Small Vessel Infarcts and Microbleeds Associated with Radiation Exposure

Nandavar Shobha, Eric E. Smith, Andrew M. Demchuk, Nicolas U. Weir

Radiation induced strokes are classically secondary to the accelerated atherosclerosis of the large vessels of the brain. We describe a patient who presented with recurrent episodes of lacunar strokes without large vessel disease, microbleeds and a single episode of hemorrhagic stroke associated with cranial irradiation.

CASE DESCRIPTION

Mr. WG, a 51-year-old gentleman was treated with radiotherapy for pontine glioma in 1984. He received 50 Gy over one month in 16 sittings. He remained asymptomatic until 1994 when, aged 37 years, he had his first stroke which caused a right facial weakness. Computed tomogram (CT) and magnetic resonance image (MRI) brain did not reveal any acute infarct. The CT angiography of the cerebral and cervical vessels was normal. Two years later he re-presented with acute dysarthria and MRI brain scan showed chronic lacunar infarcts in the gangliocapsular regions, but no acute infarcts. In September 2005, he presented with a right hemiparesis caused by a thalamic hemorrhage on CT (Figure 1). In 2007 he returned with a right hemiparesis and dysphagia, with no acute lesion seen on CT, chronic lacunar infarcts were present. Most recently, in 2008 he presented with a sudden worsening of dysarthria and dysphagia. In addition, over the last ten years he had progressive bilateral hearing loss and recurrent headaches (one to two per month).

He had no past history of hypertension, diabetes mellitus, dyslipidemia or coronary artery disease. There was no family history of strokes. He was a moderate smoker until 2005.

Examination

Examination revealed a conscious, alert patient with normal comprehension, but severe dysarthria and bulbar dysphonia. Exotropia was present in the right eye and bilateral upgaze was restricted. His fundi were normal. He had bilateral lower motor neuron facial weakness; bilateral sensorineural hearing loss; bilateral reduction in palatal movements and absent gag reflex. There was no atrophy or fasciculation of the tongue, which moved normally. He had a moderate spastic quadriparesis (grade 4/5) with brisk reflexes on the right and bilateral extensor plantar responses. There was incoordination of all four limbs (right greater than left). The sensory examination was normal.

Imaging

A CT brain during the current presentation did not show any acute infarcts or hemorrhage. The MRI brain revealed chronic lacunar infarcts in the gangliocapsular regions bilaterally, and multiple foci of signal loss on the gradient-recalled echo (GRE) sequence, indicative of microbleeds, in the brainstem, thalamus, and the inferior periventricular white matter (Figure 2). There were no microbleeds in the more superior hemispheric white matter and corona radiata. There was evidence of white matter disease and microbleeds in the brainstem and cerebellar atrophy (Figure 3). Moderate leukoaraisia (grade 2 using the Fazekas and Schmidt scale) was present. An MRA showed no stenosis of
the major branches of the Circle of Willis or the extracranial carotid and vertebral arteries.

DISCUSSION

Our patient presented with recurrent episodes of brainstem stroke from the age of 37 years. The CT brain performed repeatedly showed only lacunar infarcts and a single episode of thalamic hemorrhage. The MRA did not demonstrate any stenotic lesion of the large vessels. The GRE sequence showed multiple microbleeds in the brainstem region which corresponded to the irradiated field. Cavernous angiomas are unlikely to be the cause of the hemorrhage and microbleeds in our case because none of the lesions displayed the characteristic imaging appearance of acute and chronic bleeding of various ages.

Irradiation leads to accelerated development of atherosclerosis in exposed large arteries by injury to the endothelial cells lining the lumen of the carotid artery\(^2\). It is more diffuse than traditional atherosclerosis\(^3\). The locations of atherosclerosis can vary but are usually confined to the extracranial vasculature. Intracranial atherosclerosis has also been reported\(^4\). A single case of radiation induced lacunar syndrome has been described\(^5\). Cavernous angioma development has been reported after brain irradiation in pediatric brain tumours\(^6\).

The likely cause of the extensive symptomatic small vessel disease in this patient is radiation-induced injury. He did not have any significant vascular risk factors and his strokes began at a young age. Therefore the severity of his cerebrovascular disease is not accounted for by traditional risk factors. The absence of a family history of early-onset stroke or dementia argues against a genetic predisposition to stroke such as cerebral autosomal dominant arteriopathy with subcortical ischemic leukoencephalopathy (CADASIL).

Radiation injury to the small vessels can be seen pathologically, where radiation injures capillaries, sinusoids, and small arteries, in that order of severity\(^7\). Other symptoms in our case are also consistent with radiation injury. Radiation induced cerebral vasculopathy may present with headache or speech disturbance as the initial symptom\(^8\). Our patient had new onset recurrent headaches a decade after initiation of radiotherapy; also he had prominent dysarthria. He also had progressive hearing impairment presumably secondary to radiation injury.

A literature search did not yield similar cases of recurrent radiation-induced small vessel disease and strokes. To our knowledge, radiation vasculopathy presenting with recurrent...
ischemic strokes, microbleeds and symptomatic hemorrhage is novel and has not been previously reported.

In conclusion, strokes secondary to irradiation may occur long after radiotherapy. Although radiotherapy is most commonly linked with large vessel disease, our case suggests that small artery disease and hemorrhagic strokes may also be consequences of irradiation.

REFERENCES