SEMI-ALGEBRAS IN $C(T)$

by BERTRAM YOOD

(Received 2 February, 1973)

Let $C(T)$ be the Banach algebra of all complex-valued continuous functions on the compact set T of all complex numbers with modulus one. As usual we may suppose that A is embedded in $C(T)$, where A is the disc algebra, i.e., the algebra of all complex-valued functions $f(\lambda)$ continuous for $|\lambda| \leq 1$ and analytic for $|\lambda| < 1$. We set $M_\lambda = \{f \in A : f(\lambda) = 0\}$ and $M_\lambda^+ = \{f \in A : f(\lambda) \geq 0\}$.

Following Bonsall [1], we call a subset S of $C(T)$ a semi-algebra if, whenever $f, g \in S$ and t is a non-negative number, we have $f + g \in S$, $tg \in S$ and $tf \in S$. In connection with the semi-algebra S, we consider the real subalgebra $S_b = S \cap (-S)$ of $C(T)$ and the complex subalgebra $S_c = S_b + iS_b$. It is convenient to let $e = e(\lambda)$ stand for the function identically one. Our theorem shows that all these items are intimately related.

Theorem 1. Let S be a semi-algebra in $C(T)$, where $-e \notin S$. Then either S_c is dense in $C(T)$ or no M_λ^+, with $|\lambda| < 1$, is properly contained in S.

Proof. Suppose that S properly contains some M_λ^+, with $|\lambda| < 1$. Without loss of generality, we may take $\lambda = 0$ in the ensuing argument. We must show that S_c is dense in $C(T)$.

Consider the subalgebra

$$B = S_c + Ce,$$ \hspace{1cm} (1)

where C is the field of complex numbers. Since S_c contains the maximal ideal M_0 of A, we get $B \supseteq A$. Hence, by Wermer's maximality theorem [5], the closure of B is either $C(T)$ or A.

If the closure of B is $C(T)$, there exist a sequence $\{p_n(\lambda)\}$ in S_c and a sequence $\{\alpha_n\}$ in C such that, in the metric of $C(T)$, $p_n(\lambda) + \alpha_n e(\lambda) \to \lambda^{-1}$. Notice that the functions $\lambda p_n(\lambda)$ and $\alpha_n \lambda$, as functions of λ, all lie in S_c and that, in $C(T)$, $\lambda p_n(\lambda) + \alpha_n \lambda \to e(\lambda)$. Therefore, by (1), the closure of S_c is the closure of B, which is here $C(T)$.

Our conclusion would then follow if we could show that the closure of B cannot be A. Suppose that the closure of B is A. By (1) and the fact that S_c contains the maximal ideal M_0 of A, we see that

$$A = S_c + Ce.$$ \hspace{1cm} (2)

Next we show that $e \notin S_c$. For otherwise we could write $e = f + ig$, where f and g lie in S_b. Then we could write

$$-e = f^2 + g^2 - 2f.$$

Since the right side lies in $S_b \subseteq S$, we get a contradiction.

It now follows from (2) that S_c is a proper ideal in A containing M_0. Therefore $S_c = M_0$.

Now take $g \in S$. The function $\lambda g(\lambda)$ lies in $S_b \subset M_0$ and is therefore an element of A vanishing.

\[\dagger\] This research was supported by the National Research Foundation (U.S.A.).

https://doi.org/10.1017/S0017089500002196 Published online by Cambridge University Press
at zero. Hence there exists \(w \in A \) such that \(\lambda g(\lambda) = \lambda w(\lambda), \quad |\lambda| = 1 \). Therefore \(g \in A \) and so \(M_0^+ \subset S \subset A \), where \(-e \notin S\).

We shall show from this that \(S = M_0^+ \). For let \(v \in S \). First we show that \(v(0) = -a, a > 0 \), is impossible. For suppose otherwise and set \(w = a^{-1}v \). Now \(M_0 \) is a maximal linear subspace of \(A \); so there is a scalar \(\lambda \) and \(f \in M_0 \) such that \(-e = f + \lambda w \). Evaluating at zero, we see that \(\lambda = 1 \), so that \(-e = f + w \in S \), which is impossible. It follows that \(v(0) = bi, b \) real, \(b \neq 0 \) is impossible, for otherwise \(v^2 \in S \) and \(v^2(0) = -b^2 \). Next we show that \(v(0) = a + bi \) with \(a, b \) real, \(a < 0, b \neq 0 \) is impossible, for otherwise \(w = -ae + v \in S \) and \(w(0) = bi \). Next we rule out \(v(0) = a + bi, a, b \) real, \(a > 0, b \neq 0 \). For if this holds, then \(v(0) \) must lie in the open left-hand plane for some positive integer and \(v \in S \). By elimination we see finally that \(v(0) \geq 0 \) or \(v \in M_0^+ \). Therefore \(S = M_0^+ \).

However this is in conflict with the hypothesis that \(S \) properly contains \(M_0^+ \) and the proof of the theorem is completed.

The choice \(S = A \) shows that the requirement that \(-e \notin S\) cannot be dropped from the hypothesis. Also, \(S_e \) may fail to be dense and, simultaneously, \(S \) can properly contain some \(M_1^+ \), with \(|\lambda| = 1 \). For consider \(g \in C(T), \) where \(g \notin A \) and \(g(1) = 0 \). The semi-algebra \(S \) generated by \(M_1^+ \) and \(g \) properly contains \(M_1^+ \) and fails to contain \(-e \), but has the property that \(S_e \) is at a distance of one from \(-e \).

The following special case of Theorem 1 is, to the author, somewhat surprising.

Corollary 1. Let \(g \in C(T), \) where \(g \neq 0 \) and \(g \) vanishes on a subset \(T_0 \) of \(T \) of positive Lebesgue measure. Let \(\lambda \) be a complex number with \(|\lambda| < 1 \). If \(S \) is the semi-algebra generated by \(M_1^+ \) and \(g \), then \(S_e \) is dense in \(C(T) \).

Proof. A well-known theorem of F. and M. Riesz [2, p. 50] shows that \(g \notin A \), so that \(S \) properly contains \(M_1^+ \). The conclusion follows from Theorem 1 if we verify that \(-e \notin S_e \).

Suppose that \(-e \in S \). Then there exists a finite subset \(f_0, f_1, \ldots, f_n \) of \(M_1^+ \) such that

\[
-e = f_0 + \sum_{k=1}^{n} f_k g^k. \tag{3}
\]

Notice that, from (3), \(e + f_0 \) is identically zero on \(T_0 \). The F. and M. Riesz theorem then gives \(f_0 = -e \), which is impossible.

For a ring \(R \) with identity 1, Harrison [4] defines a preprime as a nonvoid set closed under addition and multiplication and not containing \(-1 \). He calls a maximal preprime a prime. Civin and White [3, p. 243] showed that, if \(P \) is a closed prime in a Banach algebra \(B \) with identity 1, then \(1 \in P \) and \(P \) is a semi-algebra. If further, \(B \) is a complex and commutative Banach algebra, then \(iP_b \subset P_b \) [3, Proposition 1.11]. They also point out [3, p. 245] that \(M_1^+ \) with \(|\lambda| < 1 \) is not a prime in \(C(T) \). By using Theorem 1, more can be shown along these lines.

Corollary 2. Let \(S \) be closed semi-algebra in \(C(T) \) where \(-e \notin S \) and \(S \) contains some \(M_1^+ \) with \(|\lambda| < 1 \). Then \(S \) is not a prime in \(C(T) \).

Proof. Suppose that \(S \) is a prime in \(C(T) \). As noted above, this implies that \(iS_b \subset S_b \). Consequently \(S_e \subset S \), so that \(S_e \) cannot be dense in \(C(T) \). Theorem 1 shows that \(S \) cannot
properly contain any M_2^+ with $|\alpha| < 1$. Therefore $S = M_2^+$. But in this situation the proof of Corollary 1 provides the existence of a preprime properly containing S. This is a contradiction.

REFERENCES

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA. 16802, U.S.A.