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Shear dispersion in a porous medium.
Part 1. An intrusion with a steady shape
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Many permeable aquifers have vertical variations in the permeability, which are correlated
over long lateral distances. When a buoyant high viscosity fluid is injected into a
permeable aquifer and displaces a less viscous fluid, the interface that develops has
finite extent and travels with constant speed. The effect of the permeability variations
leads to fluid in the high permeability regions travelling into the front, where it migrates
into the lower permeability part. Subsequently, it lags progressively further behind the
advancing front. We explore the influence of this cycling on the dispersion of a tracer
or additive in the fluid to determine its distribution within the current as a function of
time. At early times tracer is sheared owing to the vertically varying permeability. At
later times, cross-aquifer diffusion homogenises the tracer distribution, which spreads
longitudinally at a faster rate than by diffusion alone in this shear dispersion regime.
Eventually, tracer reaches the front of the current. This acts as a no-flux boundary and
the concentration profile transitions to a half-Gaussian, with the maximum concentration
at the front. The centre of mass of the tracer spreads backwards relative to the fixed nose
at a rate proportional to (DT)1/2, where T is time and D is the diffusion coefficient. The
initial release of tracer may not be vertically uniform owing to the heterogeneity and we
show that this can lead to the centre of mass of tracer initially advancing faster than the
mean flow. Although our model is highly idealised, it illustrates how, owing to a vertical
variation of permeability, it is possible for a finite pulse of tracer or chemical added after
the start of injection to reach the front with important implications for tracer tests and
strategies for enhanced recovery.

Key words: mixing and dispersion, porous media

1. Introduction

Knowledge of how fluid moves through porous rocks is critical for many industrial
processes including the clean up of pollutants in freshwater aquifers, geothermal power
generation, enhanced oil recovery and the sequestration of CO2 within geological storage
reservoirs (Lake 1989; Phillips 2009; Kampman et al. 2014). One way to learn about the
unknown and often very heterogeneous rock structure is to add tracers to the injected
fluid and observe them downstream (Sudicky 1986; Boggs et al. 1992). Variations in
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899 A38-2 E. M. Hinton and A. W. Woods

the permeability within a porous layer can lead to a shear flow as well as Fickian
dispersion, as discussed later in this introduction. In addition, the injected fluid may
not be miscible with the ambient fluid and the interface between the fluids may evolve
in a complex nonlinear fashion. The present work explores how the combination of the
interface evolution and tracer dispersion regulates the migration of tracer. We combine
knowledge about dispersion in a porous medium with knowledge about the evolution of
the interface and the associated nose region. The evolution of the interface is different
in the cases of a low or high viscosity injectate. The present paper (Part 1) focuses on
the case of a high viscosity injectate, important for enhanced oil recovery and geothermal
power. In such situations, the interface advances with fixed shape and tracer remains in
the fully flooded region of the flow where it may become vertically homogenised so that
shear dispersion dominates the spreading. In Part 2 (Hinton & Woods 2020), we analyse
the case of a less viscous injectate, typical in CO2 storage, for which the interface grows
in time. Tracer is quickly advected into continually thinner regions of the growing nose,
leading to a very different form of dispersion because the role of the shear diminishes in
time.

There has been extensive research on the dispersion of tracer in porous media. There
are two mechanisms for dispersion on the microscale within a porous medium; molecular
diffusion and pore-scale mechanical dispersion which results from the different pathways
followed by particles as they pass around solid grains (Dullien 2012; Woods 2015). The
experiments of Bear (1961) showed that, at low flow rates, molecular diffusion is the
dominant contribution to dispersion whilst at higher flow rates dispersion is controlled by
the tortuous path taken through the matrix (see also Dentz, Icardi & Hidalgo 2018). Indeed,
De Joselin de Jong (1958) showed that the dispersion associated with the pore geometry
has the character of diffusion with coefficient D ∼ δv0 where δ is a characteristic pore size
and v0 is the flow velocity.

Dispersal of the tracer may also arise from large-scale heterogeneity. A significant
challenge to determining flow in a heterogeneous aquifer is the uncertainty in the rock
structure. Many models have been built assuming that the permeability is a random
function of position and it has been shown that this also leads to longitudinal dispersion
at a rate proportional to t1/2 (Gelhar, Gutjahr & Naff 1979; Dagan 1984; Eames & Bush
1999). However, if there is a systematic variation in the permeability in the cross-flow
direction, this can lead to development of a large-scale shear in which case the longitudinal
extent of a finite pulse of tracer grows linearly with distance in the absence of pore-scale
dispersion or diffusion (Hinton & Woods 2019). Such systematic heterogeneity has been
observed in numerous deposits (Walker 1975; Boggs et al. 1992; Pyles, Straub & Stammer
2013).

The combination of large-scale shear and microscale dispersion creates large cross-layer
concentration gradients, which are eventually homogenised by cross-layer diffusion. The
longitudinal extent of the tracer grows in proportion to t1/2 after the homogenisation
but with a significantly enhanced dispersion coefficient as compared to the pore-scale
dispersion (Taylor 1953; Aris 1956). In a porous medium, this shear dispersion may occur
owing to systematic heterogeneity within a single layer.

In addition to the effects of microscale and large-scale dispersion, in a two-phase
fluid–fluid displacement, the interface zone between the two fluids has an important
influence on the path taken by tracer and this can significantly alter the character of the
dispersion, especially if the tracer is soluble only in the injected fluid and not the displaced
fluid as assumed herein. The evolution of the nose of the flow, where the thickness of the
injected fluid is less than the thickness of the aquifer, is controlled by the injection flux, the
buoyancy force and the viscosity ratio (Huppert & Woods 1995; Pegler, Huppert & Neufeld
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FIGURE 1. Parameter space from Hinton & Woods (2018) for the late-time evolution of the
interface between the injected and ambient fluids in the case of linearly varying permeability.
The vertical axis corresponds to the viscosity ratio, m, whilst the horizontal axis shows the
permeability difference between the top and the bottom of the aquifer (Δk > 0 refers to
permeability increasing towards the bottom of the aquifer). In the top right region, corresponding
to a high viscosity injectate, the nose has fixed extent and its influence on the migration of tracer
is the subject of the present paper. For a low viscosity injectate, the interface grows in proportion
to time, t. The migration of tracer in that case is studied in Part 2 (Hinton & Woods 2020). In the
intermediate regions (coloured white) the interface has growing regions and fixed regions. For
equally viscous fluids in a uniform aquifer, the nose grows in proportion to t1/2 (red cross).

2014; Zheng et al. 2015). If the injectate is buoyant and less viscous than the ambient fluid,
it intrudes through the ambient fluid along the top surface of the system, forming a growing
nose. In contrast, if the injectate is more viscous, the leading edge of the flow is of fixed
shape and size as the fluid migrates through the aquifer. A permeability variation across
the aquifer may also influence the shape of the nose (see figure 1). The evolution of this
flow front leads to very different patterns of spreading of the tracer depending on whether
the intrusion grows or is of fixed size.

Hinton & Woods (2019) illustrated that in an aquifer with vertically varying
permeability, the shear flow results in the maximum speed of the tracer being faster than
the speed of the fixed-extent nose. In the absence of any diffusion, the tracer in the high
permeability regions catches and circulates through the flow nose (see figure 2). At long
times, diffusion becomes important, and leads to cross-layer homogenisation of the tracer.
Hinton & Woods (2019) studied the purely advective transport, as relevant to relatively
thick porous layers for which the cross-layer diffusion time, H2/D, is long compared to
the time-scale of the flow, where H is the thickness of the layer (see the region below the
dashed line in figure 3). In thinner layers, the cross-flow diffusion may be significant on
the time scale of the flow and so the dynamics of the tracer dispersal will be different
from the purely advective regime described by Hinton & Woods (2019). This forms
the subject of the present paper (see figure 3). We combine the physical ingredients of
tracer diffusion, an interface zone between the injected and ambient fluid and variation
of the rock permeability in the cross-flow direction, which leads to an along-flow shear,
which causes some of the tracer to catch up with the nose. The homogenisation owing
to cross-flow diffusion occurs before or after tracer reaches the nose leading to different
patterns of dispersal. In either case, the tracer eventually becomes vertically homogenised
and we investigate the late-time evolution of the tracer distribution and how it is influenced
by the interaction with the nose (see figure 3). The different transitions to the late-time
vertically well-mixed regimes lead to differences in the ultimate extent of the tracer.
Our analysis is developed for any continuously varying permeability structure in the
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FIGURE 2. Schematics of the tracer location (blue) relative to the nose (dashed line) in (a) an
aquifer with constant permeability and (b) an aquifer with vertically varying permeability. Three
tracer paths are shown in (b), illustrating the interaction with the nose.
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FIGURE 3. Time regimes for the dispersion of tracer in a intrusion with a fixed shape. The
horizontal axis corresponds to the time scale for vertical homogenisation (H2

0/D) relative to the
release time of the tracer, TR, whilst the vertical axis is the dimensionless time after release
of the tracer. We use illustrative values of the release time and a linear permeability structure
with variation relative to the mean permeability of Δk = 0.1. The dashed line denotes the time
required for vertical homogenisation of the tracer. The pre-homogenised dispersion (below the
dashed line) is controlled by the shear flow and interaction with the nose, which was studied
by Hinton & Woods (2019), denoted as HW19 in the figure. The tracer is sheared prior to
interacting with the fixed nose (‘advection, pre-nose’). At a time L/(ΔkV) after tracer release,
where L = VTR is the distance of the nose from the initial release, the shearing tracer reaches
the nose and is folded (‘advection with nose interaction’). In the next regime, tracer becomes
vertically homogenised and spreads from the nose (‘vertically homogenised, asymmetric’). This
ordering of regimes occurs in thick aquifers in which H2

0/D is large. In thinner aquifers, vertical
homogenisation occurs prior to tracer reaching the nose. Tracer spreads laterally behind the nose
in its vertically homogenised regime (‘pre-nose vertically homogenised’). Once homogenised,
the rate of dispersion is proportional to Deff ∼ Δk2V2H2

0/D owing to shear dispersion and the
tracer spreads towards the nose, interacting with the nose at a time proportional to L2/Deff. The
curved solid line, corresponding to the interaction between tracer and the nose therefore has
shape Δk−2(H2

0/DTR)
−1. The diffusive regimes form the topic of the present paper. The case of

pre-nose homogenisation is studied in § 3.1 and the interaction with the nose in §§ 3.2 and 3.3.

vertical direction but many of our illustrative calculations are carried out using a linear
permeability structure.

The approach in this work is to develop a simplified model for flow through a
heterogeneous permeable aquifer so that we can identify the influence of the heterogeneity
on the flow, through a single parameter, ΔK/K̄, which is the magnitude of the permeability
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Shear dispersion in a fixed intrusion 899 A38-5

variation relative to the mean. Although this is idealised, the solutions we derive provide
insight into the structure of the flow field, and this is invaluable for interpreting how a
pulse of tracer becomes dispersed, but also for interpreting how the injected fluid moves
through the permeable layer. In many applications, additives, with time delay, may be used
in the flow, in order to change the viscosity or surface tension of the fluids. Understanding
the pattern of dispersion is key for successful deployment of such additives, which may
ideally be activated when they are at the flow front.

Owing to the many physical processes in the problem we are studying, we begin in
§ 2 with a brief review of the interface evolution in a confined aquifer with vertically
varying permeability (Hinton & Woods 2018). We introduce a model for the migration
of tracer within the injectate. We describe how a finite, vertically uniform pulse of
tracer is dispersed within the flow before, during and after its interactions with the nose.
We consider linear permeability variations and some example nonlinear permeability
variations. We then develop the model in § 5 to account for a non-uniform initial
distribution of the tracer owing to the vertical permeability structure. Finally, in § 6, we
consider the implications of the combined action of dispersion, shear and the interface
zone on inferences made about the rock structure from tracer tests. Our results also have
applications beyond tracer tests. The analysis provides detailed understanding of how
fluid particles migrate in subsurface displacements where one fluid displaces another. In
particular, we show that fluid that is injected later can end up near the front whilst fluid that
is injected earlier may fall far behind the front. This knowledge is critical in, for example,
informing the addition of viscosifiers to an active injection project.

2. Formulation

If liquid of density ρ and viscosity μi is injected from a line source at X = 0 with a flow
rate Q into a horizontal, laterally extensive aquifer initially filled with liquid of density
ρ + Δρ and viscosity μa, and the aquifer has depth H0, porosity φ and permeability K(Y),
which varies vertically (figure 4), then the flow is controlled by the combination of the
applied pressure associated with the injection and the buoyancy force. We can scale the
depth, length and time using the relations

h = H/H0, y = Y/H0, x = X/H0, t = QT/(φH2
0). (2.1a–d)

The characteristic buoyancy velocity of the injectate is UB = ΔρgK̄/μi, where K̄ is the
mean permeability. In this paper, we use capital letters to denote dimensional quantities
and lower case for dimensionless quantities, with the exception of the density, the viscosity
and gravity, g. The dimensionless permeability is

k(y) = K(H0 y)/K̄, (2.2)

and the viscosity ratio of the two fluids is (see figure 4)

m = μi/μa. (2.3)

We assume that the mixing of the two fluids is negligible and that there is a sharp
interface between them [see the experimental results of Pegler et al. (2014)]. After an
initial transient, the dimensionless Darcy velocity is given by (for details, see Hinton &
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FIGURE 4. (a) Schematic for the injection of buoyant fluid into a confined aquifer with a
vertically varying permeability. (b) A vertically uniform pulse of tracer is released at a time
t = tR after injection began. The permeability variation creates a shear flow, which leads to shear
dispersion.

Woods 2018)

u = k(y)
1 − mb[1 − ψ(h)]

∂h
∂x

m + (1 − m)ψ(h)
, (2.4)

where

ψ(h) =
∫ h

0
k(y) dy, (2.5)

and b = UBH0/Q is the ratio of the characteristic buoyancy velocity to the injection
velocity.

We focus on the evolution of the flow at late times when there is a fully flooded region in
which h = 1 and a nose region in which 0 < h < 1 (see figure 4). Late times correspond to
t � b−1 in dimensionless terms (Zheng et al. 2015). Hinton & Woods (2018) showed that
for a sufficiently viscous injectate, the nose advances as a travelling wave with constant
shape and velocity (figure 5a). For a linearly varying permeability,

k(y) = 1 + Δk(y − 1/2), (2.6)

a fixed nose occurs when (top right region of figure 1)

m >
1

1 + Δk/2
. (2.7)

The lateral extent of the nose is proportional to b. For a less viscous injectate (white
regions of figure 1), the nose has a region at the top of the aquifer that travels with constant
shape and velocity and a growing region below this (figure 5b). For an even less viscous
injectate (bottom left region in figure 1), the entire nose grows in proportion time.

In the present paper, we focus on the migration of tracer in the case that the nose has a
fixed shape and extent at late times. The interaction between the tracer and a nose that has
a growing region and a fixed region is similar to the case of a fixed nose and the details are
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FIGURE 5. Position of the fluid–fluid interface at t = 5 and t = 20 with b = 1. (a) For a
sufficiently viscous injected fluid relative to the ambient fluid, the nose advances with constant
shape and velocity of unity (interface shown is for a constant permeability aquifer, Δk = 0,
and viscosity ratio, m = 3). (b) If the viscosity ratio is not so large, the nose can have fixed
and growing regions. See also figure 1. We have used m = 0.3 and Δk = 1.5. The interaction
between tracer and the ‘mixed’ nose is studied in appendix A.

given in appendix A. In Part 2 (Hinton & Woods 2020), we study the migration of tracer
in the case that the entire nose grows in time.

2.1. Migration of tracer
We consider the release of a pulse of passive tracer into the input fluid (a continuous
release of tracer into the fluid leads to slightly different behaviour, which is described in
appendix B). The tracer undergoes diffusion with coefficient D. We assume that the tracer
is immiscible in the ambient fluid. The dimensional advection–diffusion equation for the
evolution of the concentration of the tracer is

∂C
∂T

+ UUU · ∇∇∇C = D∇2C, (2.8)

where ∇ · U∇ · U∇ · U = 0 because the injectate is incompressible. In this contribution we focus on
the case in which molecular diffusion is the dominant dispersive mechanism, which was
found to be accurate for low flow rates by Bear (1961). This simplifies the problem because
the diffusion coefficient, D, is everywhere a constant.

We make C dimensionless by scaling it with the initial concentration of released tracer.
We scale the diffusion coefficient D with the time scale from (2.1a–d) and the thickness
of the aquifer to obtain the dimensionless parameter

D = φD
Q
. (2.9)

Note that this is the inverse of the Péclet number, D = Pe−1.
Behind the nose, the flow velocity (2.4) is u = k(y) and the vertical velocity is zero by

mass continuity. Hinton & Woods (2019) showed that, in the absence of diffusion, particles
in high permeability regions catch and enter the fixed-extent nose where they migrate into
lower permeability regions and fall behind the nose. By considering mass conservation,
they showed that particles that enter the nose at y = y0 fall behind and exit the nose at

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

47
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.478


899 A38-8 E. M. Hinton and A. W. Woods

y = 1 − y0. In the present paper, we assume that if the tracer is well mixed across the
vertical extent of the aquifer, then the flux of tracer into the nose at y0 equals the flux out
of the nose at 1 − y0. The time tracer spends in the nose is negligible compared to the time
spent behind the nose. Hence, we assume the transition in the nose is instantaneous.

We note that for the lubrication approximation to apply, the cross-aquifer velocity in
the nose must be small compared to the along-aquifer velocity, which requires b � 1. We
also assume that the injection of fluid continues at a constant rate throughout the period in
which we study the migration of tracer.

3. Numerical simulations

To simulate the migration of a pulse of tracer numerically, we consider the release of a
line of particles from x = 0 at t = tR that then undergo advection and diffusion. We use a
particle-tracking numerical method, rather than solving the governing advection–diffusion
equation for the concentration, because of the complex geometry of the domain associated
with the moving fluid–fluid interface.

The position of a particle satisfies the following dimensionless stochastic differential
equation:

dx = u(x, t) dt +
√

2D dW (t), (3.1)

where u is the flow velocity, D is the diffusion coefficient and W is a standard
two-dimensional Brownian motion. The interface between the injected and ambient
fluids, and the aquifer boundaries are treated as no-flux boundaries. We simulate (3.1)
numerically using the Euler–Maruyama method (Higham 2001). We implement the
no-flux condition on the aquifer boundaries, at y = 0 and y = 1, by treating it as reflective
in the numerical scheme (Erban & Chapman 2007). The no-flux condition on the moving
fluid–fluid interface is implemented as follows. First, the interface position is updated at
each time step. Next, the position of the tracer particles are updated. If a tracer particle is
outside the injected fluid, then it is reflected in the updated interface. The reflection is via
the normal direction to the interface at the point on the interface nearest to the particle.
We typically used one million particles to provide a sufficiently accurate distribution and
the timestep used was at most 10−5/D. The initial release is either vertically uniform (§ 4)
or the concentration is proportional to the permeability at each height (§ 5).

4. Release of a uniform pulse

We consider the release of a pulse of tracer into the flow at x = 0 at a time, t = tR. The
time after release is

τ = t − tR. (4.1)

The concentration of tracer within the released pulse is assumed to be uniform across the
vertical extent of the aquifer. We study the situation in which the aquifer heterogeneity
influences the initial vertical structure of the concentration in § 5.

4.1. Pre-nose migration
We first consider the migration of the tracer at times before the nose has any influence. We
study the transition from advection-dominated dispersion at early times to shear dispersion
at late times. In this pre-nose regime the flow depth is h = 1 and the flow velocities are
u = k(y) and v = 0. At very early times, the tracer spreading is dominated by molecular
diffusion. However, this quickly becomes negligible in comparison to the shearing of
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Shear dispersion in a fixed intrusion 899 A38-9

the tracer pulse owing to the vertical variation of the permeability. We ignore the initial
molecular diffusive regime. In the shearing regime, the mean velocity is unity and this
motivates transforming the advection–diffusion equation into the travelling frame with
χ = x − τ

∂c
∂t

+ k̃(y)
∂c
∂χ

= D
(
∂2c
∂χ 2

+ ∂2c
∂y2

)
, (4.2)

where k̃(y) = k(y)− 1 is the relative velocity. Note that
∫ 1

0 k̃(y)dy = 0.
At early times, the dispersion of tracer is dominated by the shear flow due to the

permeability variation across the aquifer. The lateral extent of the tracer initially grows
in proportion to time τ and the role of diffusion is negligible (see figure 6a). This
advection-dominated dispersion was studied by Hinton & Woods (2019). At later times
the role of diffusion becomes non-negligible. As the tracer is sheared, large cross-channel
concentration gradients develop (see figure 6b). These gradients are smoothed out by
diffusion over a time scale of order 1/D, which corresponds to the time taken for tracer
particles to sample the entire thickness of the aquifer. At times τ � 1/D, the tracer
has been sheared and has become ‘well-mixed’ vertically so that the concentration is
independent of depth, y (see figure 6d). It has thus spread a much larger lateral distance
than it would owing to along-flow diffusion alone, demonstrated by the two columns in
figure 6. The combination of the shear flow and cross-channel diffusion enhances the
rate of along-flow dispersion. This effect is known as shear dispersion, first explained by
Taylor (1953). To study the distribution of tracer in the along-flow direction, we calculate
the moments of the distribution. We follow the method of Aris (1956) and quote the key
results below; further details of the full calculations are given in appendix C.

It is straightforward to show that the first moment of the lateral distribution of tracer,
χ = m1(τ ), corresponding to the mean position, is fixed in travelling coordinates

m1(τ ) ≡ 0. (4.3)

At late times, τ � 1/D, the second moment of the tracer distribution in the lateral
direction is given by

m2(τ ) = 2Deffτ − 2λ
D2
, (4.4)

where
Deff = D + κ/D (4.5)

is the effective diffusion coefficient, which is an enhanced rate, faster than ordinary
molecular diffusion, D, owing to shear dispersion (compare the two columns in figure 6).
The constants, κ and λ depend only on the permeability structure and are given by the
following expressions:

κ =
∫ 1

0
ψ̃(y)2 dy, (4.6)

λ =
∫ 1

0
Ψ̃ (y)2 dy, (4.7)

where

ψ̃(y) =
∫ y

0
k̃(s) ds, (4.8)
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FIGURE 6. Dispersion of 1000 particles upstream of the nose. (a–d) Dispersion in an aquifer
with a vertically linear permeability variation, Δk = 1, and (e–h) in a uniform aquifer. In
both cases D = 0.001. The rows correspond to four times, in (a, e) τ = 0.002/D, in (b, f )
τ = 0.02/D, in (c, g) τ = 0.2/D and in (d, h) τ = 2/D. In a heterogeneous aquifer, the tracer
is sheared by the permeability gradient (see panels (a, b)), which leads to large cross-channel
concentration gradients. These are smoothed out by diffusion after times of order 1/D and the
tracer distribution becomes independent of cross-channel coordinate. This leads to a much higher
dispersion coefficient (see (4.4)) than in a uniform aquifer (note the different axes in (d, h)).

and Ψ̃ (y) is the anti-derivative of ψ̃(y) where the constant of integration is chosen so that∫ 1
0 Ψ̃ (y) dy = 0.
Since the centre of mass is at χ = 0, (4.4) provides the late-time along-flow variance

of the tracer distribution. We plot the predicted variance (4.4) as a red dotted-dashed
line in figure 7 for particular parameter values, showing excellent agreement with the
numerical results at later times. The dispersion of tracer is symmetric about its centre of
mass, provided tracer has not yet dispersed towards the nose. We analyse the interaction
between the tracer and the different noses in the next subsections.

The analysis of Taylor (1953) can be used to show that, at late times, the thickness
averaged concentration of tracer, c̄(χ, τ ), satisfies the diffusion equation with coefficient
Deff. At such times, the concentration distribution evolves as a Gaussian with mean χ = 0
and variance given by (4.4). The constant term in (4.4) can be interpreted as an adjustment
time to the y-independent, Gaussian spreading and we write

m2(τ ) = 2Deff(τ − τ0), where τ0 = λ

D2Deff
. (4.9)
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FIGURE 7. Second moment of the tracer distribution, m2(τ ), in the along-channel direction in
the case of a linear permeability gradient with Δk = 1 and diffusion coefficient, D = 0.002.
The numerical results are plotted as a solid blue line. The second moment arising from the
enhanced Taylor dispersion, 2Deffτ , is plotted as a black dashed line. The adjustment owing to
the early-time transition to the shear dispersion regime is −2λ/D2 (4.4), which is plotted as a
red dotted-dashed line showing excellent agreement with the late-time numerical results. The red
dotted line represents the early-time dispersion owing to advection in which the second moment
of the tracer extent is (Δkτ)2/12.

The constant τ0 is a virtual source time for the self-similar Gaussian spreading.
The reduction in the second moment from 2Deffτ arises because of the early-time

behaviour during which the role of diffusion is negligible and the lateral extent of the tracer
grows more slowly driven by advection. For example, for a linear permeability gradient,

k(y) = 1 + Δk(y − 1/2), (4.10)

the second moment evolves according to (Δkτ)2/12 in the absence of diffusion. This is
plotted as a red dotted line in figure 7, and is slower than shear dispersion (dashed black
line) at early times.

In order to illustrate the magnitude of shear dispersion in an example heterogeneous
layer, consider the permeability profile

k(y) = 1 + Δk
2

{
tanh[(x − 1/2)/a]

tanh[1/(2a)]

}
, (4.11)

where Δk is the permeability difference between the top and bottom of the aquifer and a
is a parameter that quantifies the linearity of the permeability profile (see figure 8a). In
the limit a → ∞ the profile (4.11) is linear, given by (4.10), whilst in the limit a → 0 the
profile is piecewise constant

k(y) =
{

1 − Δk/2 for y < 1/2
1 + Δk/2 for y > 1/2

. (4.12)

In figure 8(b), the contribution, κ , to the enhanced diffusion coefficient from the shear is
plotted as a function of the parameter a for the permeability profile (4.11). The coefficient
κ transitions between the two limiting cases of a → 0 and a → ∞. For the piecewise
constant profile (a → 0, (4.12)) we calculate κ = Δk2/48 from (4.6). For the linear
permeability profile (a → ∞, (4.10)), κ = Δk2/120, which is 2.5 times smaller than for
the profile (4.12).
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FIGURE 8. (a) Permeability structure, k(y), according to (4.11). The profile is linear in the limit
a → ∞ and is piecewise constant in the limit a → 0. (b) Shear dispersion coefficient, κ/Δk2 as
a function of a for the permeability (4.11) (calculated from (4.6)). A linear profile (a → ∞) has
coefficient 1/120, whilst the piecewise constant profile (a → 0) has coefficient 1/48.

Note that for a linear profile (4.10),

λ = 17Δk2

20160
. (4.13)

4.2. Interaction with the nose post-homogenisation
We consider the interaction of tracer with a fixed nose in the case that the tracer is
vertically homogenised before the interaction. We obtain parameter values for which this
occurs in § 4.3.

When the tracer is vertically homogenised, its concentration is independent of depth and
satisfies the diffusion equation

∂c
∂τ

= Deff
∂2c
∂χ 2

, (4.14)

where the diffusion coefficient is enhanced owing to shear dispersion (Deff > D).
The fixed nose spans the thickness of the aquifer and travels at the dimensionless mean

flow velocity, which is 1. Tracer is released from x = 0 at t = tR and the lateral distance
between the tracer and the nose is initially lR = tR. We showed earlier that, for a vertically
uniform release of tracer, the centre of mass of tracer travels at the mean flow velocity at
times when the nose influence is negligible. Thus, the distance between the nose and the
centre of mass remains lR at these times.

The nose of the current has fixed lateral extent and hence at late times the interface
can be approximated as a vertical line, relative to the horizontal length scale of the tracer
distribution, which grows in proportion to (Deffτ)

1/2. This assumption is justified further
in the application in § 6. Since the tracer is vertically homogenised, the zero-width nose
acts as a no-flux boundary to the migration of tracer

∂c
∂χ

∣∣∣∣
χ=lR

= 0. (4.15)

Mass conservation of the tracer takes the form∫ lR

−∞
c(χ, τ ) dχ = 1. (4.16)
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Shear dispersion in a fixed intrusion 899 A38-13

Equation (4.14) with boundary condition (4.15) and mass conservation (4.16) can be
solved following the method of Barenblatt (1996) for heat conduction in a semi-infinite
bar. The key idea is that the superposition of the concentration profile of tracer released
from χ = 0 and the concentration profile of tracer released from χ = 2lR in an infinite
domain provides exact solution to the governing diffusion equation with no-flux boundary
at χ = lR and mass conservation in χ < lR at all times after vertical homogenisation. This
exact solution is given by the following expression:

c = [
4πDeff(τ − τ0)

]−1/2
[

exp
( −χ 2

4Deff(τ − τ0)

)
+ exp

( −(χ − 2lR)
2

4Deff(τ − τ0)

)]
, (4.17)

where the constant τ0, given by (4.9), arises from the adjustment to the vertically
homogenised regime. This solution is shown at four times as black lines in figure 9(a)
and its construction from the superposition of two Gaussians is shown in figure 9(b). At
early times of order

τ − τ0 	 l2
R

Deff
, (4.18)

the majority of the tracer is far from the nose and the solution (4.17) is well approximated
by the following symmetrical Gaussian centred at χ = 0:

c(χ, τ ) = [
4πDeff(τ − τ0)

]−1/2 exp
[ −χ 2

4Deff(τ − τ0)

]
. (4.19)

This is compared to the exact solution (4.17) at early times in figure 9(a). At later times,
τ − τ0 ∼ l2

R/Deff, the tracer reaches the nose, and subsequently the distribution changes,
owing to the no-flux boundary at this front, assuming the tracer is insoluble in the original
fluid in the aquifer. The nose, at χ = lR, influences the dispersion of the tracer and the
concentration distribution becomes asymmetric (see figure 9a). For times much longer
than l2

R/Deff, the maximum tracer concentration occurs at the nose and the solution (4.17)
converges to the half-Gaussian profile

c(χ, τ ) = [
πDeff(τ − τ0 + τ1)

]−1/2 exp
( −(χ − lR)

2

4Deff(τ − τ0 + τ1)

)
, (4.20)

where τ1 is a constant associated with the time for a transition to this similarity solution.
The half-Gaussian is plotted with red crosses in figure 9(a) and shows good agreement
with the solution (4.17) at τ − τ0 = 6400. We determine τ1 by applying the technique of
Barenblatt (1996); the details are given in appendix D, leading to the following result:

τ1 = l2
R

2Deff
. (4.21)

The late-time half-Gaussian solution (4.20) is now fully determined, valid for τ − τ0 �
τ1. The time τ1 is positive because tracer spreads further in the composite solution than
it does if tracer were released from the nose at χ = lR at time τ − τ0 = 0. During the
early symmetric spreading regime, the distance of the centre of mass of tracer behind the
interface is a constant, lR. In the half-Gaussian regime, the distance grows in time and is
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FIGURE 9. Transition from symmetric dispersion of the vertically homogenised tracer
distribution to asymmetric dispersion at late times owing to the interaction with the nose.
(a) Transition from Gaussian concentration profile to half-Gaussian with diffusion coefficient
Deff = 0.005. Black solid lines show the concentration profiles at four times τ − τ0 = 100,
400, 1600 and 6400 obtained from (4.17). We have used lR = 5, and hence there is a no-flux
boundary at χ = 5. The red dots show the Gaussian solution (4.19) and the red crosses show
the half-Gaussian solution (4.20). The transition time is τ1 = 2500 (see (4.21)). (b) Illustration
of Barenblatt’s technique for superposing two Gaussian solutions at τ − τ0 = 1600. The red
dashed lines show the Gaussian and its reflection in χ = 5, the blue dashed line shows the sum
of these two Gaussians and the solid black line is the solution in χ < lR.

given by [
4Deff(τ − τ0 + τ1)/π

]1/2
. (4.22)

The lateral standard deviation of the tracer concentration transitions from (2Dτ)1/2 for
symmetric spreading to

[
2(1 − 2/π)Deff(τ − τ0 + τ1)

]1/2 (4.23)

for the half-Gaussian spreading.
The distance of the centre of mass behind the nose predicted by the composite solution

(4.17), which is accurate at all times, is[
4Deff(τ − τ0)/π

]1/2 exp[−l2
R/4Deff(τ − τ0)] − lRerfc[lR/(4Deff(τ − τ0))

1/2], (4.24)

where erfc is the complementary error function. This mean is plotted in figure 10(a), for
the case lR = 5 and Deff = 0.005, where it is compared to the early-time mean position
(χ = 0) and the late-time mean position (4.22). The transition between the time regimes
occurs at τ − τ0 ∼ τ1. In figure 10(b), we illustrate how this transition time (τ − τ0 ∼ τ1)
corresponds to tracer reaching the nose by plotting the location of the 90th, 50th and 10th
percentiles of the tracer distribution (according to (4.17)) and the location of the nose.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

47
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.478
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FIGURE 10. (a) Location of the centre of mass of tracer in travelling coordinates χ = x − τ
in the case of a nose of fixed extent initially a distance lR = 5 ahead of the tracer. We use
diffusion coefficient Deff = 0.005 and τ ′ = τ − τ0. The exact position is calculated from the
composite solution (4.17), whilst the early- and late-time approximations are calculated from
Gaussian spreading (4.19) and half-Gaussian spreading (4.20). (b) Along-channel location of the
90th, 50th and 10th percentiles of the tracer distribution, illustrating how the transition from the
early- to late-time regimes occurs (at τ ′ ∼ τ1) when tracer nears the nose.

4.3. Interaction with the nose pre-homogenisation
We have shown how the nose influences the spreading of tracer in the case that tracer is
vertically homogenised before reaching the nose. We consider presently the situation in
which tracer is not vertically homogenised when it interacts with the nose.

Consider the tanh permeability profile (4.11) with Δk > 0. The permeability is greatest
at y = 1 and the velocity of tracer is 1 + Δk/2 there. In the advection-dominated regime
(τ 	 1/D), diffusion is negligible and tracer at the bottom of the aquifer (y = 1) remains
there. In the absence of diffusion, tracer reaches the nose at a time t = 2lR/Δk after
release.

This time is a good approximation for the arrival of tracer at the nose provided that it is
much smaller than the diffusive time scale i.e. 2lR/Δk 	 D. The ratio of these time scales
is given by

Γ = 2lRD
Δk

= 2DTR

ΔkH2
0
, (4.25)

where TR is the dimensional release time. The regime Γ 	 1 corresponds to advection
dominating as tracer in the high permeability region migrates towards the nose. Tracer
that enters the nose at a height y = y0 subsequently experiences a non-zero cross-channel
velocity. Tracer within the nose migrates across the aquifer into regions of lower
permeability where it travels more slowly than the advancing interface. It then lags behind
the nose, and in the case of a linear permeability gradient, tracer exits the nose region at
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FIGURE 11. Interaction between 1000 tracer particles and a nose of fixed extent at χ = 5. (a) At
early times, advection dominates and the tracer undergoes a shear. (b–e) In the case that advection
continues to be the dominant dispersion mechanism when tracer nears the nose (Γ 	 1). Tracer
is reflected in the centreline by the nose owing to the recirculation in the nose. Subsequently
it occupies the low permeability region and migrates backwards relative to the nose. (g–j) If
the rate of diffusion is larger then the tracer becomes vertically well mixed before nearing the
nose (Γ � 1). ( f, k) For any non-zero value of Γ , the tracer eventually becomes vertically
well mixed. The concentration becomes independent of depth and the nose acts as a no-flux
boundary to the depth-integrated concentration, which leads to a half-Gaussian profile for the
tracer concentration.

a height 1 − y0 in the absence of diffusion (for details, see Hinton & Woods 2019). As
before, we assume that the transition in the nose happens instantaneously.

The case Γ 	 1 corresponds to a thick layer in which the time for cross-channel
diffusion is large. The transition in the nose leads to a reflection of tracer in the centreline
and subsequently tracer migrates backwards relative to the nose as illustrated in figures
11(b)–11(d) (corresponding to the white region in figure 3). The extent of the tracer
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FIGURE 12. Proportion of tracer particles that have transitioned through the nose at least once.
We use a release distance (or time) of lR = 25, a permeability gradient of Δk = 1 and two values
for the diffusion coefficient D = 0.02 and D = 0.001 (corresponding to Γ = 1 and Γ = 0.05,
respectively). In the case that D = 0.001 (red line), advection dominates and the upper half of the
tracer pulse in the high permeability zone quickly enters the nose. For stronger diffusion (D =
0.02, blue line), the tracer becomes vertically homogenised before reaching the nose and the
proportion of particles entering the nose increases much more slowly because only the leading
edge of the tracer cloud reaches the nose.

continues to grow in proportion to time, τ , until, at times of order 1/D, the tracer becomes
vertically well-mixed c(χ, y, τ ) = c̄(χ, τ ). Once the tracer concentration is independent
of the depth, the nose acts as a no-flux boundary because the flux of tracer in and out the
nose balances. The tracer distribution evolves with a half-Gaussian profile, as described
earlier (corresponding to the top, grey zone in figure 3). The other case, in which the
tracer is vertically homogenised before reaching the nose, corresponding to Γ � 1 (i.e.
a thinner aquifer) was discussed in § 4.2 and is illustrated in figures 11(g)–11( j). This
regime corresponds to the yellow (leftmost) region in figure 3. Note that the horizontal
axis in figure 3 is proportional to Γ −1.

In the case that advection dominates as tracer enters the nose, the tracer in the high
permeability half of the aquifer quickly enters the nose (see figure 12). If instead the tracer
is vertically homogenised before interacting with the nose then the proportion of particles
that have been through the nose evolves more slowly because the concentration near the
nose is small and most of the particles are far from the nose (compare figures 12 and 11).

In both regimes (Γ 	 1 and Γ � 1), the ultimate asymptotic behaviour is that the tracer
concentration profile becomes depth independent and evolves as a half-Gaussian. The time
scale for the extent of the half-Gaussian is

τ + τ1 − τ0 = τ + l2
R

2Deff
− λ

D2Deff
, (4.26)

regardless of whether the nose interaction occurs before or after homogenisation. Equation
(4.26) can be rewritten in terms of Γ ; the second and third terms are equal to

τ1 − τ0 = 1
8Deff

(
Γ 2 − Γ 2

c

)
, (4.27)

where Γc is a numerical constant that depends on the permeability structure. For a linear
permeability profile, Γc = √

17/2520 = 0.082 . . .. The time offset for the half-Gaussian,
τ1 − τ0 represents the combination of the offset owing to the initial advection-dominated
regime (τ0) and the offset owing to the interaction with the nose (τ1). The former
contribution is negative because the advection-driven spreading is slower than the shear
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dispersion at early times whilst the latter is positive as described above. The offsets balance
each other for Γ = Γc. Smaller values of Γ correspond to advection dominating the
dispersion for longer and the late-time extent is reduced. Similarly, for larger values of
Γ , the transition to shear dispersion is much faster and occurs before tracer reaches the
nose and the interaction between the shear dispersion and the nose dominates leading to
an increased late-time extent.

5. Influence of the permeability variation on the initial release of tracer

In § 4, we assumed that the tracer, released from x = 0 at t = tR, was initially uniformly
distributed over the thickness of the aquifer. We used this idealised initial condition to
simplify the analysis and this enabled us to determine the behaviour of the dominant
physical processes in the problem. However, in a heterogeneous aquifer, the initial
distribution is unlikely to be uniform; more tracer is released in the higher permeability
regions. The flux of tracer released at each height from a vertical line source is proportional
to the permeability there. Therefore, the initial concentration of tracer at x = 0 is c = k(y).

The details of the competition between advection and diffusion described in the previous
section is unchanged. However, the mean position of the tracer is altered. When the
initial vertical distribution was uniform, the centre of mass of tracer migrated at the mean
flow velocity in the advection-dominated early-time regime. In the case that the tracer
concentration is initially c = k(y), the centre of mass of tracer will migrate faster than the
mean flow because there is more tracer initially in high permeability regions. For a linear
shear (4.10), in the absence of diffusion, the centre of mass is at∫ 1

0
c(t = tR)u(y)τ dy = τ + Δk2

12
τ. (5.1)

The tracer subsequently becomes vertically well mixed and travels at the mean flow
velocity (assuming this occurs before the nose influences the spreading). For the release
of a uniform pulse, ignoring the nose influence, the centre of mass of tracer is at x = τ
during and after the advection-dominated regime. For the heterogeneous pulse, the centre
of mass is at x = τ + m1(τ ). The correction length, m1(τ ) arises from the extra velocity
above the mean flow during the advection-dominated transition.

To calculate the correction length, m1, we can again use the method of Aris (1956).
The along-aquifer integrated concentration, c0(y, τ ) = ∫ ∞

−∞ c dχ satisfies the diffusion
equation and has the general solution

c0(y, τ ) = a0 +
∞∑

n=1

an cos(nπy) exp
[−n2π2Dτ ] . (5.2)

The initial condition, c0(y, 0) = k(y) imposes a0 = 1 and

k̃(y) =
∞∑

n=1

an cos(nπy). (5.3)

The equation for the mean position is then given by (cf. (C 4))

dm1

dτ
=

∞∑
n=1

∫ 1

0
an cos(nπy) exp

[−n2π2Dτ ] k̃(y) dy. (5.4)
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FIGURE 13. Distance of the centre of mass ahead of the mean flow, m1(τ ) owing to the
initial non-uniform concentration profile, c0(y, 0) = k(y) in the case of a linear permeability
profile with Δk = 1 and diffusion coefficient D = 0.002. The mean position calculated from
our numerical simulations (see § 3) with two million particles is plotted as a blue line whilst
the theoretical prediction from the first hundred terms of (5.7) is plotted as red dots. The black
dashed line is the late-time limit m1 = κ/D.

We integrate with respect to time and apply m1(0) = 0 to obtain

m1 =
∞∑

n=1

∫ 1

0

an

n2π2D cos(nπy)
{
1 − exp

[−n2π2Dt
]}

k̃(y) dy. (5.5)

At times after τ ∼ 1/D, we neglect the exponential terms. Then integrating by parts twice
and substituting (5.3) for the coefficients yields the late-time expression

m1(τ ) = κ/D + e.s.t., (5.6)

where κ is a constant, given by (4.6), and e.s.t. denotes exponentially small terms. This
result confirms that the centre of mass of the tracer migrates faster than the mean flow
until the tracer has vertically homogenised and this leads to an extra distance of κ/D.

We can determine the time dependence of the position of the centre of mass for a linear
permeability profile (4.10). We calculate a2m+1 = −4Δk/[(2m + 1)2π2] and a2m = 0 from
(5.3). The distance that the centre of mass is ahead of the mean flow is

m1(τ ) = 1
D

∞∑
n=1

8Δk2

(2m + 1)6π6

{
1 − exp[−(2m + 1)2π2Dτ ]

}
, (5.7)

which converges to κ/D = Δk2/(120D) as expected. The adjustment m1(τ ) is plotted in
figure 13 for the case of a linear permeability profile with Δk = 1 and D = 0.002. The
mean from the numerical results, with two million particles, is plotted as a solid blue line
and the first hundred terms of (5.7) are plotted with red dots showing excellent agreement
(for details of the numerical approach, see § 3).

We have found how the position of the centre of mass is advanced owing to the higher
proportion of tracer in the high permeability region during the early-time transient in the
case that the nose does not influence the migration during this period.

6. Applications

We consider the release of tracer in two example aquifers of differing thickness and
illustrate how this changes the processes that dominate the dispersion of tracer. In both
cases we assume that the input fluid is sufficiently viscous that the interface advances

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

47
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.478


899 A38-20 E. M. Hinton and A. W. Woods

with fixed shape. This may be the case in contexts such as enhanced oil recovery or
geothermal power extraction in superheated reservoirs, although any phase change will
further complicate the results (cf. Woods 1999).

We take the coefficient of molecular diffusion in a porous medium to be D = 5 ×
10−9 m s−2 (Woods 2015). We use a typical value for the injection velocity within the
layer of Vi = Q/(φH0) = 2 × 10−5 m s−1. Shear dispersion becomes important at times
when tracer is vertically homogenised, which corresponds to T ∼ H2

0/D.
First, we consider a layer with thickness of 10 m. The time scale for vertical

homogenisation is centuries. The advection owing to the shear flow associated with any
permeability variation will dominate the dispersion of tracer in the months and years after
its release. In figure 14(a), the lateral standard deviation is plotted against time. In the two
cases plotted, tracer is released one week and five weeks after the start of injection and we
assume the layer has a linear permeability profile with Δk = 1. At early times after release,
the extent of tracer grows linearly in time owing to the shear flow. At later times, the tracer
in high permeability regions enters the nose and the tracer is reflected in the centreline
(y = 1/2) as it interacts with the nose. This still leads to linear growth of the extent but
the constant is altered. For a larger release time, the tracer is initially further behind the
nose and the nose interaction occurs at a later time. The role of diffusion is negligible in
the case of a fixed nose in a 10 m layer over the typical time scales of a project.

The permeable layer could have thickness as low as a few centimetres. If we consider a
layer of thickness 0.5 m then the time scale for vertical homogenisation of the tracer is of
order

H2
0/D = 5 × 107 s = 19 months. (6.1)

If the 0.5 m layer has a linear permeability structure with Δk = 1, then the dimensional
shear dispersion coefficient is

Deff = D + κH2
0V2

i Δk2

D
= 1.7 × 10−4 m s−2. (6.2)

This is almost five orders of magnitude larger than the molecular diffusion coefficient.
We consider tracer released into this layer two days after the injection began. We

suppose that the injection velocity in the thinner layer remains, Vi = Q/(φH0) = 2 ×
10−5 m s−1. In figure 14(b), we plot the standard deviation against time. At very early
times, advection dominates and the extent grows in proportion to time as in the 10 m
layer. Tracer is then transported into lower permeability regions by the nose and there
is slower linear growth. Subsequently, tracer becomes vertically homogenised and shear
dispersion dominates the spreading. In this regime, the extent grows in proportion to T1/2.
The behaviour of the dispersion of tracer is substantially changed in layers of different
thicknesses. In both examples, we assumed that the tracer release was vertically uniform.
A vertical variation in the initial concentration alters the mean position by approximately
10 m. We note that in the case of a very late release time, the tracer becomes vertically
homogenised before the interaction with the nose (figure 14c).

In figure 15, the concentration profiles that would be observed at a well a distance 100 m
downstream from the injection well are shown for the cases discussed above. The transition
from the shearing pre-nose regime to the shearing post-nose regime can be observed by
comparing figures 15(a) and 15(b). In this 10 m thick layer, diffusion is unimportant. In
the case that tracer is released a week after CO2 injection begins (figure 15a), tracer in the
high permeability regions reaches the nose and is transported into the low permeability
regions. There is then a region near the nose in which the tracer concentration is doubled
(cf. figure 11c). This region ends abruptly after about 12 weeks as can be observed. For a
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FIGURE 14. Evolution of the lateral standard deviation of tracer (σ ) as a function of time (solid
black lines). (a) A 10 m layer, (b, c) a 0.5 m layer. Parameter values are given in the text and
in both cases the injection velocity is 2 × 10−5 m s−1. In (a), the spreading is dominated by
advection associated with the shear flow with σ ∼ T . The coefficient changes as tracer interacts
with the nose and is transported into lower permeability regions (indicated by the dashed red
lines). Two release times are shown. Vertical homogenisation (and hence shear dispersion) does
not occur until centuries have passed. (b) In a thinner layer, the early spreading is similar to
the thicker layer and tracer reaches the nose. However, at later times (H2

0/D), Taylor dispersion
dominates and σ ∼ T1/2 (red dot-dashed line). The coefficient for the rate of this post-nose
Taylor dispersion is given by (4.23). (c) For a much later release time in the thin layer, Taylor
dispersion dominates before the interaction with the nose.

later release, there is no interaction with the nose and the concentration reduces in time as
the tracer in low permeability regions slowly reaches the observation well.

The transition from the Taylor-dispersion pre-nose regime to the Taylor-dispersion
post-nose regime can be observed by comparing figures 15(c) and 15(d). In this 0.5 m
layer, cross-flow diffusion is important. For an early release, the half-Gaussian regime
develops as tracer interacts with the nose and the highest concentration is at the front
(figure 15c). For a much later release of tracer, the nose does not affect the dispersion and
the maximum concentration is not at the front. Also, the arrival time (measured from the
tracer release time) is much longer for earlier releases because the nose acts as a no-flux
boundary slowing the dispersal of tracer towards the observation well (compare the axes
in the two columns in figure 15). We have demonstrated that the different regimes analysed

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

47
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.478


899 A38-22 E. M. Hinton and A. W. Woods

0.10

0.05

0

0.10

0.05

0

0.10

0.05

0

0.10

0.05

0

8 10 12

8 10 12 14

14 16 6 8 10 12 14 16

5 10 15

TR = 1 week

H0 = 10 m

TR = 2 weeks

H0 = 0.5 m
TR = 18 weeks

H0 = 0.5 m

TR = 5 weeks

H0 = 10 m

Arrival time (weeks) Arrival time (weeks)

Pr
op

or
tio

n 
of

 tr
ac

er
Pr

op
or

tio
n 

of
 tr

ac
er

(b)(a)

(d )(c)

FIGURE 15. Arrival times of tracer at an observation well that is 100 m downstream for the
cases considered in figure 14. The parameter values are given in the text. The arrival time is
measured from the time at which tracer is released. (a, b) In the thick layer (H0 = 10 m) the role
of diffusion is negligible and the tracer undergoes a shear. For an earlier release time, the tracer
reaches the nose and is ‘folded’, which leads to a region in which the concentration is double
the upstream concentration (cf. figure 11c) as seen in panel (a). With a later release time, the
tracer has not interacted with the nose when it reaches the observation well. (c, d) In a thinner
layer, cross-flow diffusion vertically homogenises the tracer. For an earlier release time, tracer
interacts with the nose developing a half-Gaussian profile. The greatest concentration is at the
front of the cloud of tracer, which coincides with the nose. For a later release time, the tracer
has not interacted with the nose and the maximum concentration is not at the front of the tracer
cloud.

in this paper can lead to substantially different observed concentration profiles and hence
understanding the dispersal mechanisms is key to correctly interpreting the results of tracer
tests.

Finally, we justify our assumption that the extent of the fixed nose is negligible in
comparison to the lateral extent of the tracer and hence the nose can be modelled as a
vertical line of zero width. The length scale that tracer disperses in the shear dispersion
regime over a year is (2DeffT)1/2 ∼ 100 m. In the purely advective regime in an aquifer
with vertically varying permeability, the length scale after a year is ΔkViT/

√
12 = 180 m

in the case that Δk = 1. The fixed nose has extent proportional to bH0, where b = UBH0/Q
is the ratio of the buoyancy velocity to the injection velocity. Consider an aquifer with
mean permeability 4 × 10−13 m2, porosity φ = 0.2, input fluid viscosity of 6 × 10−5 Pa s
and density difference between the fluids of 300 kg m−3. Then the buoyancy velocity is
U = 2 × 10−5 m s−1 and b = 5 so that the nose extent is of order metres compared to the
dispersive length scale over a year, which is hundreds of metres in the advection-dominated
or shear dispersion regimes.
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In this section, we have assumed that the permeability in the aquifer varies linearly with
depth. This is a good first approximation for many real aquifers and both the qualitative
and quantitative results we have obtained regarding the role of advection, diffusion, shear
dispersion and the nose region apply generally to any permeability variation (see for
example figure 8).

6.1. Application to chemical additives
There are several applications in which chemical additives are included in the injection
fluid in order to change the properties of the flow within a reservoir. For example, in
enhanced oil recovery, the objective is to displace more of the oil in place in the reservoir
so that the overall efficiency of the recovery system is increased. If the region near the
injection well has already been swept, then ideally chemicals which are added to the
system to alter the behaviour of the injected fluid would be activated near the leading
front of the injected fluid, so that they have the maximum impact, rather than simply
injecting a more viscous fluid since this will first displace the region near the injection
well, which has already been swept; there is also the danger of degrading the permeability
near the injection well if active chemicals are injected directly into the reservoir, whereas
delayed action of these chemicals deeper in the reservoir can help to mitigate this risk.
It is possible to use a delayed trigger to activate the additives in the injected fluid, for
example using an encapsulation system (Yow & Routh 2009) but how one can place the
additive near the flow front in the event that it is injected some time after the start of
the injection process is less clear. The present analysis identifies that the heterogeneities
of the system may naturally lead to a shear and hence enable some of the newly injected
fluid to reach the flow front, where the chemical additive can be activated. By using a
tracer with an observation well, testing could be carried out to constrain the magnitude of
the shear associated with the fluctuations in the permeability, and thereby help to inform
the design of such an enhanced treatment process.

7. Conclusion

In this contribution, we have analysed the migration of tracer within a fluid injected
into a confined aquifer initially saturated with a second fluid of different viscosity.
The analysis focuses on the dispersion of tracer driven by the combination of a shear
flow, which arises from permeability variations, molecular diffusion and interaction with
the fixed-extent interface region. The evolution of the tracer distribution is initially
advection controlled and the extent grows in proportion to ΔkVT owing to the shear,
which has magnitude Δk (V is the injection velocity). At later times, of order H2

0/D,
cross-channel diffusion has vertically homogenised the tracer distribution leading to an
enhanced dispersion coefficient with the lateral extent of tracer growing in proportion to
[2(D + κV2H2

0/D)T]1/2, where κ is a dimensionless constant, which is a function of the
permeability structure.

We have shown how tracer interacts with the nose region of the flow in the case that
it has fixed extent and travels at the mean injection velocity, which occurs provided the
input fluid is sufficiently viscous relative to the ambient. Tracer may reach the nose during
the advection-dominated regime or during the vertically homogenised regime. We have
shown that in both cases the tracer distribution transitions from symmetric to asymmetric.
The concentration distribution tends to a half-Gaussian, with the maximum concentration
at the nose.
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The initial release of tracer may not be vertically uniform but instead the concentration
released at each height may be proportional to the permeability there. This alters the results
because there is a transition in which the tracer migrates ahead of the mean flow since
more tracer is released in higher permeability regions. We have quantified the extent of
the distance advanced ahead of the mean flow.

We have applied our results in the context of subsurface flows, demonstrating that,
depending primarily on the thickness of the aquifer, the migration of tracer is controlled by
advection in thicker layers whilst shear dispersion is the dominant mechanism in thinner
layers. The difference is important for accurately interpreting the results of tracer tests.
In the case that advection dominates, the concentration observed at a production has a
significant discontinuity if the tracer has interacted with the nose owing to the ‘folding’
associated with the nose. In a thinner aquifer, the concentration observed will increase and
then decrease if the tracer has not yet interacted with the nose or will slowly decrease in
time if the half-Gaussian regime has developed following interaction with the nose. Our
results also suggest that encapsulated chemical agents could be added to the injected fluid
at later times but still reach the front of the displacement, where they may be activated to,
for example, alter the viscosity or surface tension.

In Part 2, we consider the case of a growing nose when the injected fluid is of relatively
low viscosity (Hinton & Woods 2020).
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Appendix A. Mixed nose

We consider here the migration of tracer in the case that the interface consists of a
growing region and a region of fixed extent (see figure 5b). This situation does not occur
in a uniform aquifer. The results are different to those in a full growing nose because
the thickness of the current does not tend to zero; shear dispersion remains important.
The fixed region provides a boundary to the migration of tracer, similar to the full fixed
interface.

The fixed region is downstream of the growing region and advances with constant
velocity vs > 1 and height hs < 1 (see figure 16). The growing region is supplied by fluid
from upstream. Tracer enters the growing region where it has horizontal velocity (2.4)

u = k(y)
m + (1 − m)ψ(h)

(A 1)

because the influence of buoyancy is neglected. The tracer becomes vertically
homogenised owing to the cross-channel diffusion and reaches the nose (see figure 16).
The extent of tracer grows in proportion to t1/2 whilst the nose grows in proportion to t.
Therefore, in the region occupied by the tracer, the thickness of the flow is approximately
a constant, equal to the thickness of the fixed region, hs.

We expect shear dispersion, driven by the cross-channel linear variation in velocity, to
play an important role in the along-channel dispersion of tracer. Near the fixed region, the
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FIGURE 16. The positions of 1000 particles relative to the mixed interface at six times.
(a) Particles at release. (b) Dispersion dominated by advection owing to the shear. (c) Shear
dispersion becomes important. (d) Particles become vertically well mixed; the direction of the
shear can no longer be seen. Particles begin to spread to the interface. (e, f ) The interface provides
a no-flux boundary and the distribution becomes asymmetric. The mean distance of tracer behind
the fixed nose region is a constant until tracer spreads to the interface.

velocity difference across the tracer distribution is

Δu = Δkhs

ψ(hs)+ m(1 − ψ(hs))
. (A 2)

The contribution to longitudinal dispersion from the linear shear is

Δu2h2
s

120D = Δk2h4
s

120[ψ(hs)+ m(1 − ψ(hs))]2D = v2
s Δk2h4

s

120[1 + Δk(hs − 1)]2D . (A 3)

Note that the depth, hs, and the position of the leading contact point, vst, depend on Δk
and m (see Hinton & Woods 2018). In the limit that the mixed nose becomes a full fixed
nose, where the fixed region deepens to occupy the entire aquifer, hs → 1 and vs → 1, we
recover the coefficient for the full fixed region

Δk2

120D . (A 4)
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The effective dispersion coefficient in the mixed nose is

D + v2
s Δk2h4

s

120[1 + Δk(hs − 1)]2D . (A 5)

Appendix B. Continuous release of tracer in the case of a fixed nose

In some applications, tracer may be continuously added to the injectate from a time
t = tR onwards, rather than instantaneously releasing a pulse of tracer. For example, in
enhanced oil recovery it may be the case that the source of injected water is changed and
the new water contains a solute or a different polymer is added to the water sometime after
injection begins. To understand the migration of tracer in this case we can use the model
from § 2; we use the concentration of tracer in the input fluid as the scale for C so that in
dimensionless terms c = 1 at release.

We consider the migration of tracer post-homogenisation and neglect the adjustment
time to this regime. The evolution of the tracer concentration evolves according to the
diffusion equation with coefficient Deff and boundary condition c → 1 as χ → −∞ and
initial condition c = 0 for χ > 0. At times when the influence of the nose on the tracer
migration is negligible, the system has a similarity solution with

c = f (η), η = χ/(Deffτ)
1/2. (B 1a,b)

This can be recast as

c(χ, τ ) = 1
2

erfc
[
χ/(4Deffτ)

1/2] . (B 2)

The tracer diffuses towards the fixed nose and, as discussed in the main text, at later
times the nose acts as a no-flux boundary

∂c
∂χ

= 0 at χ = lR. (B 3)

By considering the fluid injected before the release of tracer, we can obtain the
conservation of mass condition

∫ lR

−∞
(1 − c) dχ = lR. (B 4)

At times long after tracer has reached the nose, the dispersion of tracer becomes
independent of the initial distance between the tracer and the nose, lR. The tracer
subsequently spreads in a self-similar fashion with the length scale from the nose growing
in proportion to (Deffτ)

1/2. Combining this with the boundary conditions, (B 3) and c → 1
as χ → −∞ and mass conservation (B 4) motivates the similarity variables

c = 1 − [Deff(τ + τ1)
]−1/2

g(ξ), ξ = (χ − lR)/
[Deff(τ + τ1)

]1/2
, (B 5a,b)

where, analogous to the finite release, τ1 is a constant associated with the time for a
transition to this similarity solution. The shape function g(ξ) has boundary conditions
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FIGURE 17. Concentration of tracer in travelling coordinates, χ = x − τ , for the continuous
release of tracer in t ≥ tR. The fixed travelling interface between the two fluids is at χ = lR = 5
and Deff = 0.005. The concentration is calculated using the superposition technique (B 8) and
plotted at four times.

g → 0 as ξ → −∞ and g′(0) = 0, with mass conservation∫ 0

−∞
g dξ = lR. (B 6)

The late-time solution for the concentration is

c = 1 − lR√
πDeff(τ + τ1)

exp
[

(χ − lR)
2

4Deff(τ + τ1)

]
. (B 7)

We observe that Barenblatt’s technique of superposing two early-time solutions can be
utilised again. Consider the release of tracer in χ < 0 and χ > 2lR, then the concentration
is (see (B 2))

c = 1
2

erfc
[
χ/(4Deffτ)

1/2] + 1
2

erfc
[
(2lR − χ)/(4Deffτ)

1/2] , (B 8)

which satisfies the initial conditions, mass conservation and the boundary conditions;
c → 1 as χ → −∞ and ∂c/∂χ = 0 at χ = lR. In fact, (B 8) provides an exact solution for
the tracer concentration at all times. We plot the concentration at four times in figure 17,
using (B 8).

To determine the constant, τ1, we compare the superposed solution (B 8) with the
late-time solution (B 7) in the same limits as in § 4. We expand (B 7) as a series in
τ1/τ 	 1 and (B 8) as a series in lR/(χ − lR) 	 1 in order to obtain

τ1 = l2
R/6D. (B 9)

Appendix C. Calculation of the moments of the tracer concentration distribution
prior to the interaction with the nose

To study the distribution of tracer in the along-flow direction, we calculate the moments
of the distribution. We follow the method of Aris (1956) and define

cp(y, τ ) =
∫ ∞

−∞
χ pc(χ, y, τ ) dχ, (C 1)

mp(τ ) = cp =
∫ 1

0
cp dy, (C 2)
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for any integer p. We can obtain an equation for cp by multiplying (4.2) by χ p and
integrating over the entire extent of the aquifer (assuming the nose is far from the zone
occupied by the tracer)

∂cp

∂τ
= D ∂

2cp

∂y2
+ Dp(p − 1)cp−2 + pk̃(y)cp−1. (C 3)

Then, integrating over the thickness of the aquifer yields

dmp

dτ
= Dp(p − 1)cp−2 + pcp−1k̃(y), (C 4)

where an overline represents the integral:

φ(χ, τ) =
∫ 1

0
φ(χ, y, τ ) dy. (C 5)

Since a vertically uniform pulse of tracer is released from χ = 0 at τ = 0 we obtain the
following initial conditions:

c0(y, 0) = 1, cp(y, 0) = 0 for p ≥ 1, (C 6)

m0(0) = 1, mp(y, 0) = 0 for p ≥ 1. (C 7)

Note that m0(τ ) ≡ 1 owing to conservation of tracer. We also have the boundary conditions
∂cp/∂y = 0 at y = 0 and y = 1 as there is no flux into the boundary.

The equation for c0 is (see (C 3))

∂c0

∂τ
= D ∂

2c0

∂y2
. (C 8)

Combining (C 8) with the initial condition (C 6), we obtain c0(y, τ ) ≡ 1. Substituting this
into the equation for the first moment (C 4) yields m1(τ ) ≡ 0 i.e. the centre of mass of the
tracer is at χ = 0.

Before launching into the calculation for the second moment, it is useful to define the
function (cf. (2.5))

ψ̃(y) =
∫ y

0
k̃(s) ds, (C 9)

and Ψ̃ (y) is defined to be the anti-derivative of ψ̃(y) where the constant of integration is
chosen so that Ψ̃ (y) = 0.

The governing equation (C 3) for c1 is

∂c1

∂τ
= D ∂

2c1

∂y2
+ k̃(y), (C 10)

which has solution

c1(y, τ ) =
∞∑

n=1

bn cos(nπy) exp
[−n2π2Dτ ] − (1/D)Ψ̃ (y), (C 11)

where we have used the no-flux conditions and initial condition (C 6). The terms with
coefficients bn comprise the complementary function, whilst the last term is the particular
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integral. The initial condition (C 6) requires that the coefficients satisfy the following
equation:

∞∑
n=1

bn cos(nπy) = (1/D)Ψ̃ (y). (C 12)

The equation for the evolution of the second moment is (see (C 4))

dm2

dτ
= 2D + 2c1k̃(y). (C 13)

Upon substituting our expression for c1 (C 11), we obtain

dm2

dτ
= 2D − (2/D)k̃(y)Ψ̃ (y)+ 2

∞∑
n=1

bn cos(nπy) exp
[−n2π2Dτ ] k̃(y). (C 14)

We integrate with respect to time to obtain

m2(τ )− m2(0) = 2(D + κ/D)τ + 2
∞∑

n=1

bn

n2π2D cos(nπy)
{
1 − exp

[−n2π2Dτ ]} k̃(y),

(C 15)

where

κ =
∫ 1

0
ψ̃(y)2 dy, (C 16)

which is obtained from integrating −k̃(y)Ψ̃ (y) by parts. To determine the late-time
behaviour of the second moment we neglect the exponential terms in (C 15). Then we
integrate by parts twice in the summand and substitute (C 12) for the coefficients to obtain
the late-time expression

m2(τ ) = 2Deffτ − 2λ
D2
, (C 17)

where
λ = Ψ̃ (y)2, (C 18)

and
Deff = D + κ/D (C 19)

is the effective diffusion coefficient.

Appendix D. Barenblatt’s technique for determining the adjustment time, τ1, to a
half-Gaussian

We first recall the exact superposed solution (4.17) for the dispersion of vertically
homogenised tracer in χ < lR with no-flux boundary condition at χ = lR:

c = [
4πDeffτ

′]−1/2
[

exp
( −χ 2

4Deffτ ′

)
+ exp

(−(χ − 2lR)
2

4Deffτ ′

)]
, (D 1)

where τ ′ = τ − τ0. We match (D 1) at late times (τ ′ � l2
R/Deff) to our solution on a

semi-infinite domain (4.20) to determine τ1. Expanding (4.20) in τ1/τ
′, which is small
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at late times, yields

c = exp(−(χ − lR)
2/4Deffτ

′)
(πDeffτ ′)1/2

{
1 +

[
(χ − lR)

2

4Deffτ ′ − 1
2

]
τ1

τ ′ + O
(
τ 2

1

τ ′2

)}
. (D 2)

We expand the exact solution (D 1) in lR/|χ − lR|, which is small at late times because the
extent of the tracer distribution becomes much larger than lR. This yields

c = exp(−(χ − lR)
2/4Deffτ

′)
(πDeffτ ′)1/2

×
{

1 +
[

−(χ − lR)
2

4Deffτ ′ + (χ − lR)
4

8D2
effτ

′2

]
l2
R

(χ − lR)2
+ O

[
l4
R

(χ − lR)4

]}
. (D 3)

The leading-order terms in (D 2) and (D 3) are identical. Comparing the second-order
terms in (D 2) and (D 3) determines the transition time

τ1 = l2
R

2Deff
. (D 4)
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