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1. Introduction
Let M be a positive integer, let alt a2, ••-, aM be non-negative reals, and put

aM+i = at for i = 1, 2, 3. Further let each of vlt v2, v3 and 8lt 82, 83 be 0 or
1, giving 26 possibilities. This note is concerned with the problem of finding
bounds for each of the non-trivial cases out of the 26 cyclic sums

o V Vlai

°M - L i
i i oaOf course we do not allow zero denominators. Known results (1), (5) are

Theorem 1. If51 + 82 + 53 = 1 then (v1 + v2 + v3)M ^ SM<oo.

Theorem 2. If vt = <5X = 82 = 1 and v3 = 0 then

To simplify the notation let

m e a nS mean g
a + b i=

and so on. Then all non-trivial cases of (1), not covered by Theorems 1 and 2,
can be dealt with by means of one of the following:

0-461238M ^A = H — < oo, (2)
b + c

MgB = E — < « ) , (3)
b + c

min {2, iM} g C = Z — <oo, (4)
a + c

1 ^ D = E — - — g [iM] for 3 ^ M, (5)
a + b + c

min{4, M}g£ = E^±^ <oo, (6)
a + c

^ (7)
a + fc

E.M.S.—R
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The most famous case of (1) is the sum A in (2) above. Clearly AM = \M
when all a{ are equal, so inf AM ^ \M. It was Shapiro who suggested the
verification that inf AM = \M. Diananda (3) proved that

and that if M is odd then inf AM+1 ^ £+inf AM. It has been shown by examples
of at that inf AM <\M for M = 14 by Lighthill and Zulauf, and for M = 25 by
the author. On the other hand Nowosad (4) proved that

inf AM = \M for M = 10.
Thus the only cases for which it is still not known whether inf AM<\M are
71/ = 12 and 11 ^ M odd ^ 23. The lower bound in (2) was obtained by
Diananda (2), by developing a method of Rankin. However, the infimum of
A and F are not known, and they seem to be hard to find. The other bounds
given above are best possible, the infinite ones are trivial and will not be men-
tioned further.

It is easy (1) to prove (3). The four remaining inequalities (4)-(7) appear
to be new and will be proved below. It will be shown that inf FM behaves in
the same way as inf AM, which we just described. Other new inequalities
presented here are

-Ms'1 g GM = S (-2-) log (~?-\ ^ 0, (8)
\a+bj \a + bj

-Me"1 g,HM = S( — }log(-=^- ) ^2(M-l)log2, (9)

where e> 1 is the base of the logarithms. Again inf GM and inf HM are not
known, but it will be shown that they are both near — Me'1.

One can fairly easily obtain the corresponding results for Xf log t when t
has any one of the following forms

a 3a a + b 3(a + b) »
a + b + c' a + b + c a + b+c 2(a + b+c)'

b 2b b 3b a + b

a + c' a + c a + b + c a + b + c a+c
Here are some conjectures:

^ ^ (10)
+ cj \b + cj

g O(x) = £ ( - ^ - ) provided at>0, for any real x, (11)
\b + cj
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Conjecture (10) is the logarithmic analogue of Shapiro's conjecture, and the
fact that Shapiro's conjecture turned out to be wrong makes it necessary to
say something about (10). In (1) the function <E>(x) in (11) was discussed, and

it was shown that —— g 0 and C>(0) = M and O(2) ^ M. Hence because
dx

$(.*) is a convex function of x, for any given at, the minimum value of <S>{x)
occurs with 0 ^ x g 2. In fact computer studies of <&(x) indicate that the
minimum is near x = 0, and they gave rise to conjecture (11). We can get
<i>(x) as close as we like to \M for M even by letting {a,} = <5, 1,5, 1, ... when
5 and x are both small. Since <J>(x) is convex and O(0) = M, if a particular
set of Oj were to make (10) false then they would make -iO(l) = AM<\M, and
this is impossible for M g 10 by Nowosad's theorem, so this proves (10) is
true for M g 10 and ai > 0. The proof is easier for ai ̂  0 and it seems that (11)
holds also in this case. Replacing A by Fin all this gives a corresponding set of
conjectures, the most interesting ones perhaps are (12) and (13), both of which
have been proved true for M g 4 and tested for higher M on a computer.
Inequality (6) shows why we don't have something for F corresponding to (11).

2. Proof of Inequality (4)
The cases M = 1, 2, 4 are easy, and \ g ^43 = C3. We now use induction

on M. Let 4<M and, without loss of generality, assume aM has the smallest
value out of the at. Then

0 g C M - C M _ ! ~CM(aua2, ..., aM)-CM_1(a1, a2) ...,flM-i)

aM-i flM-i

becauseO ^ {...} for each of the three brackets. Thus 2 g inf CM_X ^ inf CM.
To see that 2 is the best lower bound let {a,} = X1,^2,^3, ...,XM~1, XM~1,
where A is large.

3. Proof of Inequality (5)
First we deal with the left hand bound. To attain it let at = k' for 1 :g i: :£ M

where A is large. The case M = 3 is trivial. That inf -DM_i ^ inf DM when
3<M is proved in exactly the same way as for CM in section 2 above, and the
result follows inductively.

To attain the upper bound [^M] let {at} = 0, 1, 0, 1, .... Next note that
1 g the sum of any two adjacent terms of DM. This establishes the inequality
for M even. Suppose 5 g M odd and write a, b, c, ... for au a2, a3, .... Then

dD
8c

b
(a + b + c)2

b+d
(b + c+d)2

d
(c + d + e)2

{ ^ 0
> 0

if a
if a

VII
A

ll

d
d

and
and

e
e

VIIA
ll

b,
b.

(0
(ii)
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If condition (i) holds then D increases as c->0. When c = 0 one term of D
is zero, and summing the remaining pairs of adjacent terms shows thatZ> ̂  [iM].
If condition (ii) holds then D increases as c->oo, and in the limit we again
have at least one zero term in D. The result now follows because one of
conditions (i) and (ii) must hold for some renumbering of the a('s. The re-
numbering must of course preserve the cycle of the «,'s.

4. Proof of Inequality (6)
We again use induction on M. The cases M ^ 4 are easy, so suppose

5 ^ M and that aM is the smallest a,. Then

where

and

f , ts —

Now 0 ^ tx —14. If a2 ^ fli then 0 ^ t3 — ts and since 0 ^ t2v/c have

On the other hand if at <a2 then

Thus we have proved 4 ^ inf ^ . i ^ inf ^ j ^ . To attain the bound 4 let
{a,.} = X\ A2, A3, ..., kM~x, AM~1 where A is large.

5. The Sum in (7)
The bound [_$(M+1)] holds because F has at least one term ^ 1, and

1 :g the sum of any two adjacent terms of F, as is easily verified. Following
Diananda's trick (3) we note that

&I, «2, •••, aM, au a2) = 2 + FM(a!, a2, ..., aM)
and so inf FM+2 ^ 2+inf FM. Also

= (ar.i-ar)(ar+l-ar)
2ar(ar_1 + ar)

which is ^ 0 for some r provided M is odd. Hence inf FM+l ^ l + infFM
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for M odd. Since inf FRM ^ R inf FM for any positive integer R, it follows that
Af"1 inf FM tends to a limit as M->oo. Now[ M

F4 = (a+c) {-i- + J - } +(fc+d) j J - +

\\+(b + d)\ 1 = 4,

so Af ^ FM for 1 g M g 4. However F 6 = 5-99902 < 6 when

{a,} = 381, 0, 334, 29, 340, 49

and F 1 3 = 12-9623 < 13 when

{a(} = 41, 0, 28, 0, 19, 4, 17, 10,18,18, 20, 29, 18.

It would be interesting to know if inf FM = M for M = 5, 7, 9, 11, and it seems
that this could be determined by means of Nowosad's technique. The lower
bound in (7) does not appear to be best possible. When FM is as small as pos-
sible the {a,} follow a pattern illustrated by the following example which has
M = 110 and FM = 108-735,

{a,} = 0 18 0 16 0 14 0 10 2 12 3 12 4 12 5
13 7 14 9 15 10 16 12 17 14 18 16 21 20 23
22 26 24 28 27 32 30 36 32 40 36 44 44 52 55
64 70 84 94 112 126 154 168 216 222 315 278 478 266 683
0 502 0 376 0 286 0 220 0 170 0 132 0 104 0
82 0 66 0 56 0 50 0 46 0 42 0 40 0 38
0 34 0 32 0 30 0 28 0 26 0 24 0 22 0
21 0 20 0 19.

If {af} = a, b, c, ... then

dF 1 b + d d-e

dc a + b {b + cY (c + d)2

and when Fis at its minimum value this derivative is 0 for c ^ 0, and is positive

for c = 0. Given any positive au a2, a3, a4 we can choose as to make — = 0,
da3

dF
and then a6 so that — = 0, and so on. In this way we can determine

«5' a6> ••

but generally we will not have aM+i = a( for i = 1, 2, 3, 4. However, by
iteration we can change ait a2, a3, a4 until aM+i = a{ for i = 1, 2, 3, 4. The
corresponding sum FM will be a local minimum. Roughly speaking this was
the technique used on a computer to find the examples given here. It is much
faster than the method described in (1).
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6. The Inequalities (8) and (9)
Every term of GM is non-positive, and if {a,} = X' then GM->0 as A-»oo.

This proves the right hand side of (8). Each term of HM is g 2 log 2, and at
least one term is ^ 0, because we must have ax ^ ai+i for some /. Thus
HM g 2(M— 1) log 2, and to see that this is the best possible bound let at = XM~'
with A large. Since — e"1 ^ x log, x for 0 ^ x the left hand sides of (8) and
(9) are trivial. It seems that inf GM-> — {M— l)e~1 and

inf i7M-»-(21ogc2)-(M-l)e-1 as M-»oo.

The examples at = (e— I) '" 1 and a( = (2e —I)'"1 respectively support these
ideas.
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