological and
methodological confounders primarily bias toward the null
[30]. Consequently, it is possible that the difference we found
is explained by factors like those mentioned above, especially
considering the constrained metadata regarding the lack of
patient outcomes in our dataset. Regardless, because we
observed, in an independent patient sample set, a decrease in
cycle thresholds (a surrogate for increased disease severity)
between groups of patients predicted to experience severe
clinical outcomes like hospitalization, it remains compelling
that the predictions generated from the computational al-
gorithm are reflecting biological mechanisms and are
clinically meaningful for patients, providers, and public
health leaders. Future work is required to take the results of
these two studies from statistically significant research
findings to practical tools for use in clinical practice and
public health management.

4.2. Limitations. One limitation of this study is the use of
PCR cycle threshold as a surrogate for clinical severity. As
mentioned in the main text, the ability of PCR to predict
clinical outcome only has an area under the curve of 0.68,
making it a fair, but not ideal analog for clinical outcomes.
Clinical outcome data were not available for this study.

Another limitation related to using the PCR Ct value is the
variability in sample collection per patient as some patients
report to clinics early in illnesses, whereas others may have
reported only after symptoms became more severe. Re-
gardless of these limitations, the high predictive ability of the
algorithm along with the significant correlation with PCR
data suggest that our results can be replicated in other
populations and by other laboratories.

Another limitation is the relatively small number of viral
genotypes. A post hoc power analysis for the predicted
severe (Ct mean� 18.33± 5.514, n� 80) versus predicted
mild (20.44± 5.633, n� 636) with a 5% type I error rate
revealed 89.6% power to detect the observed difference,
indicating that though the sample sizes were relatively small,
the study had sufficient power to draw the conclusions from
the results. Similarly, the post hoc power analysis for the
most and least likely to be severe groups had a 95.3% power.

5. Conclusions

In conclusion, here, we report a correlation between a
computationally predicted severity and a clinically measured
surrogate for severity, PCR cycle threshold. Our results show
that using viral genetic information combined with patient
demographics could aid clinical triage and public health
surveillance. While whole viral genome sequencing of every
patient upon admission is cost prohibitive and results are
unlikely to be timely enough to improve patient treatment,
rapid diagnostic tests developed to identify variants critical
to severity may provide insights to improve outcomes.
Additionally, using sequence data along with laboratory
validated, in silico-derived severity markers could help
prioritize new variant vaccine development and in cases
where there is clinical equipoise (for example, in cases where
monoclonal antibody treatment is being considered or
where postexposure presymptomatic prophylaxis is being
considered for known contacts, among others). Finally,
public health officials employing large-scale surveillance
methods could benefit from these in silico markers by
watching for the emergence of markers and gain a few days’
lead time for preparedness actions.
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