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Abstract

A duality theorem of Wolfe for nonlinear differentiable programs is extended to nondifferentiable
programs with strong and weak convex functions, by replacing gradients by local subgradient. A
converse duality theorem is also proved.

1980 Mathematics subject classification (Amer. Math. Soc.): 90 C 25, 90 C 30, 90 C 48.

1. Introduction and preliminaries

Consider the following pair of problems.

(P) Minimize fy(x) subject to f(x) < 0,i=1,2,...,m, x € C.

(D) Maximize fy(§) + X%, A, f,(§) subject to A, =0, i=1,2,....m, £ €C,
0 € 3%/ (§) + LL1 A, 9%i(§) — (C = §)*.

Here the functions f,, i = 0,1, 2,...,m, are p-convex [10] and finitely direction-
ally differentiable on a pre-Hilbert space X, C is a convex subset of X, and
3*/,(a) is the local subdifferential of f; at a in the sense of Craven and Mond [4].
If £, (i = 0,1,...,m) are continuous convex functions then this is just the pair of
problems for which Schechter [9] proved duality theorems. If X is finite dimen-
sional and the functions f;, i = 0,1,2,...,m, are differentiable and convex and
C = X then the duality between (P) and (D) was proved by Wolfe [12] and
converse duality was proved by Craven and Mond [5]. In this paper, we prove
these duality results between (P) and (D) with strong and weak convex functions
[10, 11}.
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The outline of the paper is as follows. In Section 2, necessary optimality
conditions of Fritz John and Kuhn Tucker types are derived for a cone-con-
straints program (P, ), generalizing the program (P). Here objective and constraint
functions are nearly convex [4] (see also the definition below). Then the optimal-
ity conditions for (P) are deduced. In Section 3, the duality results for the
programs (P) and (D) are obtained by showing that p-convex functions are nearly
convex. Moreover, a converse duality theorem is proved between (P) and (D) in

the case C = X.
Throughout this paper, X shall denote a (real) pre-Hilbert space with the inner
product { , ), and norm || - || = ( -, -Y/?, and Y denotes a real normed linear

space. Denote by X’ and Y’ the (topological) dual spaces of X and Y, each with
its weak* topology. Let K C X; then Int K and K denote the interior and closure
of K respectively. Denote K* = {v € X": (Vk € K), v(k) = 0}, the dual cone of
K,and Cone K = {Ak: k € K, A > 0}, the cone generated by K.

If K is a convex cone then K ** = K. Let Y be a real normed linear space and
S C Y aclosed convex cone; then a function f: X — Y is said to be S-convex if

(Vx,ye X)(VAe[0,1]), Af(x)+(A-M)f(y) —f(Ax+(1-A)y)€ES.
If Y=R and S = R, then this reduces to the usual definitions of convex [2]. A

real valued function g: X — R is said to be p-convex [10}] if there exists some real
number p such that foreachx, y € Xand 0 < A < 1,

g(Ax +(1 = A)y) < Ag(x) +(1 = N)g(y) = pA(1 = Nx = 31"
If p > 0, then the function g is said to be strongly convex. If p = 0, then the
function g is convex. If p < 0, then the function g is said to be weakly convex.
We shall make use of the following result of Vial [10], which was proved using
the identity

2 2 2
(1) el = yll” + 2¢x =y, ) +lle =yl

LEMMA 1.1. The function g: X — R is p-convex if and only if there exists a convex
function h: X — R such that g(x) = h(x) + p||x||>

A function f: X — Y is said to be weakly directionally differentiable at a € X, if
the limit
£(a,x) = imA [ f(a + Ax) = f(a)]
1

exists (in the weak topology of Y'), possibly with infinite values for some x € X; f
is said to be finitely directionally differentiable (f.d.d), if also f’(a, x) is finite for
every x € X and bounded above in a neighborhood of some x. A directionally
differentiable function f: X — Y will be called S-nearly convex ata € X if f'(a, -)
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is S-convex, positively homogeneous and bounded above on a neighborood. If
Y = R and S = R, then this reduces to the equivalent definition of nearly convex
at a in the sense of Craven and Mond [4]; (cf. [9]).

Note that the sum of an S-convex function and a function which possesses
linear Gateaux derivative at a is an S-nearly convex function at a. Let g: X - R
be finitely directionally differentiable at a € X. Then a vector v € X’ will be
called a local subgradient of g at a € X [4, 3), if, for all x € X,

gla+Ax)—g(a)=Av(x)+o(N), (AL0).
The local subdifferential 3*g(a) of g at a is the set of all local subgradients of g
at a. If g2 X — R is nearly convex at a [4, Theorem 2], then 0*g(a) is a convex
weak »* compact subset of X, and
a*g(a)= N {veX:g(a x)>uvx}.

x€X
We also note that if 7 is nonnegative real, then it follows easily that 0*(rg)(a) =
T70*g(a). If g is a continuous convex function then d*g(a) = 9g(a), the subgradi-
ent of g (see Rockafellar [7]).

LemMa 1.2. If g, and g, are nearly convex at a, then 0*(g, + g,)(a) C 9*g,(a)
+ d*g,(a).

ProOF. For h = g,, g, and g, + g,, [4, Theorem 2] shows that d*h(a) is convex
and weak * compact, and satisfies 4'(a, z) = mMaxX cyup @, 2). Suppose now
that some element § of 3*(g, + g,)(a) fails to belong to 0*g,(a) + d*g,(a).
Then, by the separation theorem [6], there exists z € X such that

(¢ z2) > max{(w, z):w € d*g(a) + B*gz(a)}
= max{(wl, )10, € B*gl(a)} + max{(w2, ) w, € 3*g2(a)}
= gi(a, 2) + g3(a, z).

Since § € 3*(g; + g:Xa), (g1 + 82)(a,2) = (&, 2z) > gi(a, z) + g3(a, z), a
contradiction.

2. Optimality conditions

We begin by considering the following nearly convex program
(Py) minimize f(x) subjectto —g(x) € S, xeC,
in which X is a pre-Hilbert space and Y is a normed linear space; S C Y is a

closed convex cone with nonempty interior, C is a convex set and f: X - R and
g: X — Y are nearly convex and S-nearly convex at each point of X respectively.
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Craven and Mond [4] established necessary optimality conditions in a slightly
complicated form for (Py) in the special case C = X, under some strengthened
directional differentiability assumptions (namely, arcwise directional differentia-
bility). However, they have not assumed the convex cone S to have nonempty
interior. Here we obtain optimality conditions of Fritz John and Kuhn Tucker
types for (Py). These conditions are expressed in terms of local subdifferential.

THEOREM 2.1. Consider the problem (Py); let a be optimal for (Py), and let
f: X = R be nearly convex at a and g: X — Y an S-nearly convex function at a.
Then there exist t € R, and A € S*, not both zero such that

(2) 0 € 79*f(a) + 3*(Ag)(a) —(C — a)*, Ag(a)=0.

PROOF. Assume that a is a local minimum for (Py;). Suppose that the system

(3) f'(a,x,) <0, —g'(a,x,) —g(a) €IntS
has a solution x, € Cone(C — a). Then there exists @ > 0 such thata + ax, € C,
foreach0 < a < @ and
g(a + axo) = g(a) + g'(a, x,)a + o(a)
=a(g(a) + g'(a, xy)) +(1 — a)g(a) + o(a) € =S

for sufficiently small a > 0, since —g(a) € § and —g’(a, x,) — g(a) € Int S.
Thus a + ax, is a feasible solution to the problem (Py), for sufficiently small
positive a. Since f is directionally differentiable at a, f(a + ax,) — f(a) =
af’(a, xy) + o(a) < 0, whenever a is sufficiently small positive. This contradicts
the local minimum at a. It follows that (3) has no solution x, € Cone(C — a).

Let F(x)=(f"(a, x), g'(a, x) + g(a)). Then the system x € Cone(C — a),
—F(x) € Int(R , X S) has no solution. So by the basic alternative theorem 2.5.1
(Craven [2]), there exist r€ R, and A € §* not both zero such that for all
x € Cone(C — a), 7f'(a, x) + Ag’(a, x) + Ag(a) = 0, since by the hypothesis,
Fis (R, X S)-convex and Cone(C — a) is convex. Since 0 € Cone(C — a) and
—g(a) € 8§, for all x € Cone(C — a), (7f + Ag)'(a, x) = 0 and Ag(a) = 0. The
result will follow, if we show that

*(rf+Ag)a)n{(C—a)*} + @.
Suppose that 3*(7f + Ag)a) N {(C — a)*} = &. Then 3*(rf + Ag}a) N
{[Cone(C — a)]*} = @. Since 9*(7f + Ag)a) is a convex weak * compact set,
it follows by the separation theorem (Holmes [6]) there exists X € X such that
(4) Sup{v(%):v € 0*(7f + Ag)(a)} < Int{ w(X): w € [Cone(C - a)]*}.
Since [Cone(C — a)]* is a cone, the right hand side of (4) must be either 0 or

— 00. Also, because the left hand side of (4) is finite, this has two implications:
(tf + Ag)(a, X) <0 and X € [Cone(C — a)]** = Cone(C — a). Since
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(1f + Ag)(a, ) is bounded above in some neighbourhood and convex, by
the theorem of Holmes [6, page 82] (7f + Ag)'(a,-) is continuous. So
(1f + Ag)(a, x) < 0, for all x in some neighbourhood of X and in particular for
some point x € Cone(C — a). This is a contradiction.

These Fritz John type conditions (2), will lead to corresponding Kuhn Tucker
type conditions, under any constraint qualification which gives 7 # 0. Consider
the following constraint qualifications:

(5) g'(a,Cone(C — a)) +{vyg(a):y=20} +S =7,

(6) —g'(a,Cone(C—a))NIntS # &.
Note that (5) is a directional derivative version of Zowe and Kurcyusz [13]
constraint qualification.

THEOREM 2.2. In the problem (Py), let the Fritz John type conditions (2) hold at
the feasible point a and let either of the constraint qualifications (5) and (6) hold
there. Then T # 0, so that (2) holds with v = 1.

PROOF. Suppose that 7 = 0; then 0 # A € $* and (2) gives that

(7) 0€d*(Ag)(a) —(C—a)* = Ag’(a, Cone(C — a)) > 0.

Since 0 # A and linear, there exists y, € Y such that A(y,) < 0. If (5) holds, then
there exist x, € Cone(C — a) and y, > 0 and s, € S such that 0 > A(y,) =
Ag'(a, xy) + A(yog(a)) + A(sy) = 0. This is a contradiction. If (6) holds then the
system

x € Cone(C — a), —g'(a,x)€IntS
has a solution and (7) holds. This contradicts the basic alternative Theorem 2.5.1

12].

COROLLARY 2.1. Consider the problem (P) in which f,, i =0,1,2,... ,m, are
nearly convex at a, where a is a local minimum for (P). Let either of the constraint
qualifications (5) and (6) with g = (f)/L,, S = R} and Y = R™ be satisfied. Then
Ehe;re exist Lagrange multipliers A, > 0, for i = 1,2,...,m, not all zero such that

8

0€d*f,(a) + S A%(a) —(C—a)*, Afla)=0, i=12,. . .m

i=1

PrROOF. The result follows immediately from Theorem 2.2 by taking f, = f and
g(x) = (fi(xD7L;.

ReEMARK 2.1. If we assume that X is complete, f, satisfies a locally Lipschitz

condition at each point, f;(a, -) is lower semicontinuous and f;, i = 1,2,...,m,
are continuous convex functions, then Corollary 2.1 can be obtained as a special
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case of Schechter [9, Theorem 1.2]. Further, if we add the hypothesis that C is also
bounded, then we would have a result similar to Clarke [1, Proposition 13].

However, for nonconvex functions, d*f(a) does not necessarily coincide with
Clarke’s d.f(a).

3. The duality results

In this section we obtain a duality relationship between (P) and (D) using the
results of the last section. First we show that p-convex functions are nearly
convex. Throughout Sections 3 and 4 we shall consider finitely directionally
differentiable p-convex functions.

LEmMMA 3.1. p-convex functions are nearly convex at each point where the
functional value is finite.

ProoF. The proof immediately follows by noting that a p-convex function is a
sum of a convex function and a differentiable function (see Lemma 1.1), which is
nearly convex.

LEMMA 3.2, Let f: X — R be directionally differentiable on X. If f is p-convex
then forall x,a € X, f(x) — f(a) = f'(a, x — a) + pllx — a||*.

PRrOOF. Since f is p-convex, there exists a convex function A: X — R such that
f(x) = h(x) + pl|x||* Thus
9) (Vx,ae X) h(x)—h(a)>Hn(a,x— a).
From the identity (1), we get
(10) plixll* = pllal” = 20¢a, x - ay + pllx - af"
Then, by adding (9) and (10) we have the result.

THEOREM 3.1 (Weak Duality). Let x be feasible for (P) and (£, M) feasible for
D). Iff,,i = 0,1,2,...,m, are p-convex and if (py + L7L1 X,;p;) = O then

7o(0) > (&) + D AL).

PROOF. Since (£, A) is feasible for (D), there exist u € 3*f,(¢) and v, € 3*f,(¢)
such that

(11)

u+ Z)\iui)(x—i)ZO, VxeC.
i=1
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Thus,

fo(x) = [fo(é‘) + f‘. ?\if,-(é)]

i=1

> f{(£, x = £) + pollx — &> — L A,f,(§) (byLemma32)

i=1

> u(x = §) = LN S(8) + pollx — &> (since u € 3%/, (£)).

i=1

\Y%

= TAn(x = €)= TALE) + pollx — €17 (by (1))

— Y ASE x = £) = LA f(£) + pollx — &I (since v, € 3*f,(£))

\%

\v
Ms

A fi(x) + Z Apillx — €12 + pollx — £ (by Lemma (3.2))

i=1

po + ZA p,)ux - &%,

"
—

—}:?\f(X)+

i=1

m

> - Z A, fi(x) (by the hypothesis)

>0 (smce x is feasible for (P))

THEOREM 3.2 (Strong Duality). Suppose that a is optimal for (P) and the Kuhn
Tucker conditions (8) hold at the point a. If (py + L™ A ,p,) = 0 for each feasible
(&, X) of (D), then (a, \) is optimal for (D), and the optimal values of (P) and (D)
are equal.

ProOF. Since Kuhn Tucker conditions (8) hold at the optimal point a, we have
0 € d*fy(a) + X7 A 0% (a) —(C —a)*and A, f(a)=0,i =1,2,...,m. There-
fore, (a, A) is feasible for (D). Moreover, since A, f(a) = 0, fori = 1,2,...,m, we
have Max(D) > f(a) + L™, A, f.(a) = f(a) > Min(P). This with weak duality,
shows that Max(D) = Min(P).

ReMmark 1. The following geometric interpretations could be given to ensure
the duality between (P) and (D). If, in the problem (P), the constraint functions f;,
i=1,2,...,m, are weakly convex (not convex) then the objective function should
be strongly convex. Conversely, if the objective function is weakly convex, then at
least one of the constraint functions should be strongly convex.
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REMARK 2. If all functions f,, i = 0,1,2,...,m, involved in the program (P) are
convex (i.e. p; = 0,i = 0,1,2,...,m) then our results reduce to Theorems 2.1 and
2.2 of Schechter [9]. So, this in turn extended results of Wolfe [12] and Schechter
[8, 9] to non-convex programs.

4. Converse duality

Here we are interested in proving a converse duality theorem, using the Craven
and Mond [4] approach in a simplified manner, for the problem (P) in the case
C=X:

(P”) minimize f,(x) subject to f;(x) < 0,i = 1,2,...,m.

First we consider the statement

@ 0 0%(6) + L 0" AL)(O).

Assume that the statement (Q) is satisfied by £ =a and A=A € R™. The
statement (Q) is said to be “solvable near a” if, for some 8§ > 0, whenever
IN = A|| < 8, the statement (Q) possesses a solution (£, A) for which ||£ — a]| = 0
as|]A —A]| = 0.

Note that, if f,, i = 0,1,2,...,m, are continuously Fréchet differentiable at a,
then a sufficient condition for the statement (Q) to be solvable near a is that
/’(a) + (Af)”(a) is bijective, where f = ()™, (for details see Craven [2, page
73] and [4]).

Now, we shall prove the general converse duality theorem.

Consider the following dual problem to (P’).

(D) Maximize fy(§) + X7, A;f(§) subject to A, = 0, 0 € 3*/,(§) +
£, 9%\ f)(E).

THEOREM 4.1 (Converse Duality Theorem). For the problem (P’), let f: X = R,
i=0,1,2,...,m, be continuous and p-convex functions. Assume that (D’) attains a
maximum at £ = a, A\ = A. If the statement (Q) is solvable near a, then the problem
(P’) is dual to (D’) provided that (py + ™, X,p,) > O.

PrOOF. As we have proved the weak duality theorem, it is enough if we prove
fi(a)<0,i=1,2,...,m, and Z,’-",lxifi(a) = (0. Now, by hypothesis, there exist
u € 3fy(a) and v, € *(A,f,X(a), i = 1,2,...,m, such that 0 = u + L/ v, Let
t € R™. Since (Q) is solvable near a, whenever A = A + az € R7T and «a is

sufficiently small positive, (Q) has a solution (a + £(at), X + ar) where £(at) — 0
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as a | 0. Therefore, (a + £(at), A + at) satisfies the constraint of (D’). Since (D)
is maximized at (a, A),

0> fola + £(at)) + f (R, + at,)(a + £(ar)) - [fo(a) + YA 7(a)

i=t

> (u, (an)) + poll(at) + 3 Cop £(ar))

i=1
X le(a)” + L at f,(a + £(ar))
i=1

(by Lemma 3.2 and the definition of the local subdifferential)

i=1 i=1

- < + Eo, e<at>> +a ¥ oo+ ean) +[po+ £ A Il

~ 0+ a L us(a+ éa) +( s+ LR fleCal

i=1

>a) t,f(a+ &(at)) (since (po + inp,) > 0).
i=1 i
Now, by letting |0, we get 0 = X7, ¢,f,(a) = (¢, f(a)) (since f; is continuous
and f = (f)7L,)- As this islrue forallt € R™, f(a)< 0,i =1,2,...,m. Also, by
taking t = —A/2, we get (A, f(a)) > 0. Hence ™ |\, f,(a) = 0.
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