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ABSTRACT. We investigate the appropriateness of calving or crevasse models from the literature using
linear elastic fracture mechanics (LEFM). To this end, we compare LEFMmodel-predicted stress intensity
factors (SIFs) against numerically computed SIFs using the displacement correlation method in conjunc-
tion with the finite element method. We present several benchmark simulations wherein we calculate
the SIF at the tips of water-filled surface and basal crevasses penetrating through rectangular ice slabs
under different boundary conditions, including grounded and floating conditions. Our simulation
results indicate that the basal boundary condition significantly influences the SIF at the crevasse tips.
We find that the existing calving models using LEFM are not generally accurate for evaluating SIFs in
grounded glaciers or floating ice shelves. We also illustrate that using the ‘single edge crack’weight func-
tion in the LEFM formulations may be appropriate for predicting calving from floating ice shelves, owing
to the low fracture toughness of ice; whereas, using the ‘double edge crack’ or ‘central through crack’
weight functions is more appropriate for predicting calving from grounded glaciers. To conclude, we rec-
ommend using the displacement correlation method for SIF evaluation in real glaciers and ice shelves
with complex geometries and boundary conditions.
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1. INTRODUCTION
Iceberg calving from marine-terminating glaciers and ice
shelves accounts for ∼50% of the mass lost from both the
Greenland and Antarctic ice sheets (Jacobs and others,
1992; Bigg, 1999; Rignot and others, 2008, 2013; Logan
and others, 2013; Liu and others, 2015). Calving from floating
ice shelves or ice tongues can critically disrupt the stability of
ice sheets and glaciers by diminishing the ice shelves’ buttres-
sing force and promoting further retreat and glacier speed up
(MacGregor and others, 2012). However, calving is a natural
process that occurs when a combination of surface and basal
crevasses (fractures) propagates through the entire thickness
of the ice shelf or glacier, leading to the formation of icebergs.
Hydro-fracture, the process in which ice is fractured by the
pressure of water in crevasses, plays an important role in
iceberg calving in marine-terminating glaciers, and the
calving rate has been linked to surface meltwater availability
and warm ocean waters (Benn and others, 2007; Nick and
others, 2010). DeConto and Pollard (2016) argued that
contributions of at least a meter to sea-level rise within the
21st and 22nd century are plausible when iceberg calving is
linked to climate dynamics through processes such as
hydro-fracturing in surface and basal crevasses. Given the
broader societal implications that calving has for future sea-
level rise, researchers have recently used linear elastic fracture
mechanics (LEFM) models in conjunction with numerical ice-
sheet models to improve the simulation of crevasse propaga-
tion and iceberg calving (Krug and others, 2014; Yu and
others, 2017). The objective of this paper is to investigate
(using the finite element method) whether the evaluation of
the stress intensity factor in the calving (or crevasse) models
using LEFM (van der Veen, 1998a, b; Krug and others, 2014)
is appropriate for grounded glaciers and floating ice shelves.

The LEFM approach to modeling the propagation of frac-
tures in brittle materials is based on the mathematical theory
of elasticity, which states that the stresses asymptotically tend
to infinity at the crack tip (i.e., stress singularity). A material
cannot realistically sustain infinite stress, and in true scen-
arios, the stresses close to the crack tip are bounded by a
plastic or cohesive zone (Dugdale, 1960). Even so, if the
size of the plastic zone is sufficiently small (e.g., as in
brittle failure of ice), then LEFM is appropriate for describing
fracture propagation. According to LEFM theory (Griffith,
1921), the crack grows when the strain energy released by
crack propagation is equal to the surface energy required
to expand the crack. The so-called Griffith energy or critical
strain energy release rate is a material property that represents
the energy released per unit distance as the crack grows. In
practice, however, it is more common to describe crack
growth in terms of the stress intensity factor (SIF) in relation
to the critical SIF (also called fracture toughness), which is
a material property inherently related to the Griffith energy.
The stress intensity factor (not to be confused with the
stress concentration factor) was introduced by Irwin (1957)
to characterize the state of stress within the vicinity of a
crack tip in an elastic material under applied loading. The
SIF is a function of the loading conditions, domain geometry,
crack orientation, and crack size and is directly proportional
to the applied stress and the square root of crack size.
The crack will propagate when the SIF is greater than the crit-
ical SIF, thus providing a simple failure criterion for brittle
materials. However, it is questionablewhether LEFM is appro-
priate for modeling crevasse or rift propagation in glacier ice,
whose nonlinear viscous rheology is better described by the
Glen’s flow law over long timescales (Cuffey and Paterson,
2010). In this context, damage mechanics approaches hold
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promise for modeling creep fracture in viscous/viscoelastic
ice (Pralong and Funk, 2005; Duddu and Waisman, 2013;
Mobasher and others, 2016; Jiménez and others, 2017), but
they are computationally more expensive than the LEFM
approaches.

Despite its limitations, the SIF-based LEFM approach has
been widely applied by the glaciology community to
predict the penetration depth of water-filled crevasses
through glaciers (see Colgan and others, 2016, for an in-
depth review). The advantage of the LEFM models is that
they provide both a physical basis for estimating crevasse
penetration depths and computational efficiency for imple-
mentation into numerical ice-sheet models. Smith (1976)
first proposed a simple LEFM model for estimating the pene-
tration depth of water-filled crevasses based on the assump-
tion that ice thickness is infinite, but it is applicable only
when the crevasse depth is much less than the ice thickness.
To account for the finite ice thickness of glaciers, van der
Veen (1998a, b) proposed a LEFM model that incorporated
weight functions into the SIF evaluation, as given by Tada
and others (1973, 2000). Recently, Krug and others (2014)
employed a more accurate weight function into the SIF
evaluation, as given by Glinka and Shen (1991); Moftakhar
and Glinka (1992a). However, these weight functions were
originally formulated for evaluating the SIF for a rectangular,
finite-width plate with a single edge-crack subjected to far-
field uniaxial normal stress, which may not be suited for cre-
vasses within grounded glaciers or ice shelves owing to dif-
ferences in boundary conditions. Therefore, in this paper,
we investigate the appropriateness of the SIF functions used
in van der Veen (1998a, b); Krug and others (2014), for
water-filled surface and basal crevasses in idealized rect-
angular ice slabs with different basal boundary conditions.

The rest of the paper is organized as follows: first, we will
review the weight function method, the equations for
evaluating the SIF in van der Veen (1998a, b) and Krug and
others (2014) LEFM models and the finite element method-
based evaluation of the SIF using the displacement
correlation method (Gupta and others, 2017); second, we
will compare the SIFs computed numerically against those
calculated from the analytical LEFM models and illustrate
their suitability in relation to the basal boundary condition;
finally, we will provide a few concluding remarks regarding
the modeling of calving in ice-sheet models. Thus, we
explore the reasons for the discrepancy between analytically
and numerically evaluated SIFs in existing crevasse/calving
models using LEFM and we address the broader implications
of this discrepancy for calving models applied to grounded
glaciers with different basal boundary conditions and floating
ice shelves.

2. LEFM MODELS AND METHODS

2.1. Stress state in ice
Throughout this paper,we consider a rectangular ice slabwith
height H and length L with water-filled surface and/or basal
crevasses, as depicted in Figure 1. Typically, crevasse
opening is regarded as mode I fracture driven by the longitu-
dinal (horizontal) normal stress σxx through the ice thickness,
which is dependent on the boundary conditions. In a freely
floating ice shelf (i.e., no tangential traction at the base), the
far-field horizontal Cauchy (normal) stress σxx varies linearly
with depth, assuming that ice is incompressible and the
Glen’s law viscosity coefficient is a constant (Weertman,
1957). This longitudinal stress can bedecomposed into ‘resist-
ive’ and lithostatic components as (van der Veen, 1998a)

σxxðzÞ ¼ Rxx � ρig〈H� z〉; (1)

where Rxx is the so-called resistive stress which is directly
related to the deviatoric stress, ρi is the density of ice, g is
the acceleration due to gravity, z is the vertical coordinate
measured from the bottom of the domain, and the Macaulay
brackets 〈x〉= (|x|+ x)/2. The resistive stress becomes con-
stant with depth in the ‘far-field’ region of the domain (i.e.,
far from the terminus and the grounding line) and can be
determined by applying a depth-integrated force balance,
that is, we equate the depth-integrated Cauchy stress with
the depth-integrated terminus pressure (Bassis and Walker,
2012) to obtain

Rxx ¼ 1
2
ρigH� 1

2
ρwg

h2w
H

; (2)

where ρw= 1020 kg m−3 is the density of seawater and hw is
the seawater depth at the glacier terminus. The key concept
here is that the far-field normal stress and the resistive stress
are constitutively independent so long as incompressibility
of ice deformation is assumed. Consequently, a linear
elastic material model is sufficient to describe the stress state
in ice in the far-field regions.

To account for the hydraulic pressure exerted on the crack
walls in water-filled crevasses, we introduce an additional
loading term

σwðzÞ ¼ ρwg〈hs � ðz� zsÞ〉; in surface crevasses
ρwg〈hw � z〉; in basal crevasses;

�
(3)

where hs and zs are the water height within the surface cre-
vasse and the vertical coordinate of the surface crevasse
tip, respectively. Because the hydraulic pressure acts to
open the crack walls, it is assumed that σw exerts a positive
(tensile) stress. The net longitudinal stress that causes cre-
vasse opening is given by (Jezek, 1984; Nick and others,
2010; Bassis, 2011)

σnetðzÞ ¼ σxxðzÞ þ σwðzÞ
¼ Rxx � ρig〈H� z〉þ σwðzÞ

(4)

Equations (1)–(4) are still valid for an idealized rectangular
grounded glacier with free-slip (i.e., no tangential traction)
at the base and without any lateral drag from the sides (van
der Veen, 1998a); however, these equations are not valid
for a rectangular grounded glacier that is either frozen to
the bedrock or subjected to basal friction.

Fig. 1. Rectangular glacier with height H, length L, seawater level
hw, surface crevasse depth ds, water level hs within the surface
crevasse and basal crevasse depth db. The origin is set at the
lower-left corner with x and z denoting the horizontal and vertical
coordinates, respectively.
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2.2. Weight function method
In the analytical LEFM models, the stress intensity factor (SIF)
is often calculated using the weight function method
(Bueckner, 1970; Rice, 1972). The mode I SIF, denoted KI,
is evaluated by integrating a generic weight function m(z, t,
d) and the normal stress σ(z) along the potential crack
surface over its length d as (Glinka and Shen, 1991)

KI ¼
Z d

0
mðz; t;dÞσðzÞ dz: (5)

where t is a geometry parameter (e.g., width or thickness) of
the cracked body. This method can be extended to problems
where the loading is applied not just on the crack surface, but
also on the exterior boundaries using the principle of linear
superposition. As shown in Figure 2, the linear elastic stress
state in Case a (with a traction-free crack and applied far-
field stress) can be obtained by superposing the stress state
in Case b (without a crack and applied far-field stress) and
Case c (with traction loading only on the crack surface).
Therefore, the SIF at the tip of the crack in Case a is equal
to the SIF in Case c, so it can be computed using (5) if
the appropriate weight function is known. Petroski and
Achenbach (1978) proposed a general method for deriving
the weight function m(z, t, d), which was later extended by
several researchers to improve the accuracy of SIF evaluation
(see Glinka and Shen 1991 for more details). Thus, the
advantage of the weight function method is that the SIF for
any complex stress field applied to the body can be easily
calculated by (numerical) integration; however, it is import-
ant to note that the weight function should be determined
appropriately for the particular geometry of the cracked
body and boundary conditions.

From a glaciology standpoint, three idealized cases of a
finite-thickness cracked rectangular slab becomes relevant
in two dimensions:

(1) the single edge crack case, shown in Figure 3(a), which
represents a surface or basal crevasse in a floating ice
tongue or ice shelf;

(2) the central through crack case, shown in Figure 3(b),
which represents a basal crevasse in a grounded glacier
with free tangential slip;

(3) the double edge cracks case, shown in Figure 3(c), which
represents a surface crevasse in a grounded glacier with
free tangential slip.

We note that the single edge crack case is not an exact
analogy to a crevasse in a floating ice shelf because of the
buoyancy force on the basal boundary. We also note that
in the central through crack and double edge cracks cases,
the horizontal line of symmetry represents the free slip

basal surface of the glacier. In the following sections, we
will describe three analytical LEFM models for evaluating
crevasse penetration depths in grounded glaciers and floating
ice shelves that employ different weight functions derived for
the single edge crack case. In Appendix A, we provide the
weight functions mC(z, H, d) and mD(z, H, d) corresponding
to the central through crack and double edge cracks cases,
respectively.

2.3. van der Veen (1998a) LEFM model
The LEFMmodel presented by van der Veen (1998a) was ori-
ginally applied to determine the penetration depth of dry and
water-filled surface crevasses in glaciers. For an assumed cre-
vasse penetration depth ds, the net mode I SIF Knet

I at the
crack tip can be evaluated as

Knet
I ¼ Kð1Þ

I ðRxx;dsÞ þ Kð2Þ
I ðdsÞ þ Kð3Þ

I ðhs;dsÞ; (6)

where Kð1Þ
I , Kð2Þ

I and Kð3Þ
I are the SIFs resulting from the resist-

ive stress, ice overburden pressure and water pressure within
the crevasse, respectively. Using the weight function
method, these terms can be evaluated as

Kð1Þ
I ¼ FðλÞRxx

ffiffiffiffiffiffiffi
πds

p
; (7)

Kð2Þ
I ¼

Z ds

0

�2ρigz
0ffiffiffiffiffiffiffi

πds
p Gðλ; γÞ

� �
dz0; (8)

Kð3Þ
I ¼

Z ds

0

2ρwg〈z
0 � h0〉ffiffiffiffiffiffiffi

πds
p Gðλ; γÞ

� �
dz0; (9)

where z′=H− z is the vertical coordinate measured from
the top of the glacier, and the depth of the dry portion of a
water-filled crevasse h′= ds− hs. Because the resistive
stress Rxx is not a function of depth, (7) gives the integrated
weight function F(λ). The expressions for the weight functions
F(λ) and G(λ, γ) are provided in Appendix B. The parameters
λ= ds/H and γ= z′/ds, and thus λ accounts for finite domain
size (i.e., ice thickness). It is important to note that these
weight functions were originally derived for a rectangular
finite-width plate with a single edge crack under applied
far-field normal stress (Tada and others, 1973, 2000), as
depicted in Figure 3(a), so they are not generally applicable
for all loading configurations and domain boundary
conditions.

2.4. van der Veen (1998b) LEFM model
The LEFMmodel presented by van der Veen (1998b) was ori-
ginally applied to determine the penetration depth of water-
filled basal crevasses in glaciers. The key difference between

Fig. 2. Superposition principle demonstrated in domains a, b and
c. The dashed line in domain b indicates a potential crack surface.

Fig. 3. (a) Single edge crack, (b) central through crackand (c) double
edge cracks through finite slabs of width H with crack length d. The
magenta arrows indicate applied loading on the crack surface. The
(dashed) lines of symmetry in (b) and (c) represent the free slip
basal surface of the glacier.
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the van der Veen (1998a) and van der Veen (1998b) models
is that the latter only uses the weight function G(λ, γ) and
applies it to the net Cauchy stress σnet defined in (4). Using
the weight function method the net SIF is evaluated as

Knet
I ¼

Z db

0
2
σnetðzÞffiffiffiffiffiffiffiffi

πdb

p Gðγ; λÞ
" #

dz: (10)

In the above equation, we can numerically integrate the inte-
grand along the depth of the basal crevasse, that is, from the
base of the glacier at z=0 to the tip of the basal crevasse at
z= db. The equation may also be applied to compute Knet

I
at the tip of a water-filled surface crevasse by integrating
along the depth of the surface crevasse, that is, from the tip
of the surface crevasse at z= zs to the top surface of the
glacier at z=H.

2.5. Krug and others (2014) LEFM model
The LEFM model applied by Krug and others (2014) is similar
to the van der Veen (1998b) model in that the net Cauchy
stress is multiplied by a single weight function and integrated
over the depth of the crack to obtain the net SIF. Thus, using
the weight function method, net SIF at the tip of a surface cre-
vasse is calculated as

Knet
I ¼

Z ds

0
βðz0;H;dsÞσnetðz0Þ dz0 (11)

and at the tip of a basal crevasse is calculated as

Knet
I ¼

Z db

0
βðz;H;dbÞσnetðzÞ dz (12)

where β is the universal weight function provided in
Appendix C (Glinka, 1996). The term ‘universal weight func-
tion’ is slightly deceiving here because the parameters Mi in
the expression for β (see Appendix C) change with the geom-
etry and boundary conditions of the cracked body.
Moftakhar and Glinka (1992b) reported different high-order
polynomial functions for the parameters Mi using the least
squares fitting technique to match the weight functions corre-
sponding to different geometries of the cracked body and
boundary conditions (i.e., symmetric versus unsymmetric
plates). Although the LEFM model discussed in Krug and
others (2014) used the universal weight function, it only
considered the parameters Mi for the single edge crack
case for a rectangular slab with finite thickness, as depicted
in Figure 3(a).

2.6. Displacement correlation method
The displacement correlation method (DCM) is a simple
technique for computing the SIF at the crack tip using the
crack opening displacements obtained from the finite
element method (Banks-Sills and Sherman, 1986). For an iso-
tropic, homogeneous linear elastic solid, the SIF can be
approximated as

K�
I ðrÞ ¼

ffiffiffiffiffiffi
2π
r

r
μ

κ þ 1
½½unðrÞ��; (13)

where ½½unðrÞ�� ¼ uþn ðrÞ � u�n ðrÞ is the jump in the normal
component of the displacement across the crack surface

(i.e., crack opening displacement) and is computed by
taking the difference between normal displacements uþn ðrÞ
and u�n ðrÞ along opposing crack surfaces at a distance r
from the crack tip. The parameter μ= E/(2(1+ ν)) is the
shear modulus; E is the Young’s modulus; ν is the Poisson’s
ratio; and κ= 3− 4ν is the Kolosov constant. In the above
equation, the * in the superscript indicates that the SIF
approximation has first order accuracy (i.e., OðrÞ error).
However, by applying a Richardson extrapolation (Heath,
1997), the SIF can be computed with second order accuracy
(i.e., Oðr2Þ error) as

Knet
I ¼ K�

I ðraÞ þ
ra

rb � ra
K�
I ðraÞ � K�

I ðrbÞ
� �

; (14)

where K�
I ðraÞ and K�

I ðrbÞ are the SIFs (with first order accur-
acy) computed at two different locations with radii ra and
rb, where rb> ra. To compute the SIF using the DCM in con-
junction with the finite element method, we first solve the
governing equations of the elasticity boundary value
problem in the rectangular ice domain and obtain the dis-
placement vector field u at the finite element nodes. Next,
we compute the crack opening displacement ½½unðrÞ�� ¼
½½uðrÞ�� � n at any two locations r= ra and r= rb along the
crack, where n is the unit vector normal to the crack interface
and the dot (·) denotes the scalar product of vectors. Finally,
we apply (13) and (14) to compute Knet

I . The advantage of the
DCM is that it is simpler to implement than the J-integral
(Rice, 1968) and gives consistent results even when the
crack surfaces are subjected to hydraulic pressure (Gupta
and Duarte, 2018). For a more detailed review of the DCM
and its advantages over other numerical techniques for SIF
evaluation, the reader is referred to Gupta and others (2017).

3. NUMERICAL RESULTS
In this section, we compare the net SIFs calculated from the
calving models using LEFM (van der Veen, 1998a,b; Krug
and others, 2014) against the net SIFs calculated using the
DCM in conjunction with finite element analysis for cre-
vasses in grounded glaciers and floating ice shelves. For
grounded glaciers, we consider two extreme scenarios for
the basal boundary condition, namely, free slip along the
flat bedrock surface and fixed (i.e., frozen) to the bedrock
surface. We also consider different seawater depths at the
terminus for marine-terminating grounded glaciers. For con-
ducting finite element analysis, we utilize the open source
software FEniCS (Alnæs and others, 2015) and apply
mixed-order finite elements to avoid volumetric locking
resulting from the incompressibility of ice deformation. We
use a total-Lagrangian reference frame so as to be consistent
with the small deformation assumption of analytical LEFM
models. The material properties for incompressible, linear
elastic ice are taken as follows: the elastic modulus E=
9500 MPa, the Poisson’s ratio ν= 0.5, and the density of
ice ρi= 917 kg m−3. To obtain the SIF from the analytical
models, we apply (5)–(12) and employ Simpson’s rule for
numerical integration. For the single edge crack case, we
utilize the weight functions described in the calving models
(van der Veen, 1998a, b; Krug and others, 2014); whereas
for the double edge cracks and central through crack cases,
we apply (5) and substitute in the appropriate weighting func-
tions mD(z, H, d) and mC(z, H, d) from Appendix A.
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3.1. SIF evaluation in grounded glaciers with free slip
at the base
Our aim in this section is to demonstrate using the finite
element method and the DCM that the SIFs calculated by
the LEFM models of van der Veen (1998a, b); Krug and
others (2014) are consistent with the edge-loaded cantilever
beam configuration, but are not consistent with the gravity-
loaded grounded slab configuration. Instead, the SIFs calcu-
lated from the double edge cracks case is consistent with the
gravity-loaded grounded slab configuration. In each finite
element simulation, we consider an idealized, rectangular
domain with length L= 1000 m and height H= 125 m
under plane strain assumptions (i.e., the out-of-plane compo-
nent of strain is zero). The domain is subjected to either of the
following two loading configurations:

(1) The gravity-loaded grounded slab configuration, wherein
we apply free-slip boundary conditions at the left and
bottom edges of the domain (indicated by rollers) and
apply gravity loading as a body force with magnitude
ρig in the vertical direction, as illustrated in Figure 4(a).
In the case when seawater pressure is acting at the
glacier terminus, we apply a hydrostatic load with
hydraulic head hw to the right domain edge as a
depth-varying (triangularly) distributed load. This
loading configuration has glaciological significance as
it represents a land or marine-terminating glacier resting
over a free-slip surface and deforming under its self-
weight. We also note that this gravity-loaded grounded
slab configuration is equivalent to the top half of the sym-
metric domain with double edge cracks in Figure 3(c),
because there can be no vertical displacement at the
line of symmetry, but horizontal displacement is allowed.

(2) The edge-loaded cantilever beam configuration, wherein
we apply a free-slip boundary condition at the left
domain edge and apply a depth-varying stress σxx(z, hw)
to the right domain edge as a traction boundary condi-
tion, as illustrated in Figure 4(b). Therefore, the horizontal
Cauchy stress along any vertical section is given by (1)
because there are no applied body forces. To prevent
rigid body translation we restrain or pin the bottom left
corner (indicated by a triangle). Applying the superpos-
ition principle, we can show that this loading configur-
ation is equivalent to the finite-thickness slab with a
single edge crack as shown in Figure 3(a) for the

purpose of evaluating the SIF at the crack tip. This
loading configuration has some glaciological signifi-
cance as it represents a floating ice tongue deforming
under its self-weight; however, a major difference is
that basal boundary of the floating ice shelf has normal
traction due to buoyancy.

The contour plots of longitudinal stress σxx obtained
through finite element analysis for the gravity-loaded
grounded slab and edge-loaded cantilever beam configura-
tions are shown in Figs. 4(c) and 4(d), respectively. We
note that in the far-field (i.e., away from the terminus), σxx
resulting from both loading configurations is identical and
has the same linear variation with depth, described by (1).
However, in the gravity-loaded slab configuration, the
stress distribution is locally affected by the traction-free
edge at the terminus. Therefore, for each simulation we pos-
ition the surface (or basal) crevasse at the point x= L/2, which
is sufficiently far from the terminus so that the edge effects
vanish. Even though the far-field stress is identical for both
configurations, the deformation of the domain and the dis-
placement jump across the crack surface is quite different
as shown in Figure 5. Next, to account for water within the
crevasse, we apply hydrostatic pressure as a Neumann
boundary condition normal to the crack walls in the simula-
tion studies; whereas, in the LEFM models, we assume that
the net horizontal Cauchy stress is given by the expression
in (4) based on the linear superposition principle, as done
in van der Veen (1998a, b); Nick and others (2010).

We now present the net SIF versus crevasse depth curves
for three different cases: dry surface crevasses and water-
filled surface and basal crevasses. In Figure 6–8, we plot
Knet
I at the crack tip for different surface crevasse depths ds

and different basal crevasse depths db for the two previously
described loading configurations. In Figure 6, we plot Knet

I for
dry surface crevasses considering two different seawater
depths hw= 0% and hw= ρi/ρw≈ 90% at the terminus (i.e.,
near-floating); in Figs. 7 and 8, we plot Knet

I for water-filled
surface crevasses and water-filled basal crevasses, respect-
ively, with the near-floating condition at the terminus. The
water-filled surface crevasses are fully filled (i.e., hs/ds=
100%), and the water-filled basal crevasses have a hydraulic
head of hw. The three LEFM models (van der Veen, 1998a, b;
Krug and others, 2014) show good agreement with each
other, but the van der Veen (1998a) model diverges in the

a

c

d

b

Fig. 4. Loading configurations for the (a) gravity-loaded slab and (b)
loaded cantilever beam with H= 125 m and L= 1000 m. The
horizontal Cauchy stress σxx contour resulting from the gravity-
loaded slab and loaded cantilever beam configurations are shown
in Subfigures (c) and (d), respectively, when ds= 0.

a

b

Fig. 5. Deformed shapes of (a) the gravity-loaded slab configuration
and (b) the loaded cantilever beam configuration. The purpose of
these plots is to show qualitatively the deformed configuration and
the crack tip opening. We, therefore, do not show the color bar
for the stress contours.
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hw/H= 0% case with dry surface crevasses (see Fig. 6) owing
to the discrepancy in the use of the weight functions. The
numerically extracted Knet

I using the DCM in the edge-
loaded cantilever beam configuration shows excellent agree-
ment with the three LEFM models; whereas, the numerically

extracted Knet
I in the gravity-loaded grounded slab configur-

ation shows better agreement only when using the weight
functions for the double edge cracks and central through
crack cases for surface and basal crevasses, respectively.
We also make the following observations regarding crevasse
propagation and calving:

(1) the SIFs predicted by the DCM and double edge crack for
dry surface crevasses in land-terminating glaciers (i.e.,
hw/H= 0%) are positive only for ds/H< 95% (see
Fig. 6), so full depth crevasse propagation is not likely
to occur (calving does not occur);

(2) the SIFs predicted by all the LEFM models and the DCM
for dry surface crevasses in near floatation glaciers (i.e.,
hw/H= 90%) are negative (see Fig. 6), so dry surface cre-
vasses located far away from the terminus will not open
or propagate (calving does not occur);

(3) the SIFs at the tips of fully water-filled surface crevasses
are positive regardless of the crevasse depth (see
Fig. 7), which indicates that a fully water-filled surface
crevasse can penetrate through the full depth of a near-
floatation grounded glacier (calving occurs);

(4) the SIFs at the tips of water-filled basal crevasses are posi-
tive only for ds/H< 80% (see Fig. 8), which indicates that
a water-filled basal crevasse cannot penetrate through
the full depth of a near-floatation grounded glacier
(calving does not occur).

The results presented in this section illustrate two import-
ant points: (1) the basal boundary condition (i.e., grounded or
cantilevered) significantly changes the SIF, even though the
net longitudinal stress is the same sufficiently far away from
the terminus; and (2) the weight functions F(λ), G(λ, γ), and
β(z,H, d) in the calving models using LEFM (originally devel-
oped with the assumption that the ice domain is a finite-
thickness rectangular slab with a single edge crack) are
applicable to the edge-loaded cantilever beam configuration,
but not applicable to the gravity-loaded grounded slab con-
figuration. From this, we conclude that the existing calving
models using LEFM are not appropriate for evaluating SIFs

Fig. 6. Mode I net stress intensity factor Knet
I computed at the tip of a

dry surface crevasse with depth ds penetrating through a grounded
glacier with thickness H= 125 m. The word ‘gravity’ indicates that
the DCM result was obtained using the gravity-loaded slab
configuration in the finite element simulation, whereas the word
‘cantilever’ corresponds to the edge-loaded cantilever beam
configuration. The DCM result continues to match the van der
Veen (1998b) and Krug and others (2014) result for ds/H> 0.7 in
the Cantilever subfigures, however, the lines extend beyond the
bounds of the plot.

Fig. 7. Mode I net stress intensity factor Knet
I computed at the tip of a

water-filled surface crevasse with depth ds penetrating through a
grounded glacier with thickness H= 125 m. The seawater level
hw= ρi/ρwH. The word ‘gravity’ indicates that the DCM result was
obtained using the gravity-loaded slab configuration in the finite
element simulation, whereas the word ‘cantilever’ corresponds to
the edge-loaded cantilever beam configuration. The DCM result
continues to match the van der Veen (1998b) and Krug and others
(2014) result for ds/H> 0.7 in the Cantilever Subfigure, however,
the lines extend beyond the bounds of the plot.

Fig. 8. Mode I net stress intensity factor Knet
I computed at the tip of a

water-filled basal crevasse with depth db penetrating through a
grounded glacier with thickness H= 125 m. The seawater level
hw= ρi/ρwH. The word ‘gravity’ indicates that the DCM result was
obtained using the gravity-loaded slab configuration in the finite
element simulation, whereas the word ‘cantilever’ corresponds to
the edge-loaded cantilever beam configuration. The DCM result
continues to match the van der Veen (1998b) and Krug and others
(2014) result for ds/H> 0.8 in the Cantilever Subfigure, however,
the lines extend beyond the bounds of the plot.
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at surface or basal crevasses in grounded glaciers, except for
shallow crevasses (i.e., ds/H< 30% or db/H< 20%).

3.2. SIF evaluation in grounded glaciers frozen to
bedrock
In each simulation, we consider the same rectangular ice slab
as before with length L= 1000 m and height H= 125 m
under plane strain assumptions, but we apply a no-slip
basal boundary condition by restricting both vertical and
horizontal movement, as shown in Figure 9. Roller boundary
conditions are applied to the left domain edge to prevent hori-
zontal motion, and hydrostatic pressure is applied to the right
domain edge with seawater height hw. Because we do not
have an analytical solution for the depth-varying horizontal
Cauchy stress σxx(z) ((1) is not valid for this loading scenario,
we supply the σxx(z) profile obtained from finite element simu-
lations into the LEFM models to compute the SIFs. Thus, we
follow the approach used to incorporate the calving models
using LEFM into numerical ice-sheet models (Krug and
others, 2014; Yu and others, 2017). Specifically, we take the
σxx profile at the point x= L/2, which is sufficiently far from
the terminus so that edge effects on the stress distribution
vanish. We then determine the best-fit polynomial for this
far-field σxx(z) as function of depth and use it to calculate the
net mode I SIF using the weight function method.

We now present the net SIF versus crevasse depth curves
for two different cases: dry surface crevasses and water-filled
surface crevasses. In Figs. 10 and 11, we plot Knet

I at the crack
tip for different surface crevasse depths ds while considering
seawater depths hw/H= 0% and hw/H= ρi/ρw≈ 90%
(i.e, near-floatation) at the glacier terminus. Hydrostatic pres-
sure is applied along the crevasse walls with hydraulic head
hs/ds= 100% using a Neumann boundary condition. For
both values of hw, the numerically extracted Knet

I shows
better agreement with the LEFM approach when using
weight functions for the double edge cracks case rather
than the single edge crack case. We also make the following
observations regarding crevasse propagation and calving:

(1) the SIFs predicted by all models at the tips of dry surface
crevasses are negative regardless of the seawater depth
hw (see Fig. 10), which means that dry surface crevasses
located far away from the terminus will not propagate in
grounded glaciers frozen to the bedrock (calving does
not occur);

(2) the SIFs in water-filled crevasses are positive regardless of
the crevasse depth and seawater depth (see Fig. 11),
which indicates that a water-filled surface crevasse can
penetrate through the full depth of a grounded glacier
frozen to the bedrock (calving occurs).

The results presented thus far illustrate that the calving
models using LEFM are not appropriate for grounded glaciers
with a free slip or no-slip basal boundary condition because
of the inappropriate assumption of weight functions in the SIF
evaluation. This implies that the calving models in their
present form (van der Veen, 1998a, b; Krug and others,
2014) would not be appropriate for grounded glaciers with
frictional slip either.

3.3. SIF evaluation in floating ice shelves
In this section, we investigate whether the existing LEFM
models are appropriate for floating ice tongues or ice
shelves. For each finite element simulation, we consider an
idealized, rectangular domain with length L= 4000 m and
height H= 125 m under plane strain assumptions, as
depicted in Figure 12. A free-slip (roller) boundary condition
is applied to the left edge to prevent horizontal motion. A
Robin-type boundary condition is applied to the bottom
domain edge in order to simulate buoyancy of the floating
ice shelf in seawater (indicated by the purple arrows in
Figure 12). Hydrostatic pressure is applied as a Neumann
boundary condition to the right domain edge with seawater
level hw/H= ρi/ρw, which is the floating depth of ice.
Gravity loading is applied as a body force with magnitude
ρig, resulting in a linear variation of the horizontal Cauchy
stress σxx with depth as described in (1) in the ‘far-field’
region of the domain (i.e., sufficiently far from the terminus
and the grounding line). For each simulation, we position
the crevasse at x= L/2 where terminus effects vanish so that
the numerically computed σxx matches the theoretical
value in (1). We compute Knet

I at the tip of the crevasse
using each LEFM model assuming the ice shelf is a finite-
thickness slab with a single edge crack (see Fig. 3a).

We now present the SIF versus crevasse depth curves for
three different cases: dry surface crevasses, water-filled
surface and basal crevasses. In Figs. 13–15, we plot Knet

I at
the crack tip for different surface crevasse depths ds and
basal crevasse depths db. In Figure 13, we plot Knet

I for dry

a

b

Fig. 9. (a) Loading configuration for the grounded glacier with
height H= 125 m and length L= 1000 m and a no-slip boundary
condition at the base. (b) Deformed configuration of the grounded
glacier with a water-filled surface crevasse located at x= L/2. The
purpose of this plot is to show qualitatively the deformed
configuration and the crack tip opening. We, therefore, do not
show the color bar for the stress contours.

Fig. 10. Mode I net stress intensity factor Knet
I computed at the tip of

a dry surface crevasse with depth ds penetrating through a grounded
glacier with thickness H= 125 m and a no-slip boundary condition
at the base.
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surface crevasses; and in Figs. 14 and 15 we plot Knet
I for

water-filled surface and water-filled basal crevasses, respect-
ively. The numerically extracted Knet

I shows good agreement
with the LEFM models until the point ds/H= 60%, after
which the LEFM models overestimate the SIF in comparison
with the DCM. Because the net far-field longitudinal stress
(i.e., away from the terminus and the grounding line) is the
same for a floating ice shelf and a grounded glacier of the
same thickness, the SIF versus crevasse penetration depth
curves obtained from the LEFM models are the same in
both cases, which is not correct. The numerically evaluated
SIF versus crevasse depth curves for the floating ice shelf
are indeed different from those for the grounded ice slab,
owing to the difference in the basal boundary condition.
We also make the following observations regarding crevasse
propagation and calving:

(1) the SIFs at the tips of dry surface crevasses are negative
for all depths, as shown in Figure 13, indicating that
such crevasses will not propagate in a floating ice shelf
(calving does not occur);

(2) the SIFs at the tips of water-filled surface and basal cre-
vasses are positive for all depths, as shown in Figs. 14

and 15, indicating that such crevasses will propagate
the entire thickness of a floating ice shelf (calving occurs);

The results presented in this section indicate that the SIFs
at the tips of surface and basal crevasses in a floating ice shelf
are quite different from those in grounded glaciers with free
basal slip, even if the far-field longitudinal Cauchy stress
σxx is the same in both cases. The LEFM models assuming
the domain as a finite-thickness ice slab with a single edge
crack predict SIFs that are in good agreement with those
computed from the DCM for ds/H< 60% or db/H< 60%,
but the two approaches diverge for ds/H> 60% or db/H>
60%. Therefore, we conclude that the calving models using
LEFM in their present form are not entirely appropriate for
evaluating SIFs at the crevasse tips in floating ice shelves
due to the assumption of a traction-free basal boundary
condition. However, from an iceberg calving perspective,
this discrepancy would not significantly affect the outcome
(i.e., whether calving will occur) because both the analytic-
ally and numerically computed SIFs are generally much
greater than the fracture toughness for ice (KIc= 0.1− 0.4
MPa m1/2). Consequently, the calving models presented in
van der Veen (1998a,b); Krug and others (2014) may be
consistently predicting iceberg calving from floating ice
shelves, despite the discrepancy in calculating the SIF.

Fig. 11. Mode I net stress intensity factor Knet
I computed at the tip of

a water-filled surface crevasse with depth ds penetrating through a
grounded glacier with thickness H= 125 m and a no-slip
boundary condition at the base.

a

b

Fig. 12. (a) Loading configuration for the fully floating ice shelf
with height H= 125 m and length L= 4000 m. (b) Deformed
configuration of the fully floating ice shelf with a water-filled basal
crevasse located at x= L/2. The purpose of this plot is to show
qualitatively the deformed configuration and the crack tip
opening. We, therefore, do not show the color bar for the stress
contours.

Fig. 13. Mode I net stress intensity factor Knet
I computed at the tip of

a dry surface crevasse with depth ds penetrating through a floating
ice shelf with thickness H= 125 m. The DCM result continues to
deviate from the van der Veen (1998b) and Krug and others (2014)
result for ds/H> 0.8, however, the lines extend beyond the
bounds of the plot.

Fig. 14. Mode I net stress intensity factor Knet
I computed at the tip of

a water-filled surface crevasse with depth ds penetrating through a
floating ice shelf with thickness H= 125 m. The hydrostatic
pressure within the surface crevasse has a hydraulic head hs= ds
(i.e., fully-filled crevasse).
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4. CONCLUSIONS
In this paper, we reviewed several LEFM models for finite-
thickness rectangular slabs with a single edge crack,
double edge cracks, and a central through the crack. We
considered three calving models using LEFM from the glaci-
ology literature (van der Veen, 1998a,b; Krug and others,
2014) and evaluated their appropriateness for evaluating
the SIF at the tips of surface and basal crevasses within
grounded, cantilevered, and floating ice slabs. Model-
predicted SIFs were compared, against the SIF values obtained
using the DCM together with finite element analysis. The
results of our study reveal several important findings:

(1) The basal boundary condition (e.g., grounded with free
slip at the base, cantilevered, or floating) significantly
changes the SIF, even if the net longitudinal stress in
the far-field (sufficiently far away from the terminus or
the grounding line) is the same;

(2) The weight functions F(λ), G(λ, γ) and β(z, H, d) in the
calving models using LEFM, which were originally devel-
oped assuming the ice slab to be a finite-thickness slab
with a single edge crack and zero traction on the base,
are not applicable to the gravity-loaded grounded glaciers
with free-slip or no-slip (frozen) boundary conditions at
the base, as shown in Figs. 6 – 11. The broader implication
for calving criteria is that the LEFMmodels of van der Veen
(1998a, b); Krug and others (2014) are appropriate only for
certain cases, despite the discrepancies in SIF computation.
For example, in the case where the SIF is negative, the dis-
crepancy does not matter because the crevasse will not
propagate and calving will not occur. Similarly, when the
SIF is positive and greater than the fracture toughness of
ice, the discrepancy does not matter because the crevasse
will propagate full depth and calving occurs.

(3) The calving models using LEFM seem to be appropriate
for surface and basal crevasses in floating ice shelves,
however, discrepancies in model-predicted and numer-
ically-evaluated SIFs arise for deeper crevasses (i.e.,
ds/H> 0.6 and db/H> 0.6), as shown in Figs. 13–15.
The broader implication for calving criteria is that the
LEFM models of van der Veen (1998a, b); Krug and
others (2014) may be appropriate for floating ice
shelves, despite the discrepancies in SIF computation,
for the reasons mentioned above in point 2.

The important finding of this paper is that the calving
models using LEFM (van der Veen, 1998a, b; Krug and
others, 2014) may be appropriate for floating ice tongues

or shelves, but not for grounded glaciers. Therefore, we
wish to caution ice-sheet modelers against applying these
LEFM calving models to grounded glaciers and instead rec-
ommend the use of the correct weight functions provided
in Appendix A. We recognize that calving models using
LEFM are attractive because they can be efficiently incorpo-
rated into numerical ice-sheet models to study large-scale
calving dynamics. Because the SIF evaluation in the LEFM
models is largely dependent on the domain geometry and
boundary conditions (i.e., single edge crack or double edge
cracks), we recommend using numerical techniques for SIF
evaluation within ice-sheet models for real glaciers and ice
shelves with arbitrary geometries and/or boundary condi-
tions. The DCM employed in this paper can provide a
simple and accurate means of evaluating the SIF compared
with other methods, such as the J-integral (Rice, 1968) or
contour integral method (Stern and others, 1976). Because
the calculation of SIFs using the DCM can be done in a per-
fectly parallel manner on high-performance computing plat-
forms, it may be a viable method for implementing calving
laws based on LEFM theory into numerical ice-sheet
models. However, there are a couple of technical questions
relevant to iceberg calving to be addressed in future research:

(1) Knowing that ice behaves like a Maxwell viscoelastic solid
on shorter timescales and like a viscous non-Newtonian
fluid on longer timescales, we do not know whether
LEFM theory is appropriate to model crevasse propagation
within Stokes flow-based ice-sheet models. Specifically, is
it appropriate to calculate SIFs in the small-deformation
LEFM models with the quasi steady-state stress field
obtained by solving the full Stokes equations (or their
approximations) in large-deformation nonlinearly viscous
ice flowmodels?Toaddress this question comprehensively,
we need to apply viscoelastic fracture mechanics theory
and evaluate time-dependent SIFs. This can be accom-
plishedby applying the elastic-viscoelastic correspondence
principle to the associated elastic solution in the Laplace
domain (Garzon, 2013). However, the mathematics of
viscoelastic fracture mechanics can be complicated;
instead, creep damage mechanics within a Stokes flow for-
mulation may provide a computationally viable method
(Jiménez and others, 2017).

(2) Knowing that the failure of ice can be quasi-brittle in
nature, we do not know whether LEFM theory is appro-
priate to model crevasse propagation in glaciers and
ice sheets at very low strain rates. Specifically, is the frac-
ture process zone at the tip of a crevasse sufficiently
smaller than the crevasse length for LEFM theory to be
valid? An approximate estimate of the fracture process
zone size is given by (Hillerborg and others, 1976)

lc ≈
K2
Icð1� n2Þ

σ2
c

: (15)

If we assume Poisson’s ratio ν= 0.35, fracture toughness
KIc= 0.1− 0.4 MPa m1/2 (van der Veen, 1998a) and crit-
ical stress under uniaxial tension σc= 0.01–0.2 MPa
(Pralong and Funk, 2005; Krug and others, 2014), then
lc≈ 0.2–1400 m for glacier ice. The estimated range of
lc indicates the large uncertainty in the size of the fracture
process zone and the limitation of applying LEFM theory
to crevasse propagation. Therefore, to address this
question, a comprehensive validation of LEFM models

Fig. 15. Mode I net stress intensity factor Knet
I computed at the tip of

a water-filled basal crevasse with depth db penetrating through a
floating ice shelf with thickness H= 125 m. The hydrostatic
pressure within the basal crevasse has a hydraulic head hw= 0.9 H.
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against observational data on calving from real glaciers is
necessary. Mottram and Benn (2009) have tested cre-
vasse depth models using a field study at
Breiðamerkurjökull, Iceland, but remarked that measur-
ing crevasse depths accurately is difficult, dangerous
and time-consuming.

Additionally, simulating crevasse propagation using LEFM
theory is sensitive to the location and size of pre-existing cre-
vasses and is computationally cumbersome because it
requires geometry update or re-meshing, as discussed in Yu
and others (2017). To overcome the modeling and numerical
issues associated with the LEFM approach, we support the
development of the creep damage mechanics approach in
conjunction with Stokes flow formulations (Jiménez and
others, 2017) to study crevasse propagation and calving.
Although the damage mechanics approach is computation-
ally more expensive than the LEFM approaches, it can be
implemented in a feasible manner in depth-integrated
shallow shelf formulations (Keller and Hutter, 2014).
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APPENDIX A
The weight function mC(z, H, d) for the finite-thickness slab
with a central through the crack is given as (Tada and
others, 1973, 2000),

mCðz;H;dÞ ¼ 2ffiffiffiffiffiffiffi
2H

p 1þ 0:297

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z

d

� 	2
r(

(A1)

× 1� cos
πd
2H


 �� ��
f

d
H
;
z
d


 �
; (A2)

where z is the coordinate along the length of the crack, H is
half of the slab thickness (see Fig. 3b-c), and d is the crack
length. The function ϕ is given by,

f
d
H
;
z
d


 �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan πd

2H

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos πd

2H

� �

cos πz

2H

� �� �2q : (A3)

Similarly, the weight function mD(z, H, d) for the finite-thick-
ness slab with double edge cracks is given as (Tada and
others, 1973, 2000),

mDðz;H;dÞ ¼ 2ffiffiffiffiffiffiffi
2H

p 1þ f1
z
d

� 	
f2

d
H


 �� �
f

d
H
;
z
d


 �
; (A4)

where the function f1 is given as,

f1
z
d

� 	
¼ 0:3 1� z

d

� 	5=4
� �

; (A5)

and the function f2 is given as,

f2
d
H


 �
¼ 1

2
1� sin

πd
2H


 �� �
2þ sin

πd
2H


 �� �
: (A6)

The weight functions mC(z, H, d) and mD(z, H, d) may be
substituted in place of the term m(z, t, d) in (5) to
compute the stress intensity factor at the tip of a crack
with length d. For either weight function, (5) must be inte-
grated from the base of the crack (z= 0) to the crack tip
(z= d).

APPENDIX B
The weight functions F(λ) used andG(λ, γ) utilized by the van
der Veen (1998a, b) LEFM models are given by,

FðλÞ ¼ 1:12� 0:23λþ 10:55λ2 � 21:72λ3

þ 30:39λ4; (B1)

and

Gðλ; γÞ ¼ 3:52ð1� γÞ
ð1� λÞ3=2

" #
� 4:35� 5:28γ

ð1� λÞ1=2
" #

þ 1:3� 0:3γ3=2

ð1� γ2Þ1=2
þ 0:83� 1:76γ

" #
1� ð1� γÞλ½ �

;

(B2)

where the terms λ= ds/H and γ= z′/H; and z′=H− z
is the vertical coordinate measured from the top of the
domain.

APPENDIX C
The weight function β utilized in the Krug and others (2014)
LEFM model is given by,

βðy;H;dÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðd � yÞp

"
1þM1 1� y

d

� 	1=2

þM2 1� y
d

� 	
þM3 1� y

d

� 	3=2
#
:

(C1)

where y is the vertical coordinate, H is the domain
height, and d is the crevasse height. For surface crevasses,
y= z′=H− z and d= ds. For basal crevasses, y=z and
d= db. The constants M1, M2, and M3 are given by
polynomial functions that account for the geometry of the
ice slab,

M1 ¼ 0:0719768� 1:513476λ� 61:1001λ2

þ 1554:95λ3 � 14583:8λ4 þ 71590:7λ5

� 20 5384λ6 þ 35 6469λ7 � 36 8270λ8

þ 20 8233λ9 � 4 9544λ10;

(C2)

769Jiménez and Duddu: Evaluation of the SIF in calving models using LEFM

https://doi.org/10.1017/jog.2018.64 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2018.64


M2 ¼ 0:246984þ 6:47583λþ 176:456λ2

� 4058:76λ3 þ 37303:8λ4 � 18 1755λ5

þ 52 0551λ6 � 90 4370λ7 þ 93 6863λ8

� 53 1940λ9 þ 12 7291λ10;

(C3)

M3 ¼ 0:529659� 22:3235λþ 532:074λ2

� 5479:53λ3 þ 28592:2λ4 � 81388:6λ5

þ 12 8746λ6 � 10 6246λ7 þ 35780:7λ8;

(C4)

where the term λ= d/H.

MS received 8 January 2018 and accepted in revised form 26 July 2018; first published online 10 September 2018

770 Jiménez and Duddu: Evaluation of the SIF in calving models using LEFM

https://doi.org/10.1017/jog.2018.64 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2018.64

	On the evaluation of the stress intensity factor in calving models using linear elastic fracture mechanics
	INTRODUCTION
	LEFM MODELS AND METHODS
	Stress state in ice
	Weight function method
	van der Veen (1998a) LEFM model
	van der Veen (1998b) LEFM model
	Krug and others (2014) LEFM model
	Displacement correlation method

	NUMERICAL RESULTS
	SIF evaluation in grounded glaciers with free slip at the base
	SIF evaluation in grounded glaciers frozen to bedrock
	SIF evaluation in floating ice shelves

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES


