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1.1 Introduction

This chapter introduces the fundamentals of signals and receivers used in Global Nav-
igation Satellite Systems (GNSS). We will start with a general overview of the existing
GNSS signals and their main characteristics in Section 1.2, in order to set the grounds
for the subsequent sections and chapters. We will continue with Section 1.3, present-
ing in more detail the structure of GNSS signals and the theoretical models that will
be used throughout the book. Section 1.4 will review the GNSS link budget to bet-
ter understand how GNSS signals are received in the way they are. Then, Section 1.5
will briefly introduce the architecture of GNSS receivers, while their acquisition and
tracking modules will be discussed in more detail in Sections 1.6 and 1.7, respec-
tively. Sections 1.8 and 1.9 will cover the navigation message and pseudorange errors,
respectively, and finally, Section 1.10 will explain how to calculate a position fix.

1.2 Overview of GNSS Signals

The main purpose of GNSS signals is to provide an accurate ranging measurement
to the receiver, while at the same time, to provide the necessary data for the receiver
to compute its position. Therefore, well-designed GNSS signals must allow ranging
measurements as accurate as possible, as well as data reception without errors, when-
ever possible. To do so, several constraints and considerations must be borne in mind,
as discussed next.

First of all, for both accurate ranging and good data reception, the carrier fre-
quency must be chosen so the signal can propagate well through the atmosphere and
be received in all possible weather and visibility conditions. The L band, between 1
and 2 GHz, with a wavelength between 30 and 15 cm is a good candidate for this
purpose. In fact, current GNSS signals are transmitted in this band. In their journey
from the satellite to the receiver, signals are delayed by the ionosphere, a layer of
the atmosphere at around some hundreds of kilometers above the Earth’s surface, and
then by the troposphere, a lower and thinner layer that determines our weather. Unlike
the tropospheric delay, most of the ionospheric delay is difficult to model, but it is
related to the carrier frequency of the signal, so having two synchronized frequen-
cies transmitted from the same satellite allows removing it and having more accurate

https://doi.org/10.1017/9781108934176.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108934176.003


2 José A. López-Salcedo et al.

ranging measurements. Transmitting signals in several frequencies also allows more
services, increased resilience against interference and precise point positioning (PPP)
improvements. Table 1.1 lists the features of GNSS signals used in this book and in
the software accompanying it: the American Global Positioning System (GPS), the
Russian GLONASS, the European Galileo, the Chinese BeiDou and the Indian Navi-
gation Indian Constellation (NavIC). The first four are global systems, while the latter
is a regional system.1

In addition to choosing an adequate carrier frequency, the signals need to be pow-
erful and have a broad-enough frequency bandwidth to provide accurate ranging.
Unfortunately, generating a powerful signal increases the satellite weight, making it
more costly to put it in orbit. GNSS signals are transmitted at a power of some tens
of watt (W) and received on Earth at an extremely low power, around 10−16 W, which
makes the performance of GNSS even more remarkable. Apart from signal power
restrictions, the frequency bandwidth is also constrained by satellite and receiver tech-
nology. Modern signals such as Multiplexed Binary Offset Carrier (MBOC) used by
GPS and Galileo, or Alternative Binary Offset Carrier (AltBOC) used by Galileo and
BeiDou, have been designed so that receivers can process a narrower part of it, at
a lower complexity, or in its entirety, for a better ranging accuracy. Also, the sig-
nal power and bandwidth are constrained by international organizations such as the
International Telecommunications Union, which allocates frequencies to services and
guarantees that services do not interfere with each other.

For accurate ranging, the signals transmitted by all satellites need also to be
synchronized with a common time reference. The satellites have very precise atomic
clocks onboard, even though they are not perfect. For a meter-level accuracy, we
need to measure time at the level of a few nanoseconds (a nanosecond is 10−9 s),
since an electromagnetic signal travels 30 cm in 1 ns at the speed of light. The time
offset between the individual clocks in the satellites and the common time reference
is determined by the continuous tracking of the satellites by stations in the GNSS
ground segment. The GNSS ground segment also tracks where the satellites are and
sends this information back to the satellites through uplink stations. The satellites,
in turn, embed this time offset and their position information into the navigation
data that is conveyed by the transmitted GNSS signal. This ensemble of data is
called the satellite ephemeris (ephemerides in plural).2 The need for transmitting data
along with the provision of accurate ranging has driven the design of GNSS signals.
However, in order to achieve these same goals, designers prioritized different aspects.
Some signals were designed to carry more data than just the satellite ephemerides,
other signals were designed to support military signals, some were designed decades
later than others, assuming better receiver capabilities, some have been designed to
minimize interference with legacy signals, and so on.

In summary, GNSS signals are composed of at least three elements: (i) the data
symbols conveying the bits of the navigation message, which contains the satellite

1 Note that the book also indirectly addresses the Japanese Quasi-Zenith Satellite System (QZSS), as it
uses GPS L1 C/A-like signals.

2 Before GPS, this term referred to the positions of celestial bodies used by navigators.
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ephemerides; (ii) the spreading or pseudo-random noise (PRN) code, which facilitates
the distance measurement between the satellite and the receiver and (iii) the carrier
wave on which the former two are modulated.3 The configuration of these three ele-
ments for different GNSS signals is shown in Table 1.1. For instance, data symbols
are transmitted at a rate of 50 sps in GPS L1 C/A, while for Gailleo E1-B, they are
transmitted at 250 sps. Their spreading code length is also different, 1,023 chips for
GPS L1 C/A and 4,092 chips for Galileo E1-B. However, both signals share the same
carrier frequency at 1575.42 MHz. The impact of using these values will be discussed
when specifically addressing each system.

It is interesting to note that all satellites of a given GNSS system transmit similar
signals, but their spreading codes are unique and thus each satellite can be univocally
identified. Furthermore, since the spreading codes are orthogonal sequences, all satel-
lites can transmit messages using the same carrier frequency and hence simultaneously
access the medium without interfering with each other. This leads to a Code Division
Multiple Access (CDMA) scheme, as indicated in Table 1.1, for most of the systems.
If each of the satellites of the system used a different carrier frequency, we would then
have a Frequency Division Multiple Access (FDMA) scheme, as it is the case with
GLONASS.

Some of the signals listed in Table 1.1 contain components without navigation data
bits, and therefore, their data rate is omitted in the corresponding cell. For instance,
this is the case of the E1-C component of the Galileo E1 signal. Unmodulated or pilot
signal components constitute a new feature of modernized GPS and Galileo signals.
They are transmitted with the data components, sometimes orthogonally, and they have
their own set of spreading codes including a primary and a secondary code on top of
the former. The advantage of this new signal component comes from allocating the
two main properties of GNSS signals, i.e., transmitting navigation data and providing
ranging information, into two separate channels. The data channel conveys the data
for locating the satellites in the constellation. However, this information is encoded
in binary −1,+1 symbols, whose sign transitions reduce the energy that the receiver
can accumulate to obtain a ranging measurement. On the contrary, the pilot chan-
nel does not contain unexpected symbol transitions and can be integrated over longer
periods, which can drastically enhance the signal-to-noise ratio (SNR) of the received
signals.

1.3 Structure of GNSS Signals

1.3.1 Signal Modulation

In Section 1.2, it has been introduced that GNSS signals are composed of three main
constituent elements: the navigation data bits, the spreading code and the carrier. The
data bits contain binary information that must be converted into signal levels to allow

3 Modulation is the process that allows a signal to be successfully sent through a propagation medium. It
will be discussed in Section 1.3.1.
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their transmission over the propagation medium. Binary Phase Shift Keying (BPSK)
modulation is the simplest way to do so, whereby each bit is converted into a binary
symbol with amplitude {−1,+1} that modulates a carrier. But before this, the data
symbols are multiplied by a spreading code that is unique to each satellite and thus
allows identifying each satellite signal at the receiver. The spreading code has a much
higher rate than the data symbols, which means that its power content is spread across
a much wider bandwidth. The same effect appears when multiplying the data symbols
with the spreading code. The result is a signal with a much wider bandwidth than the
original one. This effect can be observed in the upper plots of Figure 1.1, which show
the frequency representation of the signals at each point of a simplified transmission
chain. As can be seen, the spectrum of the signal after multiplication by the spreading
code is much wider than that of the original signal.

The process of spreading the power of a signal across a wider range of frequen-
cies is known as spread spectrum (SS) modulation. When such spreading is done by
multiplying a low-rate signal with a high-rate one, the technique is known as direct-
sequence spread spectrum (DS-SS). This is the case in GNSS where the original signal
(either containing data or pilots) is multiplied by the spreading code. The ratio between
the rate of the spreading code and the rate of the original signal is called the processing
gain, and it typically runs from 10 to 60 dB. At the GNSS receiver, the original sig-
nal can be recovered back by multiplying the received spread signal with the same
spreading code signal used at the transmitter. This technique dates back to the 1980s,
and it is popular in applications involving radio links in hostile environments. Many
radio frequency interference (RFI) signals can easily be rejected because they do not

Navigation
data

(or pilots)

Spreading
code

Carrier

time

time timetime

time

frequency00
frequency

0 Fc–Fc

GNSS signal

frequency

Figure 1.1 Illustration of how GNSS signals are generated, indicating the time and frequency
representation of the resulting signal at each point of a simplified transmission chain.
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contain the spreading code in their transmitted signal. Therefore, interference is actu-
ally spread at the receiver output because the interference signal is only multiplied
once by the spreading signal. This feature is the real beauty of SS technology. Only
the desired signal, which was generated using the same spreading code, will be seen
at the receiver when the despreading operation is applied.

BPSK modulations are generally denoted in the context of GNSS as BPSK(n),
where n stands for the rate of the spreading code in multiples of 1.023 MHz.4 For
example, GPS L1 C/A is a BPSK(1) signal. However, most new GNSS signals are
modulated in subcarriers, which are nothing but a square signal with a rate on the
order of the spreading code, or higher, that multiplies the input signal.

Subcarriers were first publicly proposed for GNSS in [1], and they are widely used
nowadays in most modernized GNSS signals under the name of BOC signals. They
were introduced in order to move the spectral content of the signal away from the
carrier frequency, following the well-known modulation principle. By doing so, new
signals can share the same carrier frequency as already used by the existing ones,
while reducing the spectral overlap. An example comparing the spectrum of BPSK(1)
with that of a subcarrier-modulated signal such as BOC(1,1) used in Galileo E1-B is
shown in Figure 1.2. As can be seen, both the BPSK(1) and the BOC(1,1) spectra
share the same central frequency. However, the spectrum of the BOC(1,1) signal is
shifted to both sides of the central frequency so that the overlap with the BPSK(1) is
significantly reduced.

The overall transmission and reception scheme of a GNSS signal is therefore
the one schematically shown in Figure 1.3, including the possibility that subcarrier

–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10
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dB
W

 / 
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z

BPSK(1)
BOC(1,1)

Figure 1.2 Comparison between the spectrum of the BPSK(1) signal used in GPS L1 C/A and
that of a subcarrier-modulated signal such as the BOC(1,1) used in Galileo E1-B. The center
frequency f = 0 corresponds to 1575.42 MHz once the signal is modulated by the carrier.

4 The rate of the spreading code is also known as the chip rate because the spreading code is a sequence
of binary elements that are referred to as chips.
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Figure 1.3 Fundamental components in GNSS signal modulation and demodulation.

modulation is present. As previously mentioned, the input signal is composed of data
symbols or pilots, depending on the GNSS signal. This low-rate input signal is mul-
tiplied by the spreading code so that the resulting spectrum becomes spread in the
frequency domain. This operation protects the symbols/pilots against harmful interfer-
ence, makes the resulting signal exhibit low probability of interception (LPI), allows
different satellites to be simultaneously transmitted in the same frequency band and,
most importantly, facilitates the use of these signals for ranging. The DS-SS resulting
signal is then multiplied by the subcarrier (when present, since not all GNSS signals
are subcarrier-modulated) and finally multiplied by the carrier that places the resulting
signal at the L band. Once transmitted through the propagation medium, the signal
arrives at the receiver and the opposite operations need to be done in order to unbox
the data symbols and to obtain the ranging information that is required to position the
user.

Bandpass Signal Representation
The modulated signal transmitted by the GNSS satellites is a so-called bandpass sig-
nal because its frequency representation, or spectral content, is concentrated on a
small neighborhood of a high frequency. For example, the BPSK(1) spectrum shown
in Figure 1.2 has most of its power concentrated on its main lobe, which spans for
approximately 2 MHz bandwidth. This signal is then modulated on a carrier at 1575.42
MHz for the GPS L1 C/A signal, so the spectrum becomes centered at that frequency.
This is a clear example of a bandpass signal because most of the power is concentrated
in just a 2 MHz bandwidth around a frequency of 1575.42 MHz. Bandpass signals are
needed whenever radio transmission is taking place. This is because the size of the
antennas needed for transmission and reception is inversely proportional to the central
frequency of the signal, so the larger the carrier frequency, the smaller the required
antenna. In the communications domain, it is often claimed that the carrier frequency
bears no information at all and that is why it is removed at the receiver once its pur-
pose of propagating the radio wave through the medium has been achieved. This is
not precisely true in the GNSS domain because part of this carrier, actually, the carrier
phase, does bear information on the distance from the satellite to the user’s position.
So keeping track of the carrier phase is needed at a GNSS receiver, even though this
can be done once the carrier frequency has been removed anyway.

In its simplest form, a bandpass signal s(t) can be expressed as follows:

s(t) =
√

2Px(t) cos(2πFct), (1.1)
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where P is the bandpass or radio frequency (RF) transmitted power5 and x(t) is a
unit power and real-valued signal. In our case, x(t) is a train of {−1,+1} amplitudes,
including the navigation data or pilot symbols, the spreading code and eventually
the binary subcarrier as per Figure 1.3. The bandpass nature of the signal s(t) in Eq.
(1.1) is obtained after multiplying our signal x(t) with the cosine term at some carrier
frequency Fc.

The expression in Eq. (1.1) is the simplest representation of a bandpass signal, but
another real-valued data-modulated or pilot signal can be, and is usually, transmitted
at the same time using a sine term. This leads to a more general signal model whereby
the bandpass signal results in6

s(t) =
√

2PIxI (t) cos(2πFct) −
√

2PQxQ(t) sin(2πFct), (1.2)

which contains two signal components, namely the in-phase component xI (t) and the
quadrature component xQ(t), whose bandpass or RF transmitted power is PI and PQ,
respectively. Note that the term quadrature refers to the fact that this component is
placed at 90°, that is, in quadraphase, with respect to the in-phase one. It is also inter-
esting to note that xI (t) and xQ(t) are two independent real-valued signals that are
transmitted at the same carrier frequency. This is possible in virtue of the orthogonal-
ity between the cosine and the sine functions, and it is exploited in GNSS, as well as
in many other wireless systems, for transmitting two different real-valued signals over
a single carrier frequency, thus increasing the spectral efficiency. Being part of the
same carrier, these signals are referred to as the signal components, while the whole
ensemble is just referred to as the GNSS signal. GNSS signals use the in-phase and
quadrature components in various ways. Here are some examples based on the signals
processed by the software accompanying this book:

(1) The GPS L1 legacy signal conveys data-modulated symbols in both signal
components xI (t) and xQ(t). xI (t) is used by the military P(Y) code, out of the
scope of this book, and xQ(t) is the open GPS L1 C/A component that we all use.

(2) GPS L5 includes the two components L5I and L5Q carried by the xI (t) and xQ(t)
in our model, respectively. L5I includes data-modulated symbols, and L5Q
modulates the pilot component, used to improve tracking performance. Both
components are conceived to be used by civil receivers, for a better performance.

(3) Galileo E1 includes two components in xI (t): The E1-B, with the data, and the
E1-C, with the pilot, which are subtracted from one another. In xQ(t), the signal
modulates the E1-A component, aimed for the Public Regulated Service,
encrypted and out of the scope of this book.

5 For a GNSS bandpass signal with amplitude A, its power becomes P = 1
T

∫ T
0 s2(t )dt =

1
T

∫ T
0 A2x2(t ) cos2(2πFct )dt = A2

2 , for T � 1
Fc

. So we need A =
√

2P for the bandpass power to
be P, as stated in the text.

6 In some GNSS signals, the two carrier-modulated signal components are explicitly added with a + sign.
This involves that the in-phase and quadrature components are sign-reversed one with each other when
down converted to the baseband, as it is the case in GPS L1 [2, Section 3.3.1.5.1].
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1 GNSS Signals and Receivers 9

Note that here we are considering two BPSK signal components. If the cosine and
sine are processed as a single signal, that is, the signal is processed by looking at the
cosine and sine peaks altogether, the signal is defined as QPSK (Quadrature Phase
Shift Keying). Higher order PSK signals are possible and, in fact, used by GNSS. For
example, the Galileo constant envelope E5 AltBOC signal is processed as an 8-PSK
signal [3].

Baseband Signal Representation
The information content of the bandpass signal in Eq. (1.2) lies in the two signal
components xI (t) and xQ(t). For this reason, it is often convenient to focus on these
two signal components only and to remove the cosine and the sine waves that are
merely present to make the propagation through the medium possible. If the carrier
is perfectly removed, and thus the cosine and sine waves, the resulting signal exhibits
two key properties. The first one is that the spectral content is placed back into the
base of the frequency axis, in the neighborhood of the zero frequency. So we call the
resulting signal a baseband signal, denoted herein as bs (t). The second property is
that the baseband signal is composed of two real-valued components, xI (t) and xQ(t),
which need to be conveniently expressed as an ensemble signal because they are both
part of Eq. (1.2). To do so, the following notation is used for the baseband signal:

bs (t) =
√

2PIxI (t) + j
√

2PQxQ(t), (1.3)

where the complex number notation j is used to represent both signal components
xI (t) and xQ(t), simultaneously. The in-phase component xI (t) is placed in the real
part, while the quadrature component xQ(t) is placed in the imaginary part, thus being
consistent with the fact that the quadrature component is placed at 90° with respect to
the in-phase one, as in Eq. (1.2).

The baseband signal in Eq. (1.3) contains essentially the same information as the
bandpass signal in Eq. (1.2), understanding information as the content conveyed by
the signal components xI (t) and xQ(t). It is for this reason that the baseband signal in
Eq. (1.3) is referred to as the baseband equivalent signal of Eq. (1.2). It makes use of
the well-known Euler’s formula (i.e. e j z = cos z + j sin z), widely used in electrical
engineering.7 In particular, the reader can check that the bandpass signal in Eqs. (1.2)
and (1.3) are related as follows:

s(t) =
√

2PIxI (t) cos(2πFct) −
√

2PQxQ(t) sin(2πFct) (1.4)

= Re
[( √

2PIxI (t) + j
√

2PQxQ(t)
)
e j2πFct

]
(1.5)

= Re
[
bs (t)e j2πFct

]
(1.6)

with Re[·] being the real part operator. The relationship between the baseband and
bandpass signals will be further elaborated in Section 1.4.3.

7 We will use complex-plane diagrams to show the correlation results of our signal of interest with a
complex replica, modulated in both the in-phase and quadrature components, in order to ensure a proper
tracking of the signal. See, for example, the discrete-time scatter plot for GPS tracking in Figure 2.4.
This plot is also known as a constellation plot.
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The baseband signal bs (t) has its spectral content in the neighborhood of the zero
frequency, but an exception is made for GNSS signals whose components are sub-
carrier modulated. In this case, we will see that the baseband equivalent signal has
its spectral content around the subcarrier frequency, similarly to what happens for a
bandpass signal. In fact, a subcarrier-modulated signal can actually be understood as
a bandpass signal rather than a baseband one because it is still modulated by either a
squared-wave cosine or sine function at a given subcarrier frequency. The plots shown
in Figure 1.2 are actually the baseband spectra of the GPS L1 C/A component and the
Galileo E1-B component, the latter accounts for the contribution due to the BOC(1,1)
modulation only. As can be seen, the main lobes of the BOC(1,1) spectrum are located
at ± 1.023 MHz, which is the subcarrier frequency for this modulation.

Tiered Structure of GNSS Signal Components
The present section is intended to set the grounds for understanding the inner struc-
ture of GNSS signals and being able to answer questions like how data symbols are
conveyed, how different satellites are distinguished or how the frequency representa-
tion of GNSS signals looks like. To do so, a general formulation will be introduced to
represent either the in-phase or the quadrature components, which may carry either
data-modulating symbols or a pilot signal, depending on the GNSS signal. Since
we will consider a general model, the I,Q subindex will be dropped for the sake of
simplicity and we will simply refer by x(t) to any of the GNSS signal components.

According to Figure 1.1, GNSS signal components consist of the product between
a data/pilot signal and a spreading code signal. This is the simplest interpretation,
and it often suffices for understanding the underlying nature of GNSS signals, which
is nothing but a spread spectrum signal. As such, one can easily understand that the
receiver must then implement the inverse operation and multiply the received signal
with a local replica of the spreading code. In this way, despreading takes place, and
the original data/pilot signal is recovered back. However, this pragmatic interpretation
often makes it difficult to analyze the inner structure of the signal and the impact of
the different constituent elements and parameters on the signal, for instance, when
computing the correlation and power spectral density (PSD) of the resulting signal. It
is for this reason that a more in-depth analysis will be derived in this section. To do
so, a tiered approach will be followed where GNSS signal components are considered
to be composed of layers or tiers of different signals.

With these considerations in mind, it is found that any GNSS signal component can
be expressed as8

x(t) =
∞∑

i=−∞
d[i]g(t − iTd), (1.7)

where {d[i]}∞i=−∞ is a sequence of data-modulating symbols, each of them transmit-
ted through the propagation medium by means of a tiered waveform g(t). The time

8 Note that sequences are indexed with the discrete-time notation [·], while signals are indexed with the
continuous-time notation ( ·) to better emphasize their distinct nature.
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duration of this waveform is limited to the symbol period Td. Note that the signal in
Eq. (1.7) is actually a pulse amplitude modulated (PAM) signal because g(t) is a pulse
(actually, it is not a simple pulse but a tiered waveform) whose amplitude is mod-
ulated by the symbols d[i]. PAM signal properties have been widely studied in the
context of digital communications, and they will facilitate the understanding of some
key features of GNSS signals, such as their correlation and spectral representation.
Pilot GNSS signal components transmitting no symbols can be modeled as well with
Eq. (1.7) by setting d[i] = 1 for all i.

Regarding the tiered symbol waveform g(t), it is composed of Nr concatenated
spreading code signals c(t) whose amplitudes are modulated by the binary ±1 values
of the so-called secondary code sequence, {u[k]}Nr−1

k=0 . That is,

g(t) =
Nr−1∑

k=0

u[k]c(t − kTcode). (1.8)

The result is another PAM signal, where the shaping pulse is now given by the spread-
ing code signal c(t), which has a limited time duration equal to the spreading code
period, Tcode.

The spreading code signal c(t) is in turn another tiered waveform. It is composed
of Nc concatenated chip pulses p(t) whose amplitudes are modulated by the binary ±1
values of the spreading code, or so-called primary code sequence {v[m]}Nc−1

m=0 . That is,

c(t) =
Nc−1∑

m=0

v[m]p(t − mTc). (1.9)

The result is again another PAM signal, where the shaping pulse is now given by
the chip pulse p(t), which is a real-valued pulse with a limited time duration equal
to the chip period, Tc. Putting together all these terms, we can see that GNSS signal
components are formed by encapsulating different layers of pulses and sequences, one
inside another like in a Matryoshka doll. A summary of these signals and sequences is
schematically illustrated in Figure 1.4 for the sake of clarity.

On the basis of this structure, we can see that the symbol period has a duration Td =

NrTcode, with Nr the length of the secondary code sequence and Tcode the spreading
code period. The symbol rate is then defined as Rd = 1/Td. In turn, the code period
is given by Tcode = NcTc, with Nc being the length of the primary code sequence and
Tc be the chip period. The chip rate is then defined as Rc = 1/Tc. As an example, we

s(t)

g(t)

c(t)

p(t)
v[m]

u[k]

d[i]

Figure 1.4 Schematic representation of the constituent elements upon which the tiered structure
of a GNSS signal component is built.
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can consider the GPS L1 C/A signal component whose parameters are indicated in
Table 1.1. This component has a symbol rate as low as Rd = 50 sps, which means
that the symbol period is Td = 20 ms9. The chip rate is Rc = 1.023 MHz, and the
primary code length is Nc = 1,023 chips, which means that the primary code period
is Tcode = Nc/Rc = 1 ms. There is explicitly no secondary code in GPS L1 C/A,
as stated in its interface control document (ICD), so these 1 ms primary codes are
repeated one after another within the 20-ms symbol period. But we could understand
this repetition as being brought by an all-ones secondary code code with length Nr =

20. This interpretation will be useful for determining the PSD of GPS L1 C/A signals.
It is interesting to note that the signal model presented so far is valid for either

BPSK- or BOC-modulated signals. The only difference between both is at the chip
pulse. For instance, BPSK modulations typically adopt a rectangular chip pulse, occu-
pying the whole chip period. This is the case of GPS L1 and GPS L5 signals that use

pBPSK(t) = Π

(
t − Tc/2

Tc

)
, (1.10)

which stands for a rectangular pulse of width Tc, delayed here for convenience by
Tc/2 to make it causal (i.e. so that the pulse starts at t = 0). The resulting chip pulse is
shown in Figure 1.5(a). BOC-modulated signals, instead, are multiplied by the sign of
a subcarrier waveform. This can be encompassed in the present formulation by having
the chip pulse be the subcarrier waveform observed during one chip period. This
results into a chip pulse composed of alternating rectangular pulses whose individual
duration is a fraction of the chip period. The general formulation is given by

pBOC(t) =
Nscc−1∑

q=0

(−1)qΠ

(
t − qTsc/2 − Tsc/4

Tsc/2

)
, (1.11)

where Tsc is the subcarrier period and Nscc =
Tc

Tsc/2 is the number of half subcarrier
periods within one chip period. The term Tsc/4 in the numerator is introduced to
ensure that the pulse is causal, as the BPSK chip pulse in Eq. (1.10) is. A similar
approach to the model used in Eq. (1.11) is adopted for instance in [4, Section 9.10],
where the interested reader is referred to for more details. To put an example of
Eq. (1.11), let us consider a BOC(1,1) signal such as the one whose spectrum is
shown in Figure 1.2. For a BOC(1,1), there is one subcarrier period per chip period
so that Tsc = Tc and Nscc = 2. This results into the following chip pulse:

pBOC(1,1) (t) = Π

(
t − Tc/4

Tc/2

)
− Π
(

t − 3Tc/4
Tc/2

)
, (1.12)

which consists of two consecutive and sign-reversed rectangular pulses, as shown in
Figure 1.5(b). It is also worth noting that rectangular pulses in the BOC(1,1) chip
pulse are narrower than that in BPSK(1), which intuitively means that BOC(1,1)
should provide better accuracy in the time-delay estimation of the received signal.
This topic will be discussed when addressing the PSD of both signals.

9 Since GPS L1 C/A is using BPSK modulation, each BPSK symbol conveys one bit. This means that the
bit rate and symbol rate are the same, as well as the bit period and the symbol period.
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Figure 1.5 Illustration of (a) a BPSK chip pulse and (b) a BOC(1,1) chip pulse.

Merging together all the constituent elements introduced so far, Eq. (1.7) can
equivalently be expressed as:

x(t) =
∞∑

i=−∞
d[i]

Nr−1∑

k=0

Nc−1∑

m=0

u[k]v[m]p(t − mTc − kTcode − iTd) =
∞∑

m=−∞
a[m]p(t − mTc),

(1.13)

where the right-hand side is expressed as a function of some equivalent symbols a[m]
whose values depend on the combination between data/pilot symbols, secondary code
and primary code of the GNSS signal. This latter expression corresponds to that of a
conventional PAM.

An example of a BPSK-modulated GNSS signal component is shown in Figure 1.6
to illustrate the tiered structure that has just been presented. A generic signal has been
assumed for the sake of simplicity. The top plot in the figure shows the primary spread-
ing code v[m], which is a discrete-time sequence composed of Nc = 15 chips at a
chip rate of Rc = 1.023 MHz. The primary spreading code sequence is then shaped
with a rectangular pulse of duration Tc = 1/Rc. The resulting spreading code sig-
nal is shown in the second top plot, corresponding to the continuous-time signal c(t)
introduced in Eq. (1.9). It can easily be seen that c(t) is composed of rectangular
pulses, each of them having an amplitude given by the sign of the primary spreading
code sequence v[m]. Next, Nr replicas of the spreading code signal c(t) are concate-
nated to form the tiered spreading signal g(t) introduced in Eq. (1.8). This is done
in this example using a secondary code of length Nr = 4, whose values are all equal
to 1, that is, u[k] = 1 for k = 0,1,2,3 in Eq. (1.8). The resulting signal g(t) can
be seen in the middle plot of Figure 1.6, where alternate dark and light colors have
been used to facilitate the visual identification of each of the replicas of c(t) that form
g(t). The resulting signal g(t) becomes the waveform conveying the data-modulated
symbols following the expression in Eq. (1.7), and similar to what occurs in a con-
ventional PAM signal. This can be seen in the bottom plot of Figure 1.6, where the
data-modulated signal x(t) is shown for an observation period of two symbols. It can
be seen how each of these symbols is shaped with the waveform g(t) and then con-
catenated to form the resulting data-modulated signal x(t). Alternate dark and light
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v[m] : primary spreading code sequence (Nc=15)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
m (chips)
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t ( s)

-1
0
1

c(t) : primary spreading code signal (Rc=1.023 MHz)

0 5 10 15 20 25 30 35 40 45 50 55 60
t ( s)

-1
0
1

g(t) : tiered primary+secondary spreading code signal (Nr=4)

-1
0
1

d[i] : data symbols

10 i (symbols)

0 20 40 60 80 100 120
t ( s)

-1
0
1

s(t) : data-modulated baseband signal

Figure 1.6 Illustration of the tiered structure of a generic GNSS signal. Example assuming a
primary code sequence with Nc = 15 chips, chip rate Rc = 1.023 MHz a rectangular chip pulse
with duration Tc = 1/Rc, and a secondary code sequence with length Nr = 4. The resulting
signal is shown for an observation period where two binary data-modulated symbols are
present.

colors are used here again to facilitate the visual identification of the two repeated
waveforms.

1.3.2 Spreading Codes

The primary code sequence v[m] is the cornerstone of GNSS signals. It is selected in
such a way that provides a pseudorandom sequence of ±1 values with orthogonality
properties. At the same time, these antipodal values guarantee that once the sequence
is pulse shaped, the resulting continuous-time signal becomes zero-mean regardless of
the chip pulse, thus ensuring a power-efficient signal transmission. As for the orthog-
onality property, this is the key underlying principle behind CDMA. It allows signals
from different satellites to coexist in the same frequency band without interfering one
with each other. Perfect orthogonality has been shown to be possible for synchronous
systems where the spreading sequences of different users are all perfectly aligned.
Unfortunately, this is not the case in GNSS, where even if the signals were transmitted
synchronously from all satellites, they travel different distances to the receiver and,
therefore, they experience different propagation delays. Because of this asynchronous
behavior, no perfect orthogonality can be achieved in GNSS, thus sparking the interest
for near-orthogonal spreading codes. Some examples finally selected for GNSS are
the following:

(1) Gold codes, used in the GPS L1 C/A signal and further discussed in Chapter 2.
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(2) Maximum-length sequences (M-sequences), used in GLONASS and GPS L5 and
outlined in Chapters 3 and 8.

(3) Memory codes, which are hand-selected, predefined codes stored in large
memory tables used in Galileo signals and introduced in Chapter 4.

(4) Weil codes, based on Legendre sequences introduced in a need for finding codes
of length Nc = 10,230 chips, used in the modernized GPS L1C civil signal.

Autocorrelation and Cross-Correlation
Near orthogonality means that the cross-correlation between different spreading codes
is not perfectly zero but small enough to be fairly neglected.10 It is important to note
that orthogonality is assessed through the circular cross-correlation11 so that for two
different spreading codes, namely v (p)[m] and v (q)[m] with p � q, we have

Rv (p)v (q) [k] =
1
Nc

Nc−1∑

m=0

v (p)[m]v (q)[m − k]Nc ≈ 0, for p � q, (1.14)

and through the circular autocorrelation of the same spreading code, making sure that
it is nearly zero outside of the central correlation lag. That is,

Rv (p) [k] =
1
Nc

Nc−1∑

m=0

v (p)[m]v (p)[m − k]Nc ≈ δ[k], for any p, (1.15)

with δ[k] being the discrete-time Kronecker delta, namely δ[k] = 1 for k = 0 and
δ[k] = 0 for k � 0. In the above expressions, the subscript Nc indicates that the time
indexation of the sequence v[m − k] must be cyclically shifted with the period Nc

whenever m − k < 0. Finally, it is also worth noting that the correlation definitions
in Eqs. (1.14)–(1.15) assume that Nc � 1 so that the spreading code sequence can
fairly be approximated by a power-type signal.12 This will facilitate the mathematical
manipulations in the limit for Nc → ∞, which is often invoked to achieve the perfect
orthogonality that practical sequences with finite Nc cannot provide. This assumption
will help in simplifying the results when computing the correlation and the PSD of the
pulse-shaped spreading code signal.

An example of the circular auto- and cross-correlation of a primary spreading code
sequence is shown in Figure 1.7. The results were obtained for two of the Gold codes
used in GPS L1 C/A corresponding to PRNs 3 and 7. The lack of perfect orthogonality
can be seen by the presence of a small noise-like contribution in both the auto- and
cross-correlation functions. Note that despite the lack of perfect orthogonality, Gold
codes serve well for the purpose of selecting the signal from a given satellite while

10 This approximation needs to be revisited when many satellites are present, since it may happen that the
aggregation of all their residual cross-correlations ends up being relevant. This is actually a key metric
to be assessed in the design of new GNSS signals that may share the same frequency band with legacy
ones.

11 The correlation operation is often defined with one of its factors being complex conjugated, but this is
ignored herein for the sake of simplicity under the assumption that spreading codes are real-valued.

12 A signal is power-type if its average power is finite and greater than zero, even when observed over an
infinite period of time [4, Section 8.1.4]. Sinusoids are examples of power-type signals.
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Figure 1.7 Correlation properties of the Gold spreading code with PRN p = 3 used in GPS L1
C/A. (a) Circular autocorrelation Rv (p) [k]. (b) Circular cross-correlation Rv (p)v (q) [k] for PRN
p = 3 and q = 7.

disregarding all the rest. This can be seen in the high peak obtained at the autocorrela-
tion lag m = 0 when correlating with the same Gold code and in the small residual for
any correlation lag m between two different codes.

Details about Gold codes will be provided in Section 2.2.2, but it is interesting to
note that for a generic random code the main correlation peak is on average

√
Nc

times larger than the residual (i.e. secondary) peaks. In terms of power, this repre-
sents an average distance ratio of Nc. This means that for a random code with the
same Nc = 1,023 length as the one depicted in Figure 1.7, the main peak would
have 30 dB more power than the secondary peaks. The result is a useful indica-
tion for the value that may be achieved with other spreading codes, such as the
Gold codes to be described later in Chapter 2. The interested reader may refer to
[4, Section 9.2.1] for further details on the analysis of random code sequences for
GNSS.

The autocorrelation properties discussed so far are related to the primary spreading
code, which is nothing but a discrete-time sequence. However, this sequence is actually
not transmitted as it is by the GNSS satellites. Instead, it is first pulse-shaped in order
to obtain a continuous-time signal that can actually modulate the carrier wave. To do
so, the chips of the spreading code are pulse amplitude modulated using a pulse shape
with typically the same duration as the chip period. The result was shown in Eq. (1.9),
and it is reproduced below for the sake of clarity:

c(t) =
Nc−1∑

m=0

v[m]p(t − mTc). (1.16)

The spreading code signal in Eq. (1.16) is actually the one transmitted by the GNSS
satellites, so it is of interest to obtain its autocorrelation. After some manipulations
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and assuming the chip shaping pulse p(t) to have a finite duration Tc, it can be found
that13

Rc(τt ) = Nc

Nc−1∑

k=−Nc+1

Rv[k]Rp(τt − kTc), (1.17)

where Rp(τt ) stands for the autocorrelation of the time-limited chip pulse p(t) defined
as

Rp(τt ) =
∫ ∞

−∞
p(t)p(t − τt )dt . (1.18)

An example of Eq. (1.17) is shown below in Figure 1.8 for the Gold code with PRN 3
used in GPS L1 C/A.

As can be seen in Figure 1.8, the main peak of Rc(τt ) is determined by the autocor-
relation of the chip pulse shape p(t). Since we are considering the GPS L1 C/A signal,
a rectangular chip pulse is considered having one chip duration and the autocorrelation
becomes a triangular pulse spanning from −1 ≤ τt/Tc ≤ 1 chips (see zoomed view
in the bottom plot of Figure 1.8). Note that the secondary peaks in Rc(τt ) observed
in the upper plot are due to the lack of perfect orthogonality in the spreading code
sequence. This effect could be mitigated by letting Nc → ∞, as often done in math-
ematical derivations to obtain a more manageable expression for Rc(τt ). In that case,
we have that limNc→∞ Rv[k] = δ[k] and then Rc(τt ) in Eq. (1.17) simplifies to
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Figure 1.8 Autocorrelation of the spreading code signal, Rc (τt ), for a GPS L1 C/A signal using
the PRN 3 and a rectangular chip pulse with unit energy. Infinite bandwidth is assumed.

13 The subindex t is used in τt to emphasize that it is a continuous-time delay measured in seconds, so it
can be distinguished from its discrete-time version denoted simply by τ and measured in samples, which
will appear when the signal is sampled.
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lim
Nc→∞

1
Nc

Rc(τt ) = Rp(τt ). (1.19)

1.3.3 Power Spectral Density

The PSD provides information on how the power content of a signal is distributed in
the frequency domain. This feature is important to understand how different signals
behave, whether they have low- or high-frequency content (i.e. whether they exhibit
slow or fast time variations, respectively), whether they incur a significant overlap or
not (i.e. inter-band interference), whether they are strictly confined to the allocated
frequency band or not (i.e. out-of-band interference), etc. But the PSD also plays a
key role in determining how good a given signal is for ranging purposes. The reason is
that the accuracy of time-delay measurements used for ranging depends on the mean
square or Gabor bandwidth of the signal, which is actually measured through the
second-order spread of its PSD [5, Section 3.11].

The PSD of a signal is related to its autocorrelation function through the Fourier
transform, so for a signal x(t), its PSD denoted by Sx ( f ) is given by

Sx ( f ) = F[Rx (τt )], (1.20)

with F[·] being the Fourier transform operator and Rx (τt ) being the autocorrelation
of x(t). The solution to Eq. (1.20) can easily be found for a GNSS signal component
by understanding this signal as a PAM one, as already discussed in Section 1.3.1. To
do so, we can take advantage of the following property, which states that for a generic
PAM signal in the form

x(t) =
∞∑

m=−∞
α[m]q(t − mT ), (1.21)

with some amplitude-modulating symbols α[m], shaping pulse q(t) and symbol period
T , the PSD is given by [6, Section 8.2]

Sx ( f ) =
1
T

⎡⎢⎢⎢⎢⎣

∞∑

k=−∞
Rα[k]e− j2π f kT

⎤⎥⎥⎥⎥⎦
Sq ( f ), (1.22)

where Rα[k] = E [α[m]α∗[m − k]] is the autocorrelation of the amplitude-modulating
symbols and Sq ( f ) is the energy spectral density (ESD) of the pulse, which is
defined as

Sq ( f ) = F[Rq (τt )] = 

Q( f )

2 (1.23)

with Q( f ) = F[q(t)] being the Fourier transform of the pulse q(t).
The spectral density in Eq. (1.23) is expressed in terms of energy because the pulse

has a limited time duration and thus it becomes an energy-type signal.14 In contrast,
the whole PAM signal is ideally an infinite-length signal with random symbols being

14 A signal q (t ) is energy-type if it has finite energy, that is,
∫ ∞
−∞ |q (t ) |2dt < ∞, even when observed over

an infinite period of time [4, Section 8.1.4]. Rectangular pulses are examples of energy-type signals.
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transmitted periodically every T seconds, and it is thus a random signal. Energy-type
signals have ESD, while power-type and random signals have PSD. However, and for
the sake of simplicity, we often refer to both spectral densities indistinguishably by
simply the spectrum. Note as well that the definition of autocorrelation used for Rα[k]
with the expectation operator E[·] is different from that used in Eq. (1.18) for the auto-
correlation of the pulse. This is because α[m] is a (discrete-time) random signal, while
p(t) in Eq. (1.18) is an energy-type signal. For a discussion on the different definitions
of autocorrelation for energy-type, power-type or random signals, the interested reader
is referred to [6, Sections 2.3, 4.2].

The result in Eq. (1.22) is very insightful because it shows that the PSD of a GNSS
signal depends on two terms. The first one is given by the autocorrelation of the
amplitude-modulating symbols, which are composed of the data bits or pilots, the
secondary code, the primary code, and eventually the alternating signs within the chip
pulse of a subcarrier-modulated signal. The second one is given by the spectrum of the
pulse. So both terms contribute in shaping the overall PSD, not only the spectrum of
the pulse. Nevertheless, the latter is the only contribution for signals with uncorrelated
symbols.

It is also worth emphasizing that the result in Eq. (1.22) facilitates the derivation
of the PSD for GNSS signals. Two different approaches can be followed to do so
depending on whether the starting point is the PAM expression in Eq. (1.7) or the
one in Eq. (1.13). The latter is often simpler to substitute in Eq. (1.22) provided that
the aggregated amplitude-modulated symbols a[k] are zero-mean and uncorrelated.
The uncorrelatedness assumption fits well when considering the spreading codes to be
arbitrarily long. While this is not true in practice, one can assume that it is, approx-
imately, in order to obtain a simplified and pedagogical result on how the PSD of a
GNSS signal looks like. This approach is the easiest one for deriving the PSD of a
GNSS signal, and it is often exposed first for an easy-to-understand explanation.

The second approach to take advantage of the result in Eq. (1.22) is by using the
PAM expression in Eq. (1.7) as the starting point. In that case, the pulse is given by
a tiered waveform, and therefore, the pulse ESD Sq ( f ) in Eq. (1.22) is more tedious
to obtain because one needs to recursively determine the ESD of each constituent
waveform. The interested reader is referred to [7] for further details on this second
approach.

Next, we will briefly discuss both of them in order to shed light on their advantages,
their disadvantages and the difference in the final result that is obtained from each
approach.

PSD for Arbitrarily Long Spreading Codes
This first approach assumes that the GNSS signal is expressed as in Eq. (1.13) so that
the result in Eq. (1.22) can readily be applied by setting α[k] = a[k] and q(t) =
p(t). Considering the spreading codes to be arbitrarily long and with equiprobable
random binary ±1 values, the amplitude-modulating symbols become uncorrelated
due to the orthogonality properties of spreading code sequences. This means that they
are totally random with no relationship between one symbol and any other, so that
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their autocorrelation becomes Ra[0] = 1 and Ra[k] = 0 for any other k � 0. The
resulting PSD simplifies to

Sx ( f ) =
1
Tc

Sp ( f ), (1.24)

and therefore, it is completely determined by the spectrum of the chip pulse p(t).
For the case of GNSS signals relying on BPSK modulation, the chip pulse is a

rectangular one with duration equal to the chip period Tc, as discussed in Eq. (1.10).
The spectrum of this pulse, applying the squared modulus of the Fourier transform as
indicated in (1.23), is given by

Sp ( f ) |BPSK = T2
c sinc2( f Tc), (1.25)

where the sinc(·) function is defined herein as15 sinc(x) = sin(πx)
πx . The PSD of a

BPSK-modulated GNSS signal is then given by

Sx ( f ) |BPSK = Tcsinc2( f Tc). (1.26)

In case a BOC(1,1) modulation was considered instead, the chip pulse would be
given by Eq. (1.12) and its spectrum would become

Sp ( f ) |BOC(1,1) = T2
c sinc2( f Tc/2) sin2(π f Tc/2), (1.27)

which comes from the direct application of the Fourier transform to Eq. (1.12).
Therefore, the PSD of a BOC(1,1)-modulated GNSS signal would become

Sx ( f ) |BOC(1,1) = Tcsinc2( f Tc/2) sin2(π f Tc/2). (1.28)

It is interesting to note how the sin2(·) term in Eqs. (1.27)–(1.28), due to the alternating
sign of the two short pulses forming the BOC(1,1) chip, is responsible for the spectral
null that the BOC(1,1) PSD exhibits at the zero frequency. This effect can be clearly
observed in the PSD plot shown in Figure 1.2. It is also worth pointing out that despite
having a slightly different expression, the result in Eq. (1.28) is exactly the same as
that often used by some authors and originally derived in [1], which is given by

Sx ( f ) |BOC(1,1) = Tcsinc2( f Tc) tan2(π f Tc/2). (1.29)

PSD for Finite-Length Spreading Codes
Finite-length spreading codes are implemented in real-life GNSS signals, so strictly
speaking, the simplifications discussed in the previous section cannot be applied.
Finite-length spreading codes fit well into the tiered structure of GNSS signals intro-
duced so far, since these codes repeat sooner or later along the GNSS signal, and thus
a periodic correlation pattern does appear. In these circumstances, it is preferable to
compute the PSD of the GNSS signal using Eq. (1.22) and substituting with the ele-

15 This definition follows the convention mostly used in the literature (e.g. [6, 8]), even though the
alternative definition sinc(x) = sin(x )

x is preferred by some authors (e.g. [4]).
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ments of x(t) in Eq. (1.7). Then we can proceed in a tier-by-tier basis with the ESD of
the finite-length tiered waveform g(t), the spreading code waveform c(t) and finally
the chip pulse p(t).

Regarding the first tier, we can start with the expression for x(t) in Eq. (1.7), which
is a PAM signal with binary random symbols being transmitted every Td seconds with
a waveform g(t). According to Eq. (1.22), the PSD of such GNSS signal becomes

Sx ( f ) =
1

Td
Sg ( f ) =

1
Td
|G( f ) |2. (1.30)

In order to find G( f ), the Fourier transform of the tiered waveform g(t), it is inter-
esting to express g(t) as a function of the basic element being repeated, which is the
spreading code c(t). This can be done by expressing g(t) as g(t) = c(t) ∗ u(t) with
u(t) =

∑Nr−1
k=0 u[k]δ(t − kTcode) the signal containing the secondary code values only,

and δ(t) the Dirac delta function. Its Fourier transform can easily be obtained as

G( f ) = F [g(t)
]
=
√

NrC( f )U ( f ), (1.31)

where C( f ) is the Fourier transform of the spreading code signal c(t) and U ( f ) is the
Fourier transform of the secondary code sequence,

U ( f ) =
1√
Nr

Nr−1∑

k=0

u[k]e− j2π f kTcode . (1.32)

The same procedure can be followed for the spreading code signal c(t), whereby we
obtain c(t) = p(t) ∗ v(t) with v(t) =

∑Nc−1
m=0 v[m]δ(t − mTc) the signal containing the

primary code values only. This results in

C( f ) = F [c(t)] =
√

NcP( f )V ( f ), (1.33)

where V ( f ) is the Fourier transform of the primary code sequence,

V ( f ) =
1√
Nc

Nc−1∑

m=0

v[m]e− j2π f mTc . (1.34)

Replacing these results into the preliminar PSD expression in Eq. (1.30), we finally
get

Sx ( f ) =
1

Tc
|U ( f ) |2 |V ( f ) |2 |P( f ) |2, (1.35)

with U ( f ) being the Fourier transform of the secondary code sequence, V ( f ) the
Fourier transform of the spreading code sequence and P( f ) the Fourier transform of
the chip pulse that can be obtained as previously explained.

The result in Eq. (1.35) is very insightful. It states that the PSD of the GNSS sig-
nal does not only depend on the spectrum of the chip shaping pulse, |P( f ) |2, but also
on the spectrum of the primary and secondary code sequences. For instance, GPS
L1 C/A signals could be understood as having a secondary code with u[k] = 1 for
k = 0,1, . . . ,Nr − 1 and Nr = 20 even though, formally speaking, no secondary
code is mentioned in the ICD of this signal. But for practical purposes, we could

https://doi.org/10.1017/9781108934176.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108934176.003


22 José A. López-Salcedo et al.

think of the repetition of primary codes within the GPS L1 C/A symbol period as the
aforementioned all-ones secondary code. This involves that |U ( f ) |2 is then given by

|U ( f ) |2 = 1
Nr





sin(π f NrTcode)

sin(π f Tcode)




2
, (1.36)

which is known as the Fejér kernel. It is a comb-like periodic function in the frequency
domain, with period 1/Tcode = 1 kHz for the case of GPS L1 C/A. It introduces spectral
lines at 1 kHz due to the repetition of 1 ms length spreading codes every symbol period.
This is an interesting observation that was ignored in the PSD of a BPSK modulated
signal previously derived in Eq. (1.26), and it has some implications, for instance, on
the impact of continuous-wave interference in GPS L1 C/A signals (see [4, Section
9.7.2]). Actually, frequencies where these periodic spectral lines are placed are more
sensitive to the presence of a continuous wave (CW) signal. For a wider analysis on
the spectral properties of finite-length spreading codes, the reader is referred to [7].

Impact of PAM Modulation on PSD
As previously mentioned, the interpretation of a GNSS signal in terms of a PAM mod-
ulation provides a compact expression that facilitates the mathematical derivation of
the correlation and PSD. As for the latter, it is well-known that the PSD of a PAM sig-
nal has a shape that depends on two different contributions: the first one is provided by
the spectrum of the shaping pulse, while the second one is provided by the correlation
of the amplitude-modulating symbols [6, Section 8.2]. In our case, we followed two
different approaches to apply this result. One of the approaches made direct use of Eq.
(1.7), which in the GNSS case, depends on an intricate pulse g(t) and the navigation
data symbols as the amplitude-modulating symbols. Despite being a bit intricate at
first glance, we showed how to proceed for the case of finite-length spreading codes,
which led to the result in Eq. (1.35). The other approach made use of the expression in
Eq. (1.13) that depends on the chip shaping pulse p(t) and some aggregated amplitude-
modulating symbols. We could easily apply this result to the case of arbitrarily long
spreading codes, due to the fact that these aggregated symbols could be assumed to be
all uncorrelated, thus leading to the PSD in Eq. (1.24).

This second approach helped us to emphasize that the PSD of a GNSS signal
primarily depends on the spectrum of the chip shaping pulse, plus some additional
contribution due to the correlation of the aggregated modulating symbols a[m] in Eq.
(1.13). Therefore, not only the chip shaping pulse but also the aggregated symbols
have an impact on how the resulting power is distributed in the frequency domain [7].

This principle was actually driving the design of BOC signals by taking into account
that the BOC chip pulse itself could be understood as a PAM signal as well, but
with correlated symbols. Actually, alternating ones as shown in Eqs. (1.11)–(1.12).
Such pattern leads to a zero-mean pulse, at least for even Nscc, and a zero-mean sig-
nal has always a null in the frequency domain at the zero frequency. This statement
demonstrates why the BOC(1,1) spectrum shown in Figure 1.2 has a null at the zero
frequency, which is compensated by shifting the power content at both sides of that
frequency.
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1.3.4 BOC Modulation

This section briefly introduces Binary Offset Carrier (BOC) modulations, already men-
tioned in this chapter, and which have become an essential part of modern GNSS
signals. The key feature of BOC modulations is their ability to move signal power
to specific parts of the allocated frequency band. This can be used to reduce interfer-
ence with other signals and to improve the timing estimation accuracy by increasing
the resulting mean square bandwidth. Redundancy in the upper and lower sidebands
of BOC modulations also offers practical advantages for signal acquisition, code
tracking, carrier tracking and data demodulation. However, some signal processing
complexity and peak ambiguities are introduced as well, as discussed in detail in
Chapter 10.

BOC signals are the result of modulating a GNSS signal component with a
square wave subcarrier obtained from the sign of a sinusoid. The BOC modulation
of the signal component in Eq. (1.7) would result in either of the two following
implementations,

xsinBOC(t) = x(t)sign (sin(2πFsct)) (1.37)

xcosBOC(t) = x(t)sign (cos(2πFsct)) , (1.38)

depending on whether the subcarrier is adopting a sine or a cosine waveform, which
leads to the so-called sinBOC and cosBOC, respectively. A “BOC” signal, for short,
often refers to a sinBOC signal. This was also the convention used in Eqs. (1.11)
and (1.12), where a sinBOC was actually considered. Two parameters (m,n) control
the generation of BOC signals, which are therefore referred in general as BOC(m,n)
signals. The parameter

m = Fsc/F0, (1.39)

is the ratio between the subcarrier frequency Fsc and the reference frequency F0 =

1.023 MHz. In turn, the parameter

n = Rc/F0, (1.40)

is the ratio between the chip rate Rc and the reference frequency. For instance, a
BOC(6,1) means a 6.138 MHz subcarrier frequency and a 1.023 MHz chip rate. This
signal together with a BOC(1,1) is transmitted in the E1-C component of the Galileo
E1 signal. Their PSD are illustrated in Figure 1.9 and compared with the PSD of the
signal transmitted in the GPS L1 C/A component.

As can be seen in Figure 1.9, even for a low-order BOC signal-like BOC(1,1), one
can see that the power is split into two lobes slightly away from the L1 central fre-
quency where the main lobe of the GPS L1 C/A PSD is placed. This confirms the
ability of BOC signals to move the power content in the frequency domain. This fea-
ture can intuitively be understood by taking the ratio m/n, which provides the number
of subcarrier cycles contained within a chip period. For a BOC(1,1), this ratio is equal
to one, which means that the chip period contains one full subcarrier cycle. For a sin-
BOC(1,1), this would mean that the chip shaping pulse p(t) is actually composed by
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Figure 1.9 Power spectral density of the BPSK(1) modulation used in GPS L1 C/A and the
BOC(1,1) and BOC(6,1) modulations used in Galileo E1. The center frequency f = 0
corresponds to 1575.42 MHz.

two shorter rectangular pulses, each one with a duration of half the chip period and
sign-reversed. The result is a composite pulse p(t) with zero-mean, which translates
into the frequency domain to a pulse spectrum with a null at f = 0, at the expense
of slightly increasing its power content at higher frequencies, as shown in the two
sidelobes of the BOC(1,1) signal in Figure 1.9.

1.4 GNSS Signal Propagation, Reception and Conditioning

Before the signal is processed at the receiver, it has to be generated and then transmit-
ted by the satellite antenna, travel a long distance until reaching the receiver antenna
and be conditioned and digitally sampled in the receiver’s Radio Frequency Front End
(RFFE). This section briefly describes these steps.

1.4.1 Signal Propagation, Link Budget and Received Signal Strength

Link budget is the term used to calculate the power gains and losses from signal trans-
mission to reception. A signal transmitted at a certain power PT is then amplified by
the satellite antenna, pointing to the Earth with a gain GT . Usually, the power resulting
from the term PTGT is known as EIRP (Effective Isotropic Radiated Power, some-
times Equivalent Isotropic Radiated Power), where GT is the maximum antenna gain,
usually at nadir. Note that, in GNSS, the radiated power is concentrated on the Earth
surface, and approximately, the same power should arrive to all users on Earth. This
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Figure 1.10 GNSS link budget. (Left) Signal path and link budget terms, including EIRP and
FSPL. (Right) 2D antenna gain pattern of a Galileo satellite in the E1 (L1) frequency, 1575.42
MHz, from −15 to 20 dB, where the gain in the angle covering the Earth surface is between 10
and 15 dB [9].

leads to the antenna gain pattern shown in Figure 1.10 (right), with a tooth shape in its
main lobe.

Signal polarization is another relevant property of the signals. It defines the direc-
tion of propagation of the electrical field. If we depict the electromagnetic wave as a
spring between the transmitter and the receiver, if the spring departs to the right, the
signal is Right-Hand Circularly Polarized (RHCP), and if it departs to the left, it is
Left-Hand Circularly Polarized (LHCP). GNSS signals are RHCP. For an optimum
transmission, the transmitting and receiving antennas should have the same polariza-
tion. Many receiver antennas are linearly polarized, instead of RHCP. This leads to
a 3-dB loss. On the other hand, receiver antennas are often hemispherical, offering
an approximate 3-dB gain for signals above the horizon, especially above a certain
elevation.

After being amplified in the satellite antenna, the signal travels toward the Earth
incurring free-space propagation losses, and then, it impinges on the receiver antenna,
which also has some gain (GR). This link budget calculation is expressed in the
following formula:

PR =
PTGTGRλ

2

(4πr)2
, (1.41)

where λ is the wavelength and the term (λ/4πr)2 is usually called free space path loss
(FSPL). It encompasses two effects: the power spatial density, which decreases by a
factor of 1/4πr2 as the distance r increases, and the effective area of the receiving
antenna, which adds a factor of λ2/4π. For example, a signal transmitted in the L1
band at 30 W, with a satellite antenna gain of 10, from a satellite at 20,200 km altitude
(i.e. the approximate altitude of GPS at the zenith) and no receiver antenna gain will
be received with the following power:

PR =
30 · 10 · 1 · 0.192

(4π · 20.2 · 106)2
= 1.68 · 10−16 W. (1.42)
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Usually, power amounts are expressed in dB watts, as follows:

PR (dBW) = 10log10(30) + 10log10(10) + 10log10(1)+10log10((0.19/4π20.2·106)2)

= 14.77 + 10 + 0 − 182.5 = −157.74 dBW, (1.43)

which is within the range of typical GNSS signals.16 Note that 30 W is a very low
power, in the order of that of a small traditional bulb, and thus, the received power is
extremely low, slightly higher than a billionth of a billionth of the transmitted power.
We do not take into account signal propagation losses other than FSPL, nor receiver
processing losses of around 0.5 dB. They are studied later. For a wider description of
signal transmission, including GNSS antennas and propagation losses, see [9], [10]
or [11].

In this section, we will also explain three relevant magnitudes of GNSS receivers for
measuring the strength of the received GNSS signals: SNR, Carrier-to-Noise Density
Ratio (C/N0) and Bit Energy-to-Noise Density Ratio (Eb/N0). We will explain how
they relate to each other at the different stages of the receiver.

Signal-to-Noise Ratio (SNR)
SNR is the ratio between the signal power and the noise power, the latter mostly domi-
nated by the thermal noise introduced by the same receiver. Sometimes it also referred
to as S/N , although here we will use SNR. It is thus defined as:

SNR =
Ps

Pn
, (1.44)

where Ps is the signal power and Pn is the noise power. We will show how to calculate
the SNR before the correlation takes place at the signal processing stage. In our exam-
ple, we assume the power of current GNSS signals, as received on Earth, is Ps = −160
dBW. In order to estimate the noise power Pn , we need the noise power density, or N0.
The noise power density expresses the noise power per frequency Hz and can be calcu-
lated as N0 = Kboltz ·Te , where Kboltz is the Boltzmann constant (1.3806488·10−23) and
Te is the effective temperature at the receiver. The effective temperature at the receiver
is mainly driven by the ambient temperature T0 (290° K). In reality, Te is higher than
T0 due to the receiver antenna temperature and the different front-end stages, which
include amplifiers and filters, especially the first stage. These stages increase the Te

with respect to T0, and this leads to a noise power increase in the order of 1–2 dBs.
However, for this example, we assume T0 = Te . A detailed explanation of how the
receiver front-end affects the noise level is provided in [12, Chapter 6].

If Te = T0, N0 = 4 · 10−21 W/Hz, which expressed in dB is −204 dBW/Hz. To get
the noise power in the receiver, Pn , we just have to multiply by the receiver two-sided
bandwidth:

16 Note that, in this section, we use magnitudes in dB, as it is customary for power measurements expressed
in a logarithmic scale. We assume that the reader is familiar with conversions to and from dB. In this
section, they consist of using the 10 log10 conversion. We use dBW for expressing watt in a logarithmic
scale and dBm for expressing milliwatt in a logarithmic scale. For example, −160dBW = −130 dBm.
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Pn (W) = N0(W/Hz) · B(Hz). (1.45)

If we have a two-sided bandwidth of B = 2 MHz to process GPS L1 C/A BPSK(1)
signal, we multiply the noise power density by a bandwidth of 2 · 106 Hz, which
involves adding 63 dB, thus obtaining a noise power Pn of −141 dBW. Therefore, the
SNR becomes

SNR[dB] = −160 dBW − (−141 dBW) = −19 dB. (1.46)

In contrast to most communication systems, where a positive SNR is typically
obtained, here we obtain a negative SNR when the signal reaches the receiver. This
means that GNSS signals, when received and sampled, are buried below the noise
level. This can be apparent by looking at the samples after the ADC, where there is no
trace yet of a GNSS signal. This is a consequence of using an SS modulation, and the
reason why we need to correlate the signal with its replica to raise it above the thermal
noise level.

Carrier-to-Noise Density Ratio
C/N0 is just the ratio between the signal power and the noise power density,

C/N0 =
Ps

N0
. (1.47)

As we said before, Pn = N0 · B, so therefore,

C/N0 = SNR · B. (1.48)

If we start with a noise density power of −204 dBW/Hz, as just explained, and a signal
power of C ≡ Ps = −160 dBW at the receiver’s antenna, this yields a C/N0(dB-Hz)
of −160 − (−204) = 44 dB-Hz.

In order to raise the signal above the noise level, we have to perform the correlation
described in detail in the next section. Following our example, we will assume that a
full 1-ms GPS L1 C/A code of 1,023 chips is correlated. We can depict the correlation
process as the multiplication sample by sample of the signal with the replica. For
example, assuming that 2,000 samples are correlated, obtained by sampling the code
at approximately Nsc = 2 samples per chip, we would have a 10log10(2000) ≈ 33-dB
gain. Note, however, that noise samples within the chip period may be correlated, and
the gain does only depend on the number of truly uncorrelated samples [12]. So the
actual correlation gain will be close to the 30 dB obtained by using Nsc = 1 sample per
chip.17 This 30-dB gain raises the signal above the noise level, leading to a positive
post-correlation ratio (SNRcorr), and allowing processing of the signal. Note that the
values in this example are theoretical and do not take into account the increase in the
noise level due to the receiver front-end stages mentioned earlier, and the correlation

17 Note also that this 30-dB gain is the result of two factors: the signal power gain, of (1,023)2, of around
60 dB, and the noise gain, of 1,023, or about 30 dB, assuming that the noise power of our signal is
normalized, or σn = 1. The resulting correlation gain is therefore 60 − 30 = 30 dB.
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Figure 1.11 Example of noise and signal power at different stages of the receiver.

losses due to filtering, sampling and quantization, which subtract a few dBs from the
correlation gain.

Carrier-to-noise density ratio (C/N0) is used to measure the strength of a received
GNSS signal with respect to the noise level, including that generated by the receiver
itself in the front end. It is typically preferred to SNR in GNSS, contrary to what
happens in communication systems, because SNR depends on the receiver bandwidth,
while C/N0 is bandwidth-independent. Since the bandwidth of a GNSS receiver is not
fixed (e.g. it may range from whatever value from 2 MHz to 20 MHz or more), using
the SNR as a performance metric can be confusing and difficult to compare among
different receivers.

Bit Energy-to-Noise Density Ratio
A useful metric related to the C/N0 is the bit energy to noise density, Eb/N0. Since
it comprises the energy per bit, it is obtained by multiplying the C/N0 with the bit
period, Tb, thus leading to

Eb

N0
=

C
N0

Tb. (1.49)

It gives the ratio between the energy in a bit and the noise density. The energy can be
expressed in joules (or watts multiplied by seconds). The noise density is measured in
watts per hertz, which can be expressed also in joules, so Eb/N0 is dimensionless. An
important feature of Eb/N0 is that it allows us to calculate the Bit Error Rate (BER) of
the received bits, before taking into account any coding scheme, through the following
formula:

BER =
1
2

erfc �
�

√
Eb

N0


�
, (1.50)

where erfc is the complementary error function.
Because of the relationship in Eq. (1.49), the BER depends on the product between

the C/N0 and the bit period. This is an interesting interplay because it means that no
matter how weak the received signal power is, the data bits can still be recovered with
an arbitrarily low error probability by increasing the bit period accordingly. This is a
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Figure 1.12 Uncoded bit error rate (BER) for different bit periods.

well-known principle in deep Space missions, where probes sending data to the Earth
use very long bit periods in order to compensate for the very large propagation losses
that cause the signals to be received on Earth with extremely weak power levels. As a
result, the data rate is very small, just a few bits or a few tenths of bits per second.

The situation in GNSS is kind of similar and the bit period is actually quite long,
for instance, 20 ms in GPS L1 C/A thus leading to a bit rate of just 50 bps. The
resulting BER is shown in Figure 1.12. It corresponds to the uncoded BER because
no encoding has been considered. In spite of this, one can see that for a low C/N0

such as 28 dB-Hz, the BER is already below 10−6 or one bit in error per one million
bits. If we consider the nominal C/N0 of 44 dB-Hz already discussed in the previous
section, corresponding to outdoors reception with open-sky conditions, then the BER
is actually negligible if we extrapolate the results in Figure 1.12. It is so small that one
could even think of deciding whether a bit is either −1 or +1 before the end of the bit
period. It is for this reason that Figure 1.12 provides the resulting BER using a shorter
period of time for deciding the bit sign, namely 4 and 1 ms. It can be seen that even
when observing the received signal for just 1 ms, which would correspond to one code
period in GPS L1 C/A, the BER in outdoors open-sky conditions is still very good,
less than 10−6.

1.4.2 Received Signal Model

As discussed in the previous section, the GNSS received signal is severely attenuated
in its journey from the GNSS satellites down to the user receiver. This makes the
received signal an extremely weak one, so specific countermeasures are needed to
compensate for that at the receiver end. But apart from severe attenuation, the signal
is received with a time delay due to the distance travelled during its journey, with a
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frequency shift due to the relative movement between the satellite and the user, and
with a phase shift caused by both the time delay and the frequency shift onto the
carrier. Additional disturbances such as ionospheric scintillation, multipath replicas or
potential interference signals might be encountered as well, but they will be omitted
here for the sake of simplicity. The main goal at this point is to focus on the model
representing the signal received from a given satellite of interest.

We will first consider the Doppler effect experienced by the signal due to the satel-
lite movement. This effect has an impact on the whole spectrum of the signal, with
every frequency f being shifted to (1 + sr

c ) f , with sr the radial speed along the line
of sight (LOS) between the satellite and the receiver, or relative speed of the satellite
as seen by the receiver, and where c is the speed of light. This means that for a signal
placed at the central frequency Fc, such as the one in Eq. (1.2), the signal ends up
being placed at the new central frequency (1 + sr

c )Fc. Thus, it experiences a Doppler
frequency shift given by18

νt =
sr

c
Fc. (1.51)

In the sequel, we will follow the convention whereby the Doppler shift is considered
to be positive when the satellite is approaching the user receiver, while it is considered
to be negative when the satellite is moving away.

The impact of the Doppler effect onto the central or carrier frequency is the most
visible one, but actually the same effect is experienced by every single frequency of the
signal spectrum. For a signal s(t) with frequency representation S( f ), the presence of
Doppler makes the latter be converted into S( f /(1+ sr

c )). This means that the spectral
content originally at f = Fc for S( f ) is now found at the Doppler-shifted frequency
f = (1 + sr

c )Fc for S( f /(1 + sr
c )). This confirms that the spectral content was actually

moved.
The effect is translated into the time domain by having the signal s(t) now given by

s((1+sr/c)t), or equivalently s((1+νt/Fc)t) in terms of the Doppler frequency shift.19

The result involves that the time-domain signal is compressed (i.e. when νt > 0) or
expanded (i.e. when νt < 0) as a function of the Doppler shift. This effect will need
to be accounted for at the receiver because the local replicas of the code and carrier
waveforms to be generated need to match the compression or expansion of the received
signal accordingly.

Let us now incorporate the Doppler effect onto the received signal. To do so, we
will consider the bandpass or RF signal in Eq. (1.2) transmitted by a GNSS satellite.
Only one of the two signal components of s(t) is processed by the receiver at a time.
For instance, GPS satellites transmit in the L1 signal s(t) both the C/A and the P(Y)
components, one in quadraphase with the other. But in our receiver, we are likely
interested in the C/A component only. It is for this reason that we consider henceforth

18 The subindex t is used in νt to emphasize that it is a frequency shift in the continuous time measured
in Hz, so it can be distinguished from its discrete-time version denoted simply by ν and unitless, which
will appear once the signal is sampled.

19 The result is obtained in virtue of the property of the Fourier transform whereby s(at )
F↔ 1
|a | S ( f

a ) for
some constant a.
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only one signal component in the GNSS received signal, the one to be processed by
the receiver. This leads to the following received signal model:20

r ′(t) =
√

2Cx((1 + νt/Fc)t − τt ) cos(2π(Fc + νt )t + θ) + w
′(t), (1.52)

where C is the received power PR in Eq. (1.41) including the receiver implementation
losses, τt is the time delay due to the signal propagation from the satellite to the user
receiver and w′(t) is some bandpass noise that encompasses the contribution of the
rest of satellites in the same band as well as the background and receiver noise. We
can see that the signal is affected by three main parameters: the Doppler frequency
shift νt , the propagation time delay τt and the carrier phase θ, the latter encompassing
the effect of the time delay onto the carrier.21

It is also worth noting that the signal model in Eq. (1.52) is applicable to any of
the two signal components in Eq. (1.2) just by adding a 90° phase offset to θ. So we
are considering the carrier using the cosine function, but we could have used the sine
function irrespectively, since we do not know the value of θ either. Note as well that
the Doppler effect is present in both the signal component x(t) and the carrier. At
the carrier level, we already mentioned that Doppler introduces a frequency shift νt ,
and at the signal component level, it makes the signal waveform compress or expand
depending on the sign of the Doppler shift. This effect is referred to as code Doppler,
and it is very subtle because the radial speed of the satellite is orders of magnitude
smaller than the speed of light, so that νt/Fc ≈ 0. Effects of code Doppler are only
perceived when the received signal is observed for a long period of time. This is not
the case in most GNSS applications, where just a few milliseconds of received signal
are often enough to determine the user’s position. In this case, the received signal
model can be further simplified to

r ′(t) =
√

2Cx(t − τt ) cos(2π(Fc + νt )t + θ) + w
′(t). (1.53)

Code Doppler will be revisited later when addressing the use of long observation
periods for high-sensitivity applications, that is, when the received signal power is
extremely weak. For the time being, the expression in Eq. (1.53) serves well for most
applications, so we will stick to it unless otherwise stated. The interested reader can
find further details on the impact of code Doppler in [13, Section 16.3.5].

1.4.3 Received Signal Conditioning

The signal impinging onto the user receiver antenna is modeled according to
Eq. (1.53), which is a bandpass signal that needs to be properly conditioned so that it
can be processed by a GNSS receiver. Signal conditioning takes place at the RF front
end where filtering, amplification, down conversion and digitization are carried out.
The output of the RF front end is typically a stream of digital samples that can readily

20 The upperscript ′ is used in r ′(t ) to indicate that this is the bandpass received signal, so it can be
distinguished from its down converted version denoted simply by r (t ).

21 The signal model assumes that all parameters are fixed for the sake of simplicity, but in practice, they all
vary due to the satellite movement.
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be processed by a digital GNSS receiver, either in a hardware or software implemen-
tation. A brief summary of the tasks carried out by the RF front end is described next.

Down Conversion
As already described in Section 1.3.1, the GNSS signal components are multiplied by a
carrier wave to enable radio transmission over the L band allocated to radionavigation
services. Once the signal arrives at the receiver, the carrier must be removed so that the
GNSS-modulated signals are recovered back. Removal of the carrier frequency is done
through a process known as down conversion. The received carrier is converted from
a high frequency down to a low frequency, which is known as intermediate frequency
(IF), or even down to the zero frequency, which means that no carrier frequency is
present anymore and the resulting signal is purely a baseband signal. Down conver-
sion can be done gradually, in consecutive steps, or directly in a single step. Gradual
down conversion is the conventional approach in most RF front ends because at each
step, the resulting signal is filtered and amplified. Step-by-step filtering and amplifica-
tion helps in a better rejection of the undesired image replicas that appear in the down
conversion process, a better isolation between weak (input) and strong (output) sig-
nals and a relaxation of the requirements for the hardware components. The resulting
architecture is known as a superheterodyne receiver, while the one for the single-step
down conversion is known as a direct conversion receiver.

The fundamental concept behind down conversion is the same already used for
signal modulation. It relies on the fact that multiplication of a signal by either a cosine
or a sine term causes the spectrum of the signal to be shifted (i.e. modulated) in the
frequency domain as shown in Eq. (1.54)22. We will adopt the cosine case even though
a similar principle applies for the sine as well. Let us assume a real-valued signal
component x(t) with Fourier transform X ( f ) that has a generic amplitude A and it is
multiplied by a cosine term. The resulting frequency-domain representation becomes:

Ax(t) cos(2πFct)
F←→ A

2
X ( f + Fc) +

A
2

X ( f − Fc). (1.54)

This operation is also referred to as up conversion, and it results in a bandpass signal
whose spectral content is placed in the neighborhood of the carrier frequency Fc, as
seen in the upper part of Figure 1.13.

At the receiver side, we have two options to compensate for the carrier frequency.
The first one is to shift the spectrum of the bandpass signal in Eq. (1.54) down to a
smaller carrier frequency, FIF, which makes the resulting signal much easier to manip-
ulate than with the high frequency of the initial carrier. This can be done by multiplying
the signal in the left-hand side of Eq. (1.54) by B cos(2π(Fc − FIF)t) for a generic
amplitude B, thus leading to

Ax(t) cos(2πFct)B cos(2π(Fc − FIF)t)
F←→ AB

4
X ( f + 2Fc − FIF)

+
AB
4

X ( f − 2Fc + FIF) +
AB
4

X ( f + FIF) +
AB
4

X ( f − FIF). (1.55)

22 Down-conversion can also be understood as an example of the general trigonometric formula
cos(a) cos(b) = 1

2 [cos(a − b) + cos(a + b)].
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Figure 1.13 Illustration of the down conversion to IF through the frequency representation of the
signal at each step of the process.

The result is illustrated in the central part of Figure 1.13 where the frequency repre-
sentation in the right-hand side of Eq. (1.55) is shown. As can be seen, two replicas of
the signal spectrum are placed at ±FIF, which is typically a much lower frequency (i.e.
in the order of a few MHz) compared to the initial carrier in the L band. A lowpass
filter is then applied to remove the aliased replicas at high frequency and to keep the
low-frequency replicas only, as shown in the bottom part of Figure 1.13.

Down conversion to IF is an intermediate step to recover the signal of interest x(t)
because the result is not x(t) itself but a bandpass version of it, at a smaller carrier
frequency than the initial one. Many RF front ends provide at their output an already
digitized down-converted signal at IF. One of the advantages of doing so is that the IF
signal continues to be real-valued and therefore can be sampled with a single analog-
to-digital converter (ADC). This was the case of the RF front end accompanying the
preceding book, where the output signal was digitized as real-valued samples at an IF
of either 1.364 or 4.092 MHz [14].

The second option for down conversion is to fully down convert to baseband
so that the spectrum of the signal of interest is placed at the zero frequency. This
would be the reverse operation to the up conversion carried out in Eq. (1.54), and
it involves multiplying the received signal again by a cosine term with the same
frequency, B cos(2πFct), where a generic amplitude B is considered. The result
becomes

https://doi.org/10.1017/9781108934176.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108934176.003


34 José A. López-Salcedo et al.

f

X(f)

f

f

x(t)
F←→

F←→

F←→

↓
↓

↓

↓

0 2Fc

1

Fc−Fc−2Fc

0

0

Fc−Fc

f

F←→

0 2FcFc−Fc−2Fc

f

F←→

0 Fc−Fc

↓

↓

h(t) lowpass filter
Down conversion

to baseband
(at the user’s RF front end)

Up conversion
(at the satellite)

× B cos(2πFct)

× A cos(2πFct)

Ax(t) cos(2πFct)

ABx(t) cos2(2πFct)

A

2

AB

4

AB

2
AB

4

AB

2

AB

2
x(t)

Figure 1.14 Illustration of the down conversion to baseband through the frequency
representation of the signal at each step of the process.

ABx(t) cos2(2πFct)
F←→ AB

4
X ( f + 2Fc) +

AB
2

X ( f ) +
AB
4

X ( f − 2Fc), (1.56)

where the original spectrum X ( f ) is recovered and two high-frequency repli-
cas are obtained as shown in the central part of Figure 1.14. These replicas are
then removed by applying a lowpass filter, and the result is shown in the bot-
tom part of Figure 1.14. The result in Eq. (1.56), once the lowpass filtering
is applied to remove the high-frequency aliases, provides the signal of inter-
est.

The previous example serves well for illustration purposes and it assumes that the
original signal was up converted using a cosine term, and then down converted using
the same cosine term aligned in frequency and phase. But this situation hardly ever
occurs in practice. In particular, the received signal in Eq. (1.53) is affected by a
Doppler frequency shift and a phase offset that are both unknown to the receiver. So it
is impossible for the front end to perfectly know beforehand how the cosine term to be
implemented should be. If down conversion is implemented considering the nominal
frequency, that is, using the term cos(2πFct), the output would then be given by the
expression at the output of the upper branch in Figure 1.15. As can be seen, the down-
converted signal is still affected by a cosine term given by cos(2πνt + θ). To illustrate
the situation, let us assume that no Doppler shift is present such that νt = 0. Then, if
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√
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√
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√
2 sin(2πFct)

√
2 cos(2πFct)

Figure 1.15 Implementation of down conversion to baseband where both cos and sin branches
are considered. An amplitude

√
2 has been used in the cos and sin multipliers so that the power

of the complex baseband signal coincides with that of the bandpass or RF received power C.

θ happens to be zero or π, the signal of interest will appear in the upper branch, but
if θ happens to be equal to π/2 or −π/2, the signal at the output of this upper branch
would be zero. It is for this reason that both the cosine and sine branches need to be
implemented in practice when performing down conversion to baseband as shown in
Figure 1.15, regardless of the fact that the original signal in Eq. (1.54) had only a
cosine term. Once the outputs of both branches are available, they are merged together
and a complex baseband signal is obtained, as already discussed in Eq. (1.3). Since
the baseband down-converted signal is complex, in contrast to the IF down-converted
one, two ADC are needed to sample the in-phase (I) and quadrature (Q) components
of the resulting signal.

Taking the aforementioned considerations into account, and following the down
conversion approach in Figure 1.15, the received signal in Eq. (1.53) would be down
converted by the RF front end and result in the following complex-valued baseband
signal,

r (t) =
√

Cx(t − τt ) cos(2πνt t + θ) + j
√

Cx(t − τt ) sin(2πνt t + θ). (1.57)

Adding the contribution of the noise, which has been omitted so far for the sake of
simplicity, the complex-valued baseband signal can be expressed for convenience as

r (t) =
√

Cx(t − τt )e j (2πνt t+θ) + w(t), (1.58)

where w(t) contains the complex-valued baseband contribution of the noise, which is
obtained following a similar reasoning to that of the signal obtained at the output of
Figure 1.15. The formulation in Eq. (1.58) follows the same approach as in [4, Eq.
(11.20)], where the received and down-converted signal is formulated as a complex-
valued signal, in contrast to some other contributions in the GNSS literature where the
same signal is formulated as two independent and real-valued signals (i.e. the in-phase
and quadrature components) that are processed separately.

The presentation provided herein is just a glimpse of the fundamentals behind the
down conversion process going on at the RF front end. The interested reader will find a
complete and comprehensive discussion on the topic in [4, Section 11.1], [14, Chapter
4] or [13, Section 14.3].
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Sampling and Quantization
Once down conversion takes place, the next step at the RF front end is to convert
the resulting signal into a digital signal so that it can be processed by either a digital
hardware or a software receiver implementation. Digital hardware implementations
have been the de facto standard for a long time already due to their reliability, sim-
plicity and flexibility compared to analog implementations. Rapid advances in very
large-scale integration (VLSI) circuits during the last decades have also contributed to
dramatically reducing the manufacturing cost and the device size. But when it comes
to a software receiver implementation, as we are targeting in this book, digital signal
processing is implicitly required since all operations are carried out in a digital signal
processor (DSP) or a multipurpose personal computer, and thus, implemented in the
digital domain. It is for this reason that the input signal to a software receiver is always
a file with digital signal samples that are obtained at the output of an RF front end.

A digital signal is actually the result of two different operations. The first one
involves sampling a continuous-time signal so that it is converted into a discrete-time
one. The latter is a signal having samples of the original signal at discrete-time instants
only, and thus, being discrete in the time domain. The second operation involves quan-
tizing the value of each sample so that it can be represented with fixed precision using
a finite number of bits. Sampling and quantization are both carried out by an analog-
to-digital (ADC) converter at the receiver front end, and they are controlled by the
sampling rate and the number of bits.

As for the first operation, sampling is typically done on the down-converted sig-
nal. Two main considerations must be borne in mind. The first one is that the selected
sampling frequency should always fulfill the Nyquist criterion whereby Fs ≥ 2Bbb,
with Bbb the baseband (i.e. one-sided) signal bandwidth or Fs ≥ B, with B the band-
pass (i.e. two-sided) signal bandwidth. The second consideration is that one should
carefully choose Fs such that it is not an integer multiple of the chip rate Rc in order
to achieve sub-sample accuracy in the time-delay estimation of the received signal
[15, 16].

In the recent years, some RF front ends have been implementing both down conver-
sion and sampling into the same step. This is the so-called IF or bandpass sampling,
a process whereby the bandpass-received signal is directly sampled at a wisely cho-
sen sampling frequency [4, Section 11.1.3], [13, Section 14.3.3], [17]. This is done
in order to benefit from the spectral aliases that naturally appear as a result of the
sampling process, which actually constitute down-converted versions of the original
signal obtained for free. That is, without having to explicitly implement a down con-
version stage with an RF mixer. The reason why such spectral aliases appear is due
to the well-known property in digital signal processing whereby sampling a signal in
a given domain (i.e. time or frequency) results in aliased replicas in the other domain
(i.e. frequency or time, respectively). This means that replicas of the spectrum of a
GNSS signal at a central frequency Fc will appear at frequencies Fc ± mFs, for any
integer m, once the signal is sampled at a sampling frequency Fs.

The key point of bandpass sampling is then to wisely choose Fs such that: (i) it
avoids aliasing between consecutive replicas of the signal spectrum and (ii) it places
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one of these replicas as close as possible to the zero frequency. This would provide a
discrete-time signal without aliasing while at the same time already down-converted,
ready to be processed by the subsequent stages of the receiver. The penalty to be paid is
that some degradation is incurred by the superposition of noise aliases in the frequency
domain, which lead to a slight increase in the noise floor. The interested reader can find
a detailed description of bandpass sampling for GNSS in [4, Section 11.1.3].

Regarding the quantization process, which is the second task carried out by the
ADC, the key parameter is the number of bits to represent the value of each sample.
Due to the extremely weak received power of GNSS signals, actually only one bit
would suffice. The losses would be just 2 dB with respect to the case without quan-
tization [18, Section III.C.4]. But in practice it is often customary to work with two
bits per sample (e.g. sign and magnitude), which incurs just 0.5-dB losses, and at the
same time, it is easy to handle by storing four signal samples into one byte. Beyond
four bits per samples, the quantization losses are negligible. The only reason to move
further beyond would be the case when interference signals are present. In that case,
since terrestrial interferences have power levels much higher than the received GNSS
signals, a larger dynamic range is needed at the ADC to avoid overload distortion.
In these situations, it is also interesting to disable the automatic gain control (AGC)
of the RF front end to avoid that the interfered GNSS signals might be further atten-
uated by the AGC when accommodating the dynamic range of the interference plus
GNSS-received signal.

1.4.4 Discrete-Time Received Signal Model

In the sequel, and for the sake of simplicity, we will ignore quantization in the math-
ematical formulation unless otherwise stated. We will also assume that the signal is
fully down-converted and placed at baseband and that a proper sampling frequency
has been chosen. This results in the discrete-time counterpart of the complex-valued
baseband received signal already introduced in Eq. (1.58), leading to:

r[n] =
√

Cx[n − τ]e j (2πνn+θ) + w[n], (1.59)

where r[n] = r (nTs) and x[n] = x(nTs) are the discrete-time versions of the received
signal and the signal component of interest, respectively, whereas w[n] = w(nTs) is
the discrete-time complex-valued noise contribution. The parameters {τ, ν} are now the
discrete-time counterparts of the continuous-time delay and the aggregated frequency
error including the Doppler effect and the frequency offset of the local oscillator. That
is,

τ = τt/Ts, ν = νt/Fs, (1.60)

with Ts being the sampling time and Fs = 1/Ts the sampling frequency.
In the discrete-time domain, the data symbol period in Eq. (1.7), the code period

in Eq. (1.8) and the chip period in Eq. (1.9) become the number of samples per data
symbol Nsd, the number of samples per code Nscode and the number of samples per
chip Nsc, respectively, which are defined as:
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Nsd = Td/Ts, (1.61)

Nscode = Tcode/Ts, (1.62)

Nsc = Tc/Ts. (1.63)

Finally, a piece of received signal of T seconds will be processed at the receiver, first
for signal acquisition, and then for each measurement generated at the signal tracking
stage. This leads to a snapshot of NT received signal samples in the discrete-time
domain with

NT = T/Ts. (1.64)

In contrast to the previous parameters in Eqs. (1.61)–(1.63), the snapshot length NT

will always be an integer number in practice because we cannot get a fraction of sam-
ple from the ADC output of the RF front end. In practice, we will be using �NT �
samples, where �x� stands for the floor of x. That is, the greatest integer smaller than
or equal to x.

1.5 Receiver Architecture

Once the received signal has been conditioned and converted into the discrete-time
domain by the RF front end, the output stream of digitized samples is ready to be
processed by the GNSS receiver. The first task to be carried out by the receiver is to
align its local code and carrier replicas to the actual code and carrier of the received
signal. Such alignment is done following a two-stage approach. In the first stage, the
correlation between the received signal and the local spreading codes is implemented
for each satellite using coarse tentative delays and Doppler frequencies. This stage
is considered to be successful when the satellite number, identified by its PRN, and
a coarse estimate of its delay and Doppler frequency, are identified. In the second
stage, the receiver implements a fine alignment to precisely track any possible time
variation of the aforementioned parameters due to the satellite’s movement and the
user’s dynamics. These two stages correspond to the so-called acquisition and track-
ing, whose blocks are shown next in Figure 1.16 as part of the architecture of a GNSS
receiver.

GNSS receiver

RF front end

Acquisition

Tracking Navigation

- Fine time-delay estimate
- Fine Doppler and carrier phase estimates

- User’s position
- User’s GNSS time

- Coarse time-delay estimate
- Coarse Doppler estimate

- Digitized samples

GNSS antenna

Re-acquisition
(1)

(2)r[n]

Figure 1.16 Schematic block diagram of a GNSS receiver.
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Acquisition is performed first on a satellite-by-satellite basis, meaning that typically
only one satellite is searched at a time. When the satellite of interest is successfully
acquired, the receiver switches to tracking mode where it remains until this satellite is
lost. In some situations, the satellite may still be present in the sky, but the reception
is blocked due to an obstacle in the LOS. In that case, the acquisition stage is restarted
for this satellite and its signal is reacquired, if still visible. After the tracking stage, the
signal received from the satellite is decoded and the navigation data bits are extracted.
Hardware receivers implement the acquisition and tracking of each satellite using par-
allelized hardware elements or channels, such that each channel acquires and tracks
one satellite and many channels are simultaneously run in parallel. The acquisition
and tracking stages will be discussed in Section 1.6 and Section 1.7, respectively.

Finally, when the observables of time delay and Doppler frequency are available
and the navigation data have been decoded, the receiver is able to determine the
satellite positions and then to estimate the user’s position based on solving the so-
called navigation equations. This task is carried out at the navigation module shown
in Figure 1.16 where the user’s position as well as the GNSS time are obtained. The
procedure to do so will be described in Sections 1.8 and 1.10.

1.6 Acquisition

In order to compute the range measurements and to get the satellite data, the receiver
first needs to be synchronized in frequency and time with the signal coming from the
visible satellites. This involves determining, at least coarsely, the frequency shift ν
and the propagation delay τ in Eq. (1.59), a task that is referred to as acquisition. The
procedure is similar to that of tuning the radio of our car to a radio station. But in
contrast to radio signals, GNSS signals are buried below the noise floor and exhibit
large frequency shifts due to the satellite’s motion, so the acquisition problem is much
more difficult to solve.

Discrete-time formulation will be considered henceforth motivated by the fact that
all GNSS signal processing is nowadays implemented in the digital domain. That
is, using either digital hardware, such as an ASIC (Application-Specific Integrated
Circuit) or an FPGA (Field-Programmable Gate Array), or digital software implemen-
tations (e.g. software receiver running on a host computer), the latter being the case of
the present book. The discrete-time received signal r[n] in Eq. (1.59) is processed by
the acquisition stage following a three-step approach as illustrated in Figure 1.17:

1. First, the received signal is correlated with a local replica (i.e. each sample is
multiplied and the result is summed to the previous multiplications) using
tentative values of time delay and frequency shift. These tentative values are
denoted as {τ′, ν′}, respectively, in order to distinguish them from the true values
{τ, ν} being sought. When the received signal power is too low, the correlation
time must be increased accordingly in order to be able to detect the signal. This is
due to the fact that signal detection depends on the received energy, and energy is
the product of power by time. So for a fixed received power, the collected energy
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Figure 1.17 Architecture of the acquisition stage where the three steps discussed above are
indicated: correlation with the received signal (either just coherently or in combination with
noncoherent accumulations); decision rule to decide whether acquisition is successful for the
pair of tentative

{
τ′, ν′} values; and finally, the search for a new pair of tentative values when

those being used did not lead to a successful acquisition.

is increased by lengthening the observation time as well. Extending the correlation
over a long time period suffers from problems that will be discussed later, so in
practice the correlation time cannot be increased without bound. It is for this
reason that the total correlation time must be split into a set of NI shorter coherent
correlations RC(τ′, ν′; k) for k = 0,1, . . . ,NI − 1 that are noncoherently
accumulated, that is, squared and summed, as indicated in Figure 1.17, resulting
in the noncoherent correlation RNC(τ′, ν′). This feature will be described later and
allows the receiver to increase the sensitivity. Receivers implementing this feature
are known as high-sensitivity GNSS receivers. For receivers operating in good
visibility conditions and thus receiving a high enough power, a short correlation
time is enough and noncoherent accumulations are not needed. This is the reason
why this block is shaded in Figure 1.17, to highlight that it is optional.

2. When the tentative {τ′, ν′} are close enough to the true values, the correlation of
the received signal with the local replica results in a large value compared to the
case when the local replica is poorly aligned. A result similar to the central peak
in Figure 1.7(a) should be obtained. So the second step of the acquisition stage
involves detecting whether the correlation output is large enough to consider that
the acquisition is successful. The latter means that the satellite being searched is
present, and the local replica is well enough aligned to it. To do so, a decision rule
must be applied on the correlation output value, which essentially boils down to
comparing this value with a predefined threshold.

3. In case acquisition is not successful, which means that the output correlation value
is not large enough, then the receiver must come back to step (1) and try again by
correlating the received signal with a new pair of tentative {τ′, ν′} values. The
search for the right values for {τ′, ν′} can be done sequentially for both time and
frequency, or in parallel for time but sequentially for frequency. This search is the
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most consuming part of the acquisition stage because many tentative values for
{τ′, ν′} need to be tested. These values are taken by discretizing the search space
into bins of Δτ′ width on the time axis and Δν′ width on the frequency axis.
Significant savings can be obtained in case assistance information is available, so
the receiver can narrow down the search space, reduce the number of
time–frequency bins to test, and consequently speed up the acquisition time [12].

Once the three main steps of the acquisition stage have been introduced, we will
discuss in more detail each of them, while providing some insights into their practical
implementation.

1.6.1 Correlation of the Received Signal with the Local Replica

As already introduced, the first step of the acquisition stage is to correlate the received
signal with a local replica of the satellite signal being searched. The replica is gener-
ated by the receiver at both code and carrier levels. For the code level, let us omit at
this time the presence of data bits and the secondary code, so that we can concentrate
essentially on the correlation with the primary spreading code only. This would lead
the receiver to implement the following correlation,

RC(τ′, ν′) =
1

NT

NT−1∑

n=0

r[n]c∗[n − τ′]Nscode e− j2πν
′n (1.65)

where we can see the replica of the discrete-time spreading code c[n] = c(nTs) at a
tentative discrete-time delay τ′, and the replica of the discrete-time complex carrier at
a tentative discrete-time frequency shift ν′. Note that since the received signal r[n] and
the local carrier replica in Eq. (1.65) are both complex-valued, so is the result of the
correlation RC(τ′, ν′). Furthermore, and because of the finite length of the spreading
code, the indexation of its replica c∗[n−τ′] in Eq. (1.65) must ensure that 0 ≤ |n−τ′ | <
Nscode−1. This is achieved by indexing the code replica in a cyclic or modular manner
with period Nscode. That is why the subindex Nscode is indicated in the code replica
in Eq. (1.65), as done for the circular correlation in Eqs. (1.14)–(1.15). For the same
reason, the time delay τ that we are looking for can only be resolved within a spreading
code period. This means that our estimates for τ are just the fractional part of the true
(absolute) time delay within one code period.

In the sequel, we will define the error between the tentative and the true values of
the time delay and frequency shift as

τt,ε = τt − τ′t (seconds) → τε = τ − τ′ (samples)
νt,ε = νt − ν′t (Hz) → νε = ν − ν′ (unitless).

(1.66)

It is important to mention that the correlation in Eq. (1.65) can either be imple-
mented in the time domain as in most hardware implementations (e.g. following a
matched filter approach as in Figure 1.17) or in the frequency domain as in most
software implementations. The latter takes advantage of the property of the Fourier
transform whereby the correlation in the time domain can be implemented as a mul-
tiplication in the frequency domain. The Fast Fourier Transform (FFT) is used in
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practice to speed up the computations, as discussed in Section 1.6.3. Examples of
time-domain implementations can be found in [19, 20, 21], whereas examples of
frequency-domain implementations such as the classical FFT-based acquisition, the
half-bit acquisition method or the double block zero padding method can be found in
[22] and [23], respectively.

The squared mean value of Eq. (1.65) leads to the so-called ambiguity function,
which provides information on the signal power that is obtained at the correlator output
as a function of the tentative values τ′ and ν′. Therefore, it provides information on
how sensitive the correlator output is to changes on these tentative values. Ideally,
we would like the correlator output to be very sensitive to τ′ and ν′ because this
would allow us to precisely determine the best (i.e. the most accurate) tentative value
to be used. It is for this reason that the ambiguity function is widely used in signal
design, as it is the case, for instance in radar signal processing, for determining the
best time–frequency properties of new signal waveforms. For our application at hand,
where the signal waveform is already given to us, the ambiguity function is used as an
indicator function to determine how time–frequency misalignments of the local replica
do affect the received signal power. In this way, we can use the ambiguity function as
a cost function to be maximized as a function of τ′ and ν′. The tentative values of τ′

and ν′, where the ambiguity function becomes maximum, are those values for which
the local replica is properly aligned with the received signal and thus the maximum
received signal power is obtained. In other words, the values of τ′ and ν′ for which the
ambiguity function is maximized become the estimates of the actual time delay and
frequency shift of the received signal.

We will address the incurred losses later on, but for the time being, let us concen-
trate on the ambiguity function. The latter is nothing but the squared magnitude of the
complex-valued correlation in Eq. (1.65) as a function of the difference between the
true and the tentative time delay and frequency shift. That is,

Ψ(τε , νε ) = 


RC(τ′, ν′)



2
, (1.67)

where τε and νε are the time delay and frequency shift errors defined in Eq. (1.66).
Substituting RC(τ′, ν′) and ignoring the noise contribution, we obtain

Ψ(τε , νε ) =
C

N2
T









NT−1∑

n=0

c[n − τ]c∗[n − τ′]Nscode e j2πνεn








2

(1.68)

=
C

N2
T









Rp (τε )

Rp (0)
sin(πνε NT )

sin(πνε )









2

. (1.69)

A long enough spreading code has been assumed when deriving Eq. (1.69) so that the
autocorrelation of the spreading code signal could be approximated by the autocorre-
lation of the chip shaping pulse, only. Note that for νε = 0, the ambiguity function
simplifies to

Ψ(τε ,0) = C


Rp (τε )/Rp (0)



2
, (1.70)
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which means that in the absence of frequency errors, the accuracy for determining the
time delay of the received signal is determined by the shape of the chip pulse auto-
correlation, Rp . This is a very important result because it means that the sharper the
chip pulse autocorrelation, the easier it will be to detect small variations on τε ≈ 0
and thus, the more accurate the time-delay estimation will be. A sharper autocorrela-
tion involves a wider spectrum, so this observation links time-delay accuracy with the
bandwidth of the signal.23

On the other hand, even when the local code replica is time aligned to the received
signal, the presence of residual frequency errors degrades the correlation in Eq. (1.65).
This can be observed by setting τε = 0 in Eq. (1.69), which leads to24

Ψ(0, νε ) =
C

N2
T









sin(πνε NT )
sin(πνε )









2
|νε |�1/2� C sinc2(νt,εT ). (1.71)

The result in Eq. (1.71) indicates that whenever the product νεNT , or its continuous-
time counterpart νt,εT , becomes an integer number, then Ψ(0, νε ) = 0 and the
correlation output in Eq. (1.65) collapses. This observation demonstrates that the
coherent sum being done in Eq. (1.65) is strongly affected by the presence of residual
frequency errors.

An example of ambiguity function is illustrated in Figure 1.18 to better show how
this function looks like in practice.

The time domain is presented in continuous time through the code delay error τt,ε
in chips (i.e. τt,ε/Tc), while the frequency domain is presented in continuous time as
well, through the frequency error νt,ε in Hz. This is done for the sake of clarity because
continuous-time magnitudes are easier to understand than discrete-time ones, which
many times do not even have units (e.g. as the discrete-time frequency). Notwith-
standing, one can move from one domain to the other by using the relationships in
Eq. (1.60). The example in Figure 1.18 considers a GPS L1 C/A signal using a coher-
ent integration time of T = 1 ms. One can see that the envelope on the time-domain
axis is given by the autocorrelation of the chip pulse, as indicated in Eq. (1.70). GPS
L1 C/A uses rectangular chip pulses thus giving rise to a triangular autocorrelation
shape. On the frequency-domain axis, one can see that the envelope corresponds to
the Fejér kernel in Eq. (1.71) having a sinc-like shape. Nulls appear when the time–
frequency product νεNT , or equivalently νt,εT , is an integer number. In this example
where T = 1 ms is considered, it corresponds to integer multiples of 1/T = 1 kHz. This
suggests that the residual frequency error νt,ε should be smaller than 1 kHz to prevent
the correlation from collapsing. As a rule of thumb, typically one half this value is con-
sidered, so the receiver should make sure that νt,ε ≤ 1/2T = 500 Hz. As mentioned

23 Actually, the mean square bandwidth rather than the conventional bandwidth plays a role here, as
discussed in detail in [5, Example 3.13].

24 The result coincides with the Fejér kernel, which is the squared modulus of the Dirichlet kernel given
by sin(πNx)/ sin(πx). The representation is very similar to that of the sinc function already defined as
sinc(x) � sin(πx)/πx, except for the fact that the Fejér and Dirichlet kernels are periodic functions of
x, while the sinc(x) function is not.
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Figure 1.18 Ambiguity function normalized to unit amplitude for a GPS L1 C/A signal using
T = 1 ms. The plot shows the square root of the ambiguity function to facilitate the visual
identification of the triangular shape of the GPS L1 C/A correlation function. Infinite
bandwidth is assumed.

earlier, the interplay between coherent integration time and residual frequency errors
will be further discussed next when addressing the limitations of coherent integration.

It is worth mentioning that the result in Figure 1.18 assumes that the received signal
has an infinite bandwidth and therefore the correlation with the local replica leads to a
perfect triangle. In practice, GNSS receivers have a band-limited front end that cuts the
received signal PSD down to a certain bandwidth. For example, for GPS L1 C/A sig-
nals, this bandwidth can be as low as 2 MHz. This provides significant computational
savings at the expense of slightly degrading the sharpness of the correlation peak, and
thus, slightly degrading the time-delay estimation accuracy. Some examples on the
resulting correlation function using a band-limited GPS L1 C/A signal are shown in
Figure 1.19. Two different bandwidths have been considered, B = 2.046 MHz (i.e.
B = 2Rc) and B = 4.092 MHz (i.e. B = 4Rc). The bandwidth is left in general as
B = 2Rc and B = 4Rc because the results for BPSK signals are the same regardless of
the specific value of Rc, either it is Rc = 1.023 as in GPS L1 C/A or Rc = 10.23 MHz
as in GPS L5. The correlation with infinite bandwidth is also shown in Figure 1.19 as
a benchmark.

SNR Gain of Coherent Integration
The presence of a residual frequency shift has already been mentioned as a source
of degradation for the coherent correlation in Eq. (1.65). Such a degradation can eas-
ily be assessed by observing the losses incurred in the ambiguity function in terms
of νε . For instance, when both the code and carrier replicas are perfectly aligned to
the input signal, we have νε = 0 and τε = 0, and the ambiguity function becomes
Ψ(0,0) = C. The result does not depend on the coherent integration length because
the coherent correlation RC(τ′, ν′) was already normalized by the integration length
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Figure 1.19 Correlation of a band-limited received GNSS signal using rectangular chip pulses at
chip rate Rc with its ideal local replica. An example would be the GPS L1 C/A signal, which
has Rc = 1.023 MHz, or the GPS L5 signal, which has Rc = 10.23 MHz.

NT in its definition in Eq. (1.65). If we take the noise contribution into account, ignored
so far, it is not difficult to see that the output noise power decreases as a function of
NT /Nsc, which is the total number of uncorrelated samples at the coherent correlation
output.25.

Based on these two results, we can compute the resulting SNR at the coherent
correlation output. On the one hand, we have just mentioned that the signal power
remains constant as a function of the coherent integration length NT , according to
the way that the coherent correlation output has been defined in Eq. (1.65), and as
shown in Φ(0,0). On the other hand, we have that the noise power decreases linearly
with NT /Nsc. So merging both results together, we have that the SNR at the coherent
correlation output increases linearly with NT /Nsc, which is the number of uncorrelated
samples being coherently integrated. For this result, we are assuming the optimistic
case where the local replica is perfectly aligned. However, we can extend it for any τε
and νε resulting in the following SNR gain at the coherent correlation output,

ΔSNRcoh(τε , νε ,NT ) = 20 log10









sin(πνε NT )
sin(πνε )








+ 10 log10

NT

Nsc
, (dB) (1.72)

which is always contained within the range

0 ≤ ΔSNRcoh(dB) ≤ 10 log10
NT

Nsc
. (1.73)

25 This is because for a set of N uncorrelated random variables x0, x1, . . . , xN−1 with the same variance
σ2

x , the sample mean x̄ = 1
N

∑N−1
n=0 xn has a variance σ2

x̄ = σ2
x/N [24, p. 188].
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Figure 1.20 SNR gain at the coherent correlation output as a function of the integration time in
units of chips, at Rc = 1.023 MHz.

An example of the SNR gain in Eq. (1.72) is shown in Figure 1.20 for different values
of the frequency shift error. The SNR gain is shown as a function of the coherent
integration length NT normalized to the chip period Nsc, so that the result becomes
the coherent integration length in units of chips. A chip rate of Rc = 1.023 MHz
has been assumed in this example. The results in Figure 1.20 first show the ideal
case when no frequency shift errors are present, so that νt,ε = 0. In this case, we
can see how the SNR gain increases linearly without bound. Notwithstanding, when
νt,ε � 0, the linear increase of the SNR gain is limited up to a point where it starts to
decrease and it actually collapses. The collapse occurs whenever νt,εT or equivalently
νε NT are integer numbers, as previously discussed when introducing the ambiguity
function. So for the case of νt,ε = 1,000 Hz, it means that the SNR first collapses for
T = 1/1,000 = 1 ms, as confirmed in Figure 1.20. This integration length corresponds
to 1,023 chips at the chip rate Rc = 1.023 MHz considered in Figure 1.20.

Finally, it is interesting to note that Figure 1.20 does also consider the case of nonco-
herent integration, where the accumulation in Eq. (1.65) would be carried out using the
squared absolute value of each sample. This operation has no practical sense because
we do need to integrate coherently at least for one code period in order to despread
the received signal. But the curve in Figure 1.20 for noncoherent integration serves
well for illustrating the advantage of coherent versus noncoherent integration. When
integrating for 1,000 chips, one can see that there is a 30-dB gain with coherent inte-
gration, while just a 15-dB gain with the noncoherent one. So in practice there is a
trade-off between coherent and noncoherent integration. The longer the coherent inte-
gration time, the higher the SNR gain but the smaller the residual frequency errors
that can be tolerated. Noncoherent integration provides a means to compensate for the

https://doi.org/10.1017/9781108934176.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108934176.003


1 GNSS Signals and Receivers 47

latter problem, but it comes at the expense of a worse capability to reject noise, as
unveiled by the smaller SNR gain.

Constraints on the Coherent Integration Time
The minimum coherent integration time is usually set to one code period, so we have
T = Tcode and thus NT = Nscode in Eq. (1.65). By doing so one is able to despread
the received signal and to benefit from the orthogonality properties already discussed
in Section 1.3.2. The maximum coherent integration time, though, could ideally be
unbounded. Actually, the larger this value, the better the sensitivity of the receiver
because more energy is accumulated. But one cannot let the coherent integration time
increase without bound because of some limiting factors such as: (i) the presence of
data modulating symbols; (ii) residual frequency errors still present in Eq. (1.65); and
(iii) clock instabilities introduced by the front-end local oscillator.

The presence of data-modulating symbols restricts the coherent integration time
down to the symbol period, so that T ≤ Td. Otherwise, integrating beyond this value
may face the presence of symbol transitions that lead to the sum of destructive pieces
of samples. So instead of having a gain by integrating over a longer time, we may
end up having a severe signal loss whenever sign-reversed symbols are contained
within the integration time. The only way to increase the coherent integration time
beyond the symbol period is by knowing in advance what these symbols are, so one
can compensate for them while doing the coherent accumulation in Eq. (1.65). This
approach is actually the one that motivates the introduction of the so-called pilot
or data-less components in modernized GNSS signals. These signals carry no data-
modulated symbols, and thus, they are completely known to the receiver by the time
they are received. It is for this reason that once the starting point of both the primary
and secondary code is found, the rest of the signal is known and thus long coherent
integration times can be implemented without the risk of suffering from unexpected
symbol transitions. This involves, however, determining the starting point of the sec-
ondary code present in the pilot signal. The extension of Eq. (1.65) to cover this case
will be briefly discussed next, but the interested reader can find more details in [4,
Section 16.4].

The second limiting factor for the coherent integration time is the presence of resid-
ual frequency errors, which appear when wiping off the input carrier at frequency ν
with the local replica at the tentative frequency ν′. Because of this frequency mis-
match, the resulting signal still has some residual frequency error νε = ν − ν′ that
causes the ambiguity function in Eq. (1.69) to collapse whenever νε NT , or νt,εT in
continuous time notation, is an integer number. This effect was already discussed in
the previous section, and it could easily be seen in Figure 1.18 and also as a degrada-
tion of the SNR gain in Figure 1.20. The rule of thumb to deal with residual frequency
errors is to limit the coherent integration time up to T ≤ 1

2 |νt,ε | . This condition can
be achieved by two different means: either by shortening T for a fixed frequency error
νt,ε or by reducing νt,ε for a fixed coherent integration time T . The latter approach is
the one usually considered in practice because T is a design parameter that is set to
meet certain performance requirements, such as the receiver sensitivity. Once T is set,
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the acquisition stage must be designed so that the frequency search is fine enough to
ensure that the remaining νt,ε is compliant with the aforementioned condition.

Finally, the third limiting factor to deal with is the clock stability. This is often
measured through the Allan variance σ2(TA), a dimensionless measure that provides
the variance of the random frequency fluctuations of the clock over a time period TA

[25]. When the Allan variance is referred to a given carrier frequency Fc in Hz, one can
obtain the one-sigma frequency deviation of the clock as σA(T )Fc in Hz. The coherent
integration of this fluctuating frequency error results in an effect similar to that of the
residual frequency error just mentioned above, causing the coherent integration in Eq.
(1.65) to collapse when T is too long. Applying a similar principle, one should make
sure that σA(T )Fc � 1

2T to minimize the impact of clock instabilities.
The three conditions to be fulfilled for setting the correlation time T are therefore:

T ≤ Td, T ≤ 1
2|νt,ε | , T � 1

2σA(T )Fc
. (1.74)

The first condition depends on the GNSS signal, and there is nothing the receiver can
do unless it has access to the navigation data symbols via an alternative means (e.g.
using an assistance GNSS server), or a pilot component is processed. In contrast, the
second and third conditions depend on the receiver implementation and can thus be
improved at the expense of increasing complexity and cost. Complexity is due to the
need to make νt,ε small, thus increasing the number of tentative values for ν′ covering
the same frequency range. Cost is due to the need to replace the clock with a better
one, in case the stability does not allow for a long enough correlation. To have an
idea of the order of magnitude, conventional temperature-controlled crystal oscillators
allow T to be up to one hundred milliseconds, chip-scale atomic clocks (CSAC) up to
a few hundred milliseconds and oven-controlled crystal oscillators (OCXO) up to one
second [26]. Further details on the clock at the RF front end are provided at the end of
Section 11.2.2.

Noncoherent Extension of the Coherent Integration Time
It now becomes clear that the coherent integration time cannot be increased without
bound due to the presence of symbol transitions, residual frequency errors and clock
instabilities that hinder the integration in Eq. (1.65). Among all of them, symbol tran-
sitions are often the most limiting factor because it is difficult for a standalone receiver
to know in advance these symbols, so that they could be compensated. Assuming that
symbol alignment has already been achieved at the receiver, the symbol period leaves
just a few milliseconds of margin to safely perform coherent integration without the
risk of experiencing a sign transition. For instance, the symbol period for GPS L1 C/A
is just 20 ms long, which provides a sensitivity of ∼35 dBHz of C/N0. This value may
not be enough for receivers operating in urban canyons, soft indoor environments or
even in Space, so extending the integration time beyond the symbol period becomes
a real need. In essence, the longer the correlation time, the larger the energy that is
collected, and thus, the weaker the signals that can be detected.
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The solution to this problem is to extend the correlation time by noncoherently
accumulating NI coherent correlations [12, 27]. The extended noncoherent correlation
can thus be computed as follows:

RNC(τ′, ν′) =
NI−1∑

k=0




RC(τ′, ν′; k)



2
, (1.75)

where the k-th coherent correlation RC(τ′, ν′; k) is derived from Eq. (1.65) as

RC(τ′, ν′; k) =
NT−1∑

n=0

r[n + k NT ]c∗[n − τ′]Nscode e− j2πν
′n . (1.76)

Note that the total correlation time in Eq. (1.75) is now:

Ttot = NIT (seconds), Ntot = NI NT (samples). (1.77)

The problem with noncoherent integration is that it is not as effective as the coherent
one when it comes to mitigating the noise. This can be seen in Figure 1.20 where the
solid black line shows the SNR gain when performing the full integration noncoher-
ently. This will never be the case in practice because we need to coherently correlate at
least one code period, so that we can despread the code in the received signal. But the
example illustrates well how less efficient noncoherent integration is. While coherent
integration has an SNR gain growing linearly with the integration time, noncoherent
integration has an SNR gain that barely grows with the square root of the integration
time. It is for this reason that one should always try to use the longest possible coherent
integration time before noncoherent integration comes into action. At least, when sen-
sitivity is being targeted. For accuracy purposes, this is not the case because the only
important parameter for precise time-delay estimation is the total integration time, no
matter how it is split into coherent or noncoherent integrations. But for detecting the
satellites with the best possible sensitivity, one should always set the longest possible
coherent integration time and then extend this time if needed, noncoherently.

It now becomes clear that the receiver design must face a trade-off between coherent
and noncoherent integration at the correlation implemented by the acquisition stage.
On the one hand, the longer the coherent integration, the better the noise rejection
(i.e. the higher the receiver sensitivity), but the more sensitive the correlation is to
residual frequency shifts. On the other hand, using short coherent integrations relaxes
the requirement on the frequency search, because larger residual frequency shifts are
tolerated. But this comes at the expense of a poor noise rejection and thus a poor
sensitivity, so the receiver will need to operate in better sky visibility conditions than
when long coherent integrations are used.

In practice one needs to carefully assess the receiver requirements and the imple-
mentation constraints in order to find the proper combination of coherent integration
time and number of noncoherent integrations. This is because for the same total inte-
gration time Ttot, the performance can be quite different. To demonstrate this statement,
Figure 1.21 shows an example for the sensitivity or minimum C/N0 that would be
required for detecting a GPS L1 C/A signal with a relatively high confidence (prob-
ability of detection Pd = 0.9 and probability of false alarm PFA = 10−4). Details on
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Figure 1.21 Minimum required C/N0 (i.e. sensitivity) to detect a GPS L1 C/A signal with
probability of detection Pd = 0.9 and probability of false alarm PFA = 10−4 for different
combinations of coherent and noncoherent integrations. It is interesting to observe how the
same total integration time Ttot provides different sensitivities when different combinations of
T and NI are used.

how to obtain these metrics will be discussed later in step 3 of the acquisition stage
and with more detail in Section 9.2.4.

The results in Figure 1.21 show, for instance, that an integration time of 20 ms has
∼3 dB better sensitivity when it is performed as a single coherent integration rather
than as a noncoherent integration of 20 coherent integrations of 1 ms each. The differ-
ence is even larger when we move to longer integration times. For example, a single
coherent integration of 1,000 ms length has ∼10 dB better sensitivity than when the
same integration is carried out by noncoherently accumulating 1,000 coherent integra-
tions of 1 ms each. These results are illustrative of how different the sensitivity can be
for the same total correlation time Ttot, when different combinations of T and NI are
set.

Finally, it is worth mentioning that based on the results shown so far, one may think
that noncoherent integration is the answer to let the integration time increase without
bound. It solves the presence of symbol transitions by removing the sign changes and
it solves the clock issues by letting the coherent integration be performed on a short
enough interval, short enough to prevent clocks instabilities to significantly degrade
the coherent correlation output. But despite these advantages, the total integration
cannot be increased without bound either. The last impairment to be coped with is
actually the first one already introduced in Eq. (1.52), namely the code Doppler. It
causes the received signal to be compressed or expanded depending on the experi-
enced Doppler shift, thus causing the received spreading code not to match with the
local replica being used at the receiver. Actually, the Doppler shift is still unknown at
this stage of the receiver, so we cannot compensate for it beforehand. Assuming that
the frequency search is done in steps of Δν′ width, the maximum residual frequency
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shift is then given by half this bin width, Δν′/2. So similarly to code Doppler contribu-
tion in Eq. (1.52), the residual frequency shift will introduce an additional time delay
of δτt =

Δν′t /2
Fc

Ttot seconds when the signal is observed over an interval of Ttot seconds
long. If such additional time delay wants to be kept smaller than a given maximum
value, δτmax, t , the total correlation time must then be limited to

Ttot ≤ 2δτmax, t
Fc

Δν′t
(1.78)

which becomes the upper bound on the maximum total correlation time that can be
used by the receiver.

Correlation in the Presence of Data Bits or Secondary Code
The coherent correlation in Eq. (1.65), which is also the basis for the noncoherent
correlation in Eq. (1.75), was derived under the assumption that no data symbols or
secondary code. If any of them are present, then the starting point of the symbol transi-
tion or the starting point of the secondary code must be searched as well. For instance,
the symbol period in the GPS L1 C/A signal is 20 ms long, and it is composed of
the repetition of Nr = 20 spreading codes with 1-ms duration each. Determining the
starting point of the symbol period allows the receiver to implement a safe coher-
ent integration up to T = 20 ms, without the risk of experiencing sign transitions
in-between. Symbol or bit synchronization is often implemented by collecting the cor-
relation peaks every 1 ms and then checking their signs to confirm whether they belong
or not to the bit pattern of 20 consecutive equal signs. Variations of this approach can
be found in [28, 29], and an implementation using a sliding window is in Section 9.2.8.

Pilot signals do not carry data-modulating symbols but incur a similar problem
because they are implementing a modulated sequence on top of the spreading code,
which is actually the secondary code. Even though the secondary code sequence is
known, the starting point of this sequence in the received signal is unknown to the
receiver. So eventually, the problem is the same as determining the data-modulated
symbol transition, except for the fact that we are now searching for a known pattern
of alternating signs. It is for this reason that many of the previous methods for symbol
synchronization can be adapted for secondary code synchronization as well, just by
changing the repetition pattern. The interested reader will find a detailed discussion
on the topic in [11, Section 14.3.6] and [13, Section 16.5].

Alternatively, one could decide not to search for the symbol transition and proceed
with the coherent integration in Eq. (1.65) using the received signal samples straight-
away. In that case, there is a certain probability of experiencing a symbol transition
somewhere within the coherent integration period. The symbol transition will split this
period into two blocks that will add destructively in Eq. (1.65). The result can either
collapse when the two blocks have equal size or barely suffer any degradation when
one block is much larger than the other. In the end, the presence of symbol transitions
can be modeled as a loss in signal power. This problem was analyzed in [30] where it
was shown that the average losses for a total integration time Ttot = T NI amount at
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Lbit,mean = −10 log10

(
1 − T

3Td

)
, (dB) (1.79)

with Td the symbol period, while the worst-case losses can reach up to

Lbit,max = −10 log10

(
1 − T

Td

)
. (dB) (1.80)

These results are valid for any total integration time Ttot ≥ Td provided that the coher-
ent integration time is T < Td. As can be seen, the results do not depend on the number
of noncoherent integrations but just on the coherent integration time. The worst-case
losses asymptotically increase as T → Td, but for a shorter coherent integration time
of just 10 or 5 ms, the maximum losses are limited down to 3 or 1.25 dB, respectively.
This means that in the absence of symbol synchronization, it is convenient to use a
shorter coherent integration time T in order to keep the losses due to such transitions
under control. This in turn will incur a sensitivity loss, but it can be compensated up
to a great extent by increasing NI and thus having a longer total integration time.

Otherwise, one always has the option of trying to detect the sign of the spreading
codes present in the coherent integration period T . This would be like understanding
spreading codes as if they were data-modulated symbols, and trying to detect and com-
pensate their sign before adding them all together. The results in Figure 1.12 indicate
that this is feasible even for spreading codes of 1 ms provided that the C/N0 is above
35 dB-Hz, leading to a probability of error smaller than 10−2.

1.6.2 Signal Detection

So far it has been considered that the noncoherent correlation RNC(τ′, ν′) constitutes
the basis for deciding whether the local replica is correctly aligned to the received sig-
nal or not. As a by-product, it serves for deciding whether the satellite being searched
is present or not, as well. These two possible hypotheses are often denoted as H1, that
is, satellite present and well-aligned replica, and H0, that is, satellite absent or badly
aligned replica. Different variations on RNC(τ′, ν′) can alternatively be used for this
purpose. For instance, by using the absolute value or a fractional exponent instead of
the square shown in Eq. (1.75) [31]. In order to formulate the signal detection problem,
let us in general denote by Zi the resulting metric, using either Eq. (1.75) or any other
variant. Let us also assume that the search space is composed of Nτ′ bins of width
Δτ′ in the time axis, and Nν′ bins of width Δν′ in the frequency axis. So we have a
total of Nτ′Nν′ bins to test, and thus Zi spans for i = 1, . . . ,Nτ′Nν′ . Because of the
bi-dimensional time–frequency search, it is often customary to store all the resulting
Zi values in a matrix with dimensions (Nτ′ × Nν′). Each Zi value is therefore often
referred to as a test cell. Finally, the decision test statistic is formed through some
function Φ(·) of all the Zi results,

Z = Φ(Z1, Z2, . . . , ZNτ′Nν′ ). (1.81)

Since the Zi values are ultimately based on the correlation between the received
signal and a tentative local replica, it is not difficult to see that a large value will be
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Figure 1.22 Sample acquisition output (a) PRN 19 is not visible, so no peak is present. (b) PRN
21 is visible, so a significant peak is present. The peak is at code delay 13404 samples and
frequency 9.5475 MHz.

obtained whenever the local replica is well-enough aligned to the received signal. So
finding the best tentative local replica, and thus the best pair of (τ′, ν′) values, boils
down to finding which of the Zi values is large enough. It is for this reason that the
function Φ(·) can be the maximum of its arguments, the ratio between the largest
value and the second largest value separated apart by a certain interval, or any other
criterion that may help in finding the correct cell. In the end, the procedure consists of
comparing the decision test statistic Z with a given value or threshold γ. That is,

Z
H1

≶
H0

γ, (1.82)

being the outcome of this comparison, the answer to the decision question on whether
either H1 or H0 is the correct hypothesis. An example of the (Nτ′ × Nν′) matrix con-
taining all Zi values under analysis is shown in Figure 1.22. On the left-hand side, we
can see the case when the satellite signal of interest is not present, so all cells contain
noise only. On the right-hand side, we can see the case when the signal is present,
observing a cell having a much larger value than the rest of cells in the search space.

As mentioned previously, finding the correct cell provides twofold information.
First, that the tentative local replica is well-enough aligned to the received signal.
Second, as an obvious consequence of the former, that the satellite being searched
is actually present in the received signal. In that case, the acquisition is said to be
successful and the tracking stage is then initialized with the corresponding pair of
(τ′, ν′) as coarse estimates of the code delay and frequency shift. So we can declare
that a given satellite is present, while at the same time we can provide rough estimates
on the time delay and frequency shift values. The decision may be correct or wrong,
but in the way the threshold γ is designed, the probability of correct decision and the
probability of false alarm are both under control.

The test statistic can be based on either a data or a pilot signal component, or a
combination of both data and pilot components. The combining methods can be either
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noncoherent or coherent. Few research papers have addressed the issue on how to
combine the data and pilot components in forming the decision statistic [32, 33, 34].
The general approach is the noncoherent one where the correlation outputs from the
data and pilot components are squared and then accumulated in order to form the
decision variable. Alternatively, coherent combining methods are proposed in [32] for
both E1 and E5 Galileo signals. The main idea of coherent combining methods is
to add and subtract the pilot and data components to form two decision variables Zp

and Zd, and then form a decision variable based on the maximum between the two
outputs. According to the results reported in [32], the coherent combining scheme
slightly outperforms the noncoherent one, but only if the signal level is strong enough.
At moderate and low signal levels, the noncoherent and coherent combinations show
similar performance.

The problem of detecting a signal in noise has been extensively presented in [35],
where the reader is referred to for further information on the underlying principles.
The application to GNSS involves some additional considerations because multiple
test cells, on the order of thousands, need to be evaluated and this requires some search
strategy planning, as discussed in the next step on the search process. At high level,
signal detection in GNSS can be performed either in parallel by evaluating all the
testing cells at the same time, that is, as indicated in Eqs. (1.81)–(1.82), or sequentially
by evaluating one test cell at a time. In the latter case, one moves from one test cell to
the next until detection is declared successful. When this occurs, the search stops and
acquisition is declared successful.

The search strategy has an impact on the decision rule in Eq. (1.81) because the
statistics of a large set of values are different from the statistics of just a single value.
Parallel detection involves evaluating all the testing cells simultaneously. It is often
implemented in software receivers because it fits well with the use of the FFT. It will
be analyzed in detail in Sections 1.6.3 and 9.2.4 for snapshot receivers. The alternative
is sequential detection, which involves evaluating a single cell at a time. The evaluation
of the decision rule in Eq. (1.81) can be done in a single stage or in multiple stages
with various coherent and noncoherent integration times. The single-stage detection is
known as single-dwell detection, see [36, 37]. Multiple-stage detection is also known
as multidwell detection [36, 38, 39], where we gain more confidence on the presence
or absence of the satellite under analysis as we move on to subsequent stages. In this
way, we do not need to wait until the whole signal is processed, but rather take partial
decisions dwell by dwell. By doing so we can stop whenever we are confident enough
on the decision to be made, or continue to the next dwell in case we are not confident
enough yet and would like to double check. The concept of multidwell detection is
illustrated in Figure 1.23. Each dwell is characterized by the so-called dwell time,
which is simply the integration time used in the correlation of that dwell. Then a
decision statistic Zi,k is formed at the k-th dwell for the i-th time–frequency bin, and
the result is compared with a threshold γk . If the decision statistic is larger than the
threshold, we move to the next (k + 1)-th dwell, with a larger dwell time in order to
cross-check the decision just taken. At each dwell or decision stage, the same steps
are undertaken. The final delay and frequency estimates are obtained after the last

https://doi.org/10.1017/9781108934176.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108934176.003


1 GNSS Signals and Receivers 55

Correlation K

(dwell time       )

Correlation 1

(dwell time       )T1 TK

Zi,KZi,1

Doppler & code delay 
search

Zi,1

?
> γi,1

Correlation 2

(dwell time       )

no

r[n]

Zi,K

?
> γi,KZi,2

?
> γi,2

T2

no no

yes
successful
acquisition

(restart and
update    ,    )τν

yes
(move
to next
dwell) Zi,2

(restart and
update    ,    )τν

(restart and
update    ,    )τν

yes
(move
to next
dwell)

dwell 1 K llewd2 llewd

νi τi νi τi νi τi

Figure 1.23 Multidwell structure for the acquisition of GNSS signals. Detail showing the dwells
for the i-th testing cell using the pair of tentative values (ν′i , τ

′
i ).

dwell. Ideally, the larger the number of dwells, the better the trade-off between a high
detection probability and a small false alarm probability we can get, though this might
not always be the case [40]. Moreover, a higher number of dwells means an increased
complexity of the acquisition stage.

Coming back to the global decision rule in Eq. (1.81), the probability of detection
is obtained as

PD(γ) =
∫ ∞

γ
f (Z |H1)dZ, (1.83)

whereas the probability of false alarm, that is, the probability of declaring acquisition
successful when actually no signal but only noise was present, is obtained as

PFA(γ) =
∫ ∞

γ
f (Z |H0)dZ, (1.84)

with f (Z |Hm ) the probability density function (PDF) of Z under hypotheses Hm ,
where m = {0,1}. Note that both the probability of detection and the probabil-
ity of false alarm have been expressed as a function of the detection threshold γ,
which is the parameter that allows us to adjust these probabilities to match the
receiver requirements. In case of sequential detection using multiple dwells, the
decision rule at each individual dwell is characterized by the corresponding prob-
ability of detection Pd,k (γk ) =

∫ ∞
γk

f (Zk |H1)dZk and probability of false alarm

Pfa,k (γk ) =
∫ ∞
γk

f (Zk |H0)dZk , for k = 1, . . . ,K . Based on these individual proba-
bilities, the global detection and false alarm probabilities are computed as PD(γk ) =
∏K

k=1 Pd,k (γk ) and PFA(γk ) =
∏K

k=1 Pfa,k (γk ), respectively. Multidwell structures
have not been so extensively studied in GNSS, even though some references on the
topic can be found in [41, 42, 43].

For the detection problem in Eq. (1.81), the common practice is to be given a
requirement in terms of PD for a given working condition (i.e. at some minimum
C/N0) and in terms of PFA. Based on these inputs, we will need to tune the detec-
tion stage so that these probabilities are ultimately achieved. The tuning is done by
adjusting the detection threshold γ in Eqs. (1.83)–(1.84) accordingly.

The relationship between the probability of detection, probability of false alarm and
the detection threshold is schematically illustrated in Figure 1.24. For instance, the
probability of false alarm is the probability of declaring acquisition successful when
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Figure 1.24 Threshold choice at the acquisition stage. H0 is the null hypothesis (no signal), and
H1 is the alternative hypothesis (signal present).

it is actually not. This corresponds to the integral in Eq. (1.84), which is graphically
illustrated in Figure 1.24 by the area below the right tail of the PDF under H0, beyond
the point Z = γ. Since the PDF under H0 does only depend on the noise statistics, and
not on the signal one, the probability of false alarm is directly related to the detection
threshold γ. So once PFA is provided as a requirement to be met, we can obtain γ from
either Eq. (1.84), in case an analytical expression is available, or from the histogram of
the empirical PDF for H0 by moving γ until the shaded area in Figure 1.24 coincides
with PFA. Once the detection threshold has been set, then we need to make sure that
for the minimum C/N0 that has been specified, the area below the right tail of the
PDF under H1 is greater than or equal to the specified PD. Finally, it can easily be
seen in Figure 1.24 that the larger the detection threshold γ, the smaller the false
alarm probability, which is good, but the smaller as well the detection probability, so
a trade-off needs to be found.

A performance criterion for the acquisition stage is the mean acquisition time
(MAT), which refers to the average time needed to be spent in the acquisition stage
until the delay and frequency estimates are obtained [44]. Naturally, different com-
binations between search and detection mechanisms will provide different MAT.
Alternative performance criteria can also be found in [45]. Typically, the trade-off
is between the complexity of the acquisition unit (number of parallel correlators) and
the acquisition times. Generic methods to compute MAT for DS-SS signals can be
found in [37, 38]. For Galileo, the MAT values have been analyzed in [39, 43, 46, 47].
Some techniques to improve MAT both at the search and at the detection stages have
been discussed in [48].

More details on the process of detecting a GNSS signal will be discussed in
Chapter 9 when addressing snapshot receiver implementations.

https://doi.org/10.1017/9781108934176.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108934176.003


1 GNSS Signals and Receivers 57

1.6.3 Time–Frequency Search

This step is in charge of evaluating the correlation RNC(τ′, ν′) for all tentative values
of time delay and frequency shift within the search space. As mentioned previously,
the search space is composed of Nτ′ bins in the time domain with resolution or bin
width Δτ′, and Nν′ bins in the frequency domain with resolution or Δν′. The total
search space is thus composed of Nτ′Nν′ bins.

Time Search
Regarding the time-delay search, the received signal comes with samples equispaced
every Ts seconds, as given by the sampling rate. The local code replica is thus sam-
pled at the same rate in order to perform the correlation. Despite the one sample time
resolution, it is important to keep in mind that the time resolution of the correlation
output, in terms of τ′, does not depend on the sampling rate but on the resolution of
the actual τ′ used for generating the local replica. This resolution, Δτ′, can actually
be as fine as desired. However, it has the disadvantage that, by doing so, the number
of tentative time-delay bins Nτ′ dramatically increases. In practice it is often preferred
to use a conservative time-delay resolution, typically half the one-sided width of the
chip autocorrelation peak. By doing so one can trade off with the number of tentative
delay bins that are required to explore. It is interesting to note that once acquisition is
successful and the correlation peak of the received signal is found, sub-sample accu-
racy can always be obtained by interpolating the samples in the neighborhood of the
maximum peak [49] or by recomputing the correlation peak once an estimate of the
frequency shift is available as well [50]. In the end, one should keep in mind that the
accuracy of time-delay estimation does only depend on the received signal bandwidth
and the received C/N0, but not on the sampling rate of the receiver, provided that it
fulfills the Nyquist criterion. The impact of the time–frequency resolution in terms of
C/N0 losses at the correlation output is thoroughly discussed in [13, Section 16.2.2].

So in practice, the time-delay resolution Δτ′ is required to be smaller than the
one-sided width of the chip pulse autocorrelation peak. This, in turn, determines the
minimum sampling rate needed. Indicative values for Δτ are provided in Table 1.2 for
some representative GNSS signals.

The impact of the time-delay mismatch between the local replica and the received
signal is shown in Figure 1.25(a). The results are shown in terms of the incurred loss
in signal power. A rectangular chip pulse with duration equal to the chip period, such

Table 1.2 Maximum time delay resolution Δτ′ at the acquisition search step, for some representative
GNSS signals.

Modulation
One-sided width of the chip pulse
autocorrelation main peak [chips]

Time-delay resolution Δτ′ of the
acquisition search [chips]

BPSK (any order) 1 0.5
BOC(1,1) 0.34 0.175
sinBOC(10,5) 0.14 0.07
cosBOC(10,5) 0.11 0.055
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Figure 1.25 Losses in signal power due to either (a) a time mismatch or (b) a frequency
mismatch in the correlation between the received signal and the local replica. A rectangular
chip pulse with duration equation to the chip period Tc = 1/Rc is considered.

as in GPS L1 C/A, is considered. One can verify that when the local replica is offset
by the half chip period with respect to the received signal, the correlation output cor-
responds to the mid-point of one side of the triangular peak. So being the mid-point,
its amplitude should be one half of that of the peak, thus incurring in a 6-dB loss in
signal power. This is actually the value observed in Figure 1.25 for a time-delay error
of 0.5 chip. Now let us come back to the results in Table 1.2. The time-delay resolu-
tion Δτ′ for the time-delay search was mentioned to be (at least) half of the one-sided
chip pulse autocorrelation peak width. Therefore, for the example at hand, this means
using at least Δτ′/Nsc = Δτ

′
t /Tc = 0.5. That is, two samples per chip. On the other

hand, searching in steps of Δτ′ incurs a maximum time delay error of τε,max = Δτ
′/2.

This translates into a maximum time delay error of τε,max/Nsc = τt,ε,max/Tc = 0.25
chip for this example, which is found to incur a ∼2-dB loss according to Figure 1.25.
The conclusion is that in the worst case, the losses due to the bin size of the time delay
search amount up to ∼2 dB. Finally, once the time resolution is known, the time-delay
search spanning within one code period of Nscode samples results in a total of Nτ′ time
bins where the correlation peak may appear,

Nτ′ =
⌊ Nscode

Δτ′
⌋
. (1.85)

Frequency Search
Regarding the frequency search, it is interesting to review first the three main elements
contributing to the frequency shift in the received signal. The first one is the satellite
motion, which amounts to a maximum of ±5 kHz frequency shift, as per GPS satel-
lites at L1.26 The second one is the frequency offset of the receiver oscillator, which

26 The frequency shift of other GNSS satellites in ordinary MEO orbits is similar, but this is not the case for
satellites in IGSO orbits, where Doppler shift is approximately half of that of MEO orbits; GEO orbits,
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adds ±1.5 kHz per each ppm (part per million) of frequency stability when observed
at L1. The third one is the user’s velocity, which adds ±1.5 Hz per each 1 km/h of
speed [12, Chapter 3].

When no a-priori knowledge is available and an oscillator with 1 ppm frequency sta-
bility is used, the acquisition stage should account for a maximum frequency search
of νt,max = 6.5 kHz. If the frequency offset of the receiver oscillator was known,
for instance, by some prior calibration27 means, then the maximum frequency search
could be reduced down to νt,max = 5 kHz. If on top of the oscillator calibration we
also had a-priori information on the satellite Doppler, for instance, thanks to the use
of assistance information, then there would be no need to perform the coarse fre-
quency search. In that case, the only remaining frequency shift would be due to the
user’s dynamics, and this can normally be accommodated within the span of a single
frequency bin, which reaches up to ±Δν′t/2.

While the maximum span of the frequency search is now clear, it remains to deter-
mine the actual bin size Δν′. We will use the continuous-time notation Δν′t instead,
because it is a more intuitive metric than its discrete-time counterpart Δν′, which is
actually unitless. This will facilitate the discussion hereafter.

Some details on the tolerable frequency error were already unveiled when intro-
ducing the coherent correlation in Eq. (1.65), which was found to collapse whenever
νt,εT = 1 or multiples of it. The effect was clearly visible in the ambiguity function
in Eq. (1.69) and shown therein in Figure 1.18. As a rule of thumb, the maximum
frequency error was set at νt,ε,max = 1/2T with T the coherent integration time. This
would correspond to a frequency search using a bin width of Δν′t = 1/T , assuming
that the errors are uniformly distributed within this width. The impact of having such
frequency error can now be seen in Figure 1.25(b). For a coherent integraton time of
T = 1 ms, the frequency bin width would be 1 kHz and the maximum frequency error
would then become 500 Hz. Such error incurs a ∼4-dB loss in signal power as observed
in Figure 1.25, which may be too high to afford in certain working conditions. A more
conservative approach is to set the frequency bin width to

Δν′t = 1/2T, (1.86)

which then leads to a maximum frequency error,

νt,ε,max = 1/4T. (1.87)

For the same example above, this now would lead to a frequency search bin width
of Δν′t = 500 Hz, a maximum frequency error of 250 Hz, and just a ∼1-dB loss in
signal power. Finally, once the frequency resolution is known, the frequency search
comprised in the range within ±νt,max is then divided into Nν′ frequency bins to test,
where

which is much lower; or the eccentric Galileo eccentric satellites (E18 and E14), which reach a higher
Doppler shift than standard MEO satellites.

27 Note that such calibration may need to be repeated from time to time to account for temperature
variations and ageing of the oscillator.
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Nν′ =
⌊2νt,max

Δν′t

⌋
+ 1 (1.88)

or equivalently using the frequency bin width in Eq. (1.86),

Nν′ = �4Tνt,max� + 1. (1.89)

The results in Figure 1.25(b) provide many insights on the interplay between
coherent integration time and maximum tolerable frequency error at the correlation
stage. One can see how increasing the coherent integration time, as required in high-
sensitivity applications, places stringent demands on the frequency search, since the
residual frequency error must be decreased accordingly. For instance, let us assume
that we are fine with the ∼4-dB loss of signal power when using T = 1 ms and
a frequency bin width of Δν′t = 1 kHz. Let us now assume that we would like to
preserve the same loss but when implementing a long coherent integration time of
T = 100 ms, as it could be needed for instance in some high-sensitivity applications.
The 4-dB loss for T = 100 ms is found in Figure 1.25 to be obtained for a frequency
error of just 5 Hz, which implies a frequency search with a bin width of Δν′t = 10
Hz. This is an extremely demanding requirement. To make it clear, let us assume
that the receiver at hand is operated in standalone mode, so assistance information is
not available. According to the discussion above, the frequency search should span
at least for ν′t ∈ [−νt,max,+νt,max] = [−6.5,+6.5] kHz. Covering this range in steps
of Δν′t = 10 Hz leads to Nν′ = 1,301 frequency bins to evaluate. On the time-delay
search, assuming a spreading code with 1,023 chip and thus a time delay bin width of
Δτ′t /Tc = 0.5 chip, we would have Nτ′ = 2,046 time bins to evaluate. Putting every-
thing together, we would need a time–frequency search space composed of a total of
Nτ′Nν′∼2.6 · 106 bins, which is extremely demanding. This example shows how high-
sensitivity receivers requiring long coherent integration times, and thus, a very fine
frequency search must operate with assistance information in order to make the acqui-
sition process feasible in practice. The same principle applies to any receiver in the
sense that assistance information does always help in reducing the frequency search
span, and thus, in reducing the search space. But for demanding applications where
long coherent integration times are needed, assistance information becomes a must.

Search Strategies
So far we have set the grounds for the time–frequency search, determining the search
space, the search bin width and the incurred losses. The next step is to determine how
to actually go through the search space and evaluate all the time–frequency cells. One
or several cells can be analyzed at each trial, resulting in three different approaches for
implementing the time–frequency search:

– Serial search. In this case, the decision metric of each cell, which is given by the
correlation output in Eq. (1.75), is computed and tested individually right away
[51, 52, 14]. Decisions are taken on a cell-by-cell manner, and thus, the search
process follows sequentially with the rest of the cells in the search space as
illustrated in Figure 1.26(a).
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Figure 1.26 Illustration of different search strategies for going through the whole
time–frequency acquisition matrix: (a) serial search, (b) hybrid search and (c) full parallel
search.

– Hybrid search. All time-domain cells are used together to form a decision metric.
Typically, this is done when using the FFT to compute the code correlation for a
given tentative frequency. The result of the FFT simultaneously provides all the
correlation samples, which are used to detect whether the signal is present or not,
as illustrated in Figure 1.26(b). Then the search proceeds sequentially by
implementing the FFT for a new tentative frequency, and the detection process is
repeated again until the whole frequency search space is scanned [53, 54, 39, 40].

– Full parallel search. This is an extension of the hybrid search where the FFT
implementing the correlation is computed for all the tentative frequencies, and the
results are stored in a time–frequency matrix. Then, all cells of this matrix are
simultaneously used to detect whether the signal is present or not. This is done for
instance by taking the largest value of the whole time–frequency acquisition
matrix, and then comparing this maximum value with a given detection threshold
[55, 56, 57].

Example of Acquisition Technique: Full Parallel Search
We provide next an algorithmic description of the full parallel search, which is actually
the technique implemented in the multi-GNSS software of this book, and therefore,
it serves well for the purpose of illustrating an example of acquisition technique.
From a high-level perspective, the implementation of the parallel search comprises
the following steps:

1. Generate the local spreading code replica c[n] for the satellite to be acquired.
2. Apply the FFT to c[n] (see Section 9.2.9 for more details) and take the complex

conjugate of the result. The complex conjugate of the FFT is needed because we
seek to implement the correlation operation in the frequency domain. This is
possible in virtue of the convolution theorem of the Fourier transform, whereby
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the product of Fourier transforms corresponds to the convolution in the time
domain [8, Section 2.9.6]. The convolution of two discrete-time signals x1[n] and
x2[n], defined as x1[n] ∗ x2[n] =

∑∞
k=−∞ x1[k]x2[n − k], is very similar to the

correlation we are looking for, but not identical. The correlation of these two
signals is defined as Rx1,x2 [n] =

∑∞
k=−∞ x1[k]x∗2[k − n] where the complex

conjugate (·)∗ has been considered for the sake of completeness, in case the
signals were complex-valued. So we can see that convolution and correlation are
related as follows, Rx1,x2 [n] = x1[n] ∗ x∗2[−n]. That is, we need one of the signals
to be complex conjugated and time reversed so that by doing the convolution we
actually obtain the correlation. Both complex conjugate and time reversal in the
time domain imply the complex conjugate only of the Fourier transform [8,
Section 2.8]. This is the reason why we are taking the complex conjugate of the
code replica FFT in the present step, so we can obtain the correlation of the
received signal with the local replica by means of implementing their convolution
in the frequency domain.

3. Two options are possible here:
(a) Multiply the received signal r[n] with a local carrier wave e− j2πν′n at the

tentative frequency value ν′ to tentatively remove the frequency shift ν
present in r[n]. Take the FFT of the result.

(b) Alternatively, the code replica c[n] could be the one multiplied by the local
carrier, in this case, by e j2πν′n . This could be done in the frequency domain
by circularly rotating the FFT samples of the code replica, which are already
available from step 2. In that case, the frequency shift bin width Δν′ is
determined by the frequency resolution of the FFT. Care must be taken when
choosing the size of the FFT in order to match the FFT frequency resolution
with the required Δν′.

4. Obtain RC(τ′, ν′; k) in Eq. (1.76). If step 3(a) was implemented, RC(τ′, ν′; k) is
obtained by multiplying the result of step 2 with that of step 3(a) and applying the
IFFT. If step 3(b) was implemented, RC(τ′, ν′; k) is obtained by multiplying the
FFT of r[n] with the result of step 3(b) and applying the IFFT.

5. Repeat steps 2-4 for k = 0, . . . NI − 1 and accumulate |RC(τ′, ν′; k) |2 in order to
form RNC(τ′, ν′) in Eq. (1.75).

6. The satellite is detected whenever maxτ′,ν′ RNC(τ′, ν′) > γ for a given threshold
γ. The coarse estimates for the time delay and frequency error, denoted by (τ̂, ν̂),
are obtained as the pair of time–frequency values (τ′, ν′) where the maximum
above is achieved. That is,

(τ̂, ν̂) = arg max
τ′,ν′

RNC(τ′, ν′) > γ. (1.90)

As can be seen, the implementation makes extensive use of the FFT operation in
order to efficiently implement the correlation operation, and it is therefore the preferred
approach in software receiver implementations. In the subsequent chapters, we will
refer to this technique when addressing the implementation details for each specific
GNSS signal. Further details on the FFT implementation are discussed in Section
9.2.9.
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1.7 Tracking

The acquisition stage is completed once the satellite of interest is detected and coarse
estimates of its code delay and frequency shift are obtained. These values are then fed
as an input to the tracking stage, whose role is to provide fine estimates of both the
code and carrier phase and to keep track of any potential variation over time. If the
receiver has a snapshot architecture, no tracking stage is then implemented. Instead,
the coarse estimates coming from the acquisition stage are provided as the output
observables straightaway. Snapshot architectures are specifically addressed in Chapter
9. In the rest of this chapter, we will focus on conventional GNSS receivers, which
implement both acquisition and tracking stages following the architecture shown in
Figure 1.16. Thanks to the tracking stage, the receiver can continuously retrieve the
bits from the navigation message and measure the satellite ranges that are needed to
compute the user’s position.

The tracking stage is composed of two separate modules, each of them in charge
of code tracking and carrier tracking, respectively. Both modules are implemented
using a closed-loop architecture. This involves comparing the input signal with a local
replica, determining their relative error, and then using this error to correct the local
replica that will be compared again with the incoming signal in the next time instant.
Both code and carrier tracking will briefly be described next with the aim of providing
a high-level overview of their operation principle.

1.7.1 Carrier Tracking

Carrier tracking is required at the receiver in order to synchronize the local carrier
replica with the incoming signal, and thus to completely wipe off the carrier. Once the
carrier is properly removed, all subsequent operations such as despreading the PRN
code of the satellite under analysis, measuring the time-delay and retrieving the navi-
gation data bits can all be safely carried out as long as the SNR allows us to do so. As
can be inferred, carrier tracking is intimately related to code tracking because actually
one is depending on the other. Carrier tracking allows the carrier to be wiped off and
thus to proceed safely with the coherent correlation for code despreading. But at the
same time, carrier tracking needs the code to be despread first, because otherwise the
signal of interest is buried well below the noise floor and becomes imperceptible. It is
for this reason that both carrier and code tracking operate simultaneously, and indeed,
carrier tracking is often used to assist code tracking under the so-called carrier aiding.
This strategy takes advantage of the capability of carrier tracking to precisely keep
track of the user dynamics. Assisting the code tracking stage with the carrier dynamics
allows a simpler implementation of the code tracking, since user dynamics are already
provided and the emphasis can be placed on just filtering out the thermal noise.

Carrier tracking is implemented following the rationale of the block diagram in
Figure 1.27. When carrier tracking is first initiated, the incoming signal is correlated
with the local code and carrier replicas using the coarse code delay and frequency shift
estimates (τ̂, ν̂) provided by the acquisition stage. Later, once tracking is ongoing,
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code delay and carrier phase values are recursively computed within the tracking
loop. These values are used to align the local code and carrier replicas to those in
the received signal, and the goodness of such alignment is assessed through the corre-
lation of both terms as previously done at the acquisition stage with Eq. (1.65). This
leads to the so-called prompt correlation, whose expression is given by

yP[k] =
NT−1∑

n=0

r[n + k NT ]c∗[n − τ̂]Nscode e− j θ̂[n;k], (1.91)

for the k-th prompt epoch, with the locally generated carrier phase given by θ̂[n; k] =
2πν̂[k]n + θ̂[k]. Substituting the received signal r[n] with the signal model in Eq.
(1.59), the expected value of the prompt correlator results in

E
[
yP[k]

]
=
√

C
NT−1∑

n=0

c[n + k NT − τ]Nscode c∗[n − τ̂]Nscode e jθε [n;k], (1.92)

where data symbols or the values of the secondary code in pilot signals have been
omitted for simplicity. The carrier phase error θε[n; k] results from the difference
between the carrier phase of the received signal θ[n; k] and the carrier phase of the
local replica θ̂[n; k]. Note that k is indexing the block of NT received samples being
processed at the coherent correlation, whereas n is the sample by sample indexing.
Note also that the carrier phase of the received signal can be further decomposed as
θ[n; k] = 2πν(n + k NT ) + θ = 2πνn + θ[k] for some carrier phase offset θ[k]. So the
error between both carrier phases that appears in Eq. (1.92), namely θε[n; k], is thus
given by

θε[n; k] = θ[n; k] − θ̂[n; k] = 2πνε[k]n + θε[k], (1.93)

where νε[k] = ν − ν̂[k] stands for the frequency error and θε[k] = θ[k] − θ̂[k] stands
for the phase offset error at the k-th prompt correlator epoch. When the summation
in Eq. (1.91) takes place, the presence of a residual frequency error νε[k] leads to the
Fejér kernel already mentioned when introducing the ambiguity function in Eq. (1.69),
causing the output amplitude of the prompt correlator to degrade. The expected value
in Eq. (1.92) thus results in

E
[
yP[k]

]
=
√

C
Rp (τε )

Rp (0)
sin(πνε[k]NT )

sin(πνε[k])
e jθε [k], (1.94)

which is a complex value. In the sequel, we will refer to the real (i.e. in-phase) and
imaginary (i.e. quadrature) components of the prompt correlator output by IP[k] and
QP[k], respectively, so that

IP[k] = Re[yP[k]], QP[k] = Im[yP[k]]. (1.95)

Once some preliminaries have been introduced, we are now in position to describe
how carrier tracking is implemented in a GNSS receiver following the architecture
in Figure 1.27. As can be seen, the aforementioned prompt correlator output samples
are fed to a carrier discriminator. This block is in charge of providing an error signal
ε[k] that, on average, is proportional to the (frequency or phase) error between the
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e−jθ̂[n]

c[n− τ̂ ]

yP[k]kNT

n=(k−1)NT

˜PLL,FLL[k]

PLL,FLL[k]

Figure 1.27 Generic block diagram for carrier tracking in a GNSS receiver.

received signal and the local carrier replica. A tracking loop making use of a phase
discriminator is referred to as a Phase-Locked Loop (PLL), while a tracking loop
making use of a frequency discriminator is referred to as a Frequency-Locked Loop
(FLL). Regardless of the type of discriminator, the output error signal needs to be
filtered by a loop filter to obtain a smoothed error signal. The latter is finally used to
control the generation of the carrier replica for the next epoch, which is carried out
by a numerically controlled oscillator (NCO). The resulting closed-loop architecture
is able to align the local carrier to the received one by subsequently iterating until the
resulting error signal is driven to zero.

Phase-Locked Loop Discriminators
It is important to bear in mind that carrier phase tracking needs to be insensitive to
the 180◦ phase shifts that, from time to time, are introduced by the symbol transitions
in data-modulated GNSS signals. A way to circumvent this limitation is by using a
Costas discriminator, which is a type of discriminator insensitive to sign transitions.
The baseline Costas phase discriminator relies on the atan of the prompt correlation
samples so that the signal error is generated as

εPLL,Costas
atan [k] = atan

(QP[k]
IP[k]

)
= θε[k] ∈ [−90◦,90◦]. (1.96)

The result in Eq. (1.96) actually provides the phase error to be corrected regardless of
the presence of data-modulating symbols. The main drawback is that it relies on a non-
linear function (atan), and thus, its hardware implementation may pose some troubles.
Alternative Costas discriminators have been proposed to circumvent this problem at
the expense of shrinking the linear region of their input-output response. Some exam-
ples are shown below along with the region in which they operate linearly. That is, the
region where their output coincides with the phase error θε[k] that is present at their
input and that we are looking for.

εPLL,Costas
I×Q [k] = IP[k]QP[k] = sin (2θε[k]) ≈ θε[k] ∈ [−22.5◦,22.5◦]

εPLL,Costas
DD [k] = sign(IP[k])QP[k] = sin (θε[k]) ≈ θε[k] ∈ [−45◦,45◦].

(1.97)

Note that εPLL
DD [k] is designed for BPSK-modulated symbols. It implements a Decision

Directed (DD) strategy for deciding the data-modulated symbol through sign(IP[k])
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Figure 1.28 Output ε[k] provided by different PLL discriminators as a function of the input
phase difference θε [k] between the received carrier and the local replica. Phase in units of
degrees.

and then uses this decision for removing the contribution of that symbol on QP[k].
The expressions above assume that an AGC is applied to the prompt correlator in
Eq. (1.91) so that it is normalized to unit power, PyP = E

[
|yP[k]|2

]
= 1. Otherwise,

the discriminators in Eq. (1.97) turn out to depend on PyP and
√

PyP , respectively,
so they should be normalized accordingly using an estimate of the prompt correlator
power. Note also that for small arguments it is reasonable to assume sin(x) ≈ x,
so the low-complexity Costas discriminators in Eq. (1.97) actually provide a valid
correction for the NCO at the expense of a reduced input linear operation region. This
can be clearly seen in Figure 1.28 where the input-output response of some Costas
phase discriminators is shown, normalized so that their slopes are equal to one in the
linear region. Such input-output representation is often referred to as the S-curve,28

typically having a linear region for small inputs, then a zero slope for larger inputs,
and sometimes, a negative slope for much larger inputs that may cause the curve to
exhibit additional zero-crossings.

It is worth noting that in the absence of data-modulating symbols, such as when
tracking pilot signals, the limited input range of Costas discriminators leads to an
unnecessary degraded performance in the presence of severe noise. In these circum-
stances, it is preferred to avoid Costas discriminators and go for a PLL discriminator
based on the full-range, or four-quadrant version atan2, which is widely used in
software receiver implementations. In that case,

εPLL
atan2[k] = arg (yP[k]) = atan2

(QP[k]
IP[k]

)
= θε[k] ∈ [−180◦,180◦], (1.98)

28 The S-curve is also used for code tracking discriminators, as later shown in Figure 1.32.
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where arg(·) stands for the complex argument (i.e. angle) of a complex number. A sim-
pler implementation is possible recalling that arg(x) ≈ Im[x] for a small and complex
number x. Then we have

εPLL
Q [k] = Im

[
yP[k]

]
= QP[k] ≈ θε[k] ∈ [−45◦,45◦]. (1.99)

Similarly to the previous low-complexity Costas discriminators in Eq. (1.97), the PLL
discriminator in Eq. (1.99) also needs to be normalized to avoid fluctuations caused
by variations on the received signal strength. In this case, normalized by

√
PyP .

Phase-Locked Loop Performance and Filter Bandwidth
The carrier phase tracking performance can be assessed through the variance of the
estimated phase at the NCO output. Assuming that the tracking loop operates in the
linear region, such variance is given by (see for instance [4, Section 12.3.6])

σ2
θ̂
=

BL
C
N0

�
�
1 +

1

2 C
N0

T

�

(rad2), (1.100)

with BL the bandwidth of the loop filter in charge of smoothing the discriminator
output and T the coherent correlation time corresponding to the NT samples used in
Eq. (1.91) to obtain the prompt correlation output. Note that the term C

N0
T in Eq.

(1.100) becomes the SNR at the output of the prompt correlator. The overall term
in brackets in Eq. (1.100) is known as the squaring losses and accounts for the per-
formance degradation that is experienced at medium- to low-SNR due to nonlinear
effects caused by the increased noise. Carrier phase tracking is a well-known topic
that has extensively been addressed in the existing literature. An exhaustive coverage
of this topic is thus out of the scope of the present book. Just the fundamental concepts
have been addressed here to support the understanding and operation of the compan-
ion software to this book. The interested reader can find further details on this topic in
[58, 59, 60] or [10] for a comprehensive overview. For details on the loop filter design
and performance analysis, the interested reader is referred to [4, Section 12.3].

Frequency-Locked Loops
Regarding FLL implementations, they provide an alternative way of implementing
carrier tracking by using frequency measurements instead of phase ones. By doing so,
FLLs provide much more robust performance than PLLs in the presence of high user
dynamics, owing to the fact that frequency variations are always much smaller than
phase variations. This allows the tracking loop to operate in a more relaxed manner
and avoid the abrupt jumps that are typically observed in phase measurements. The
price to be paid is that there is no access to the actual phase of the received signal, but
only to its frequency. This means that the phase of the locally generated carrier replica
is always behind the phase of the received signal by a constant phase offset. This is not
a major problem because such offset can be resolved at the demodulation stage of the
receiver. However, the common practice in many GNSS receiver implementations is
to first start the tracking stage using an FLL and once in steady-state, switch to a PLL
to perform the finer tracking and resolve the pending phase offset ambiguity.
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Most FLL discriminators are based on the observation that the product between
two consecutive prompt correlator outputs provides a complex value whose argu-
ment is proportional to the frequency error. This motivates the following baseline FLL
discriminator,

εFLL
atan2[k] =

1
2πNT

arg
(
yP[k]y∗P[k − 1]

)
, (1.101)

which is often expressed in terms of in-phase and quadrature formulation as follows:

εFLL
atan2[k] =

1
2πNT

atan2

(
IP[k − 1]QP[k] − IP[k]QP[k − 1]
IP[k]IP[k − 1] +QP[k]QP[k − 1]

)
. (1.102)

The four-quadrant arctangent discriminator above (atan2) can also be implemented in
a decision-directed manner by using the two-quadrant arctangent discriminator instead
(atan), as done in the Costas PLL shown in Eq. (1.96). By doing so, we get rid of the
180◦ phase shifts due to symbol transitions in the prompt correlator samples.

In the sequel, we will consider Eq. (1.101), though, because it allows a more intu-
itive interpretation. Actually, Eq. (1.101) is providing the phase difference taking
place in the complex product of two consecutive prompt correlator outputs, namely
yP[k]y∗P[k − 1]. Note that being a phase difference, it has the sense of frequency, and
thus, it is consistent with being a frequency discriminator. It is not difficult to see that
the expression in Eq. (1.101) is equivalent to:

εFLL
atan2[k] ≡ θε[k] − θε[k − 1]

2πNT
= νε[k], (1.103)

which is the frequency error between the received signal and the local carrier replica,
νε[k]. Actually, what we were looking for.

Similarly to the PLL, low-complexity FLL discriminators have been proposed to
circumvent the nonlinear function for retrieving the angle of a complex number. Some
examples are the following:

εFLL
I×Q[k] = Im

[
yP[k]y∗P[k − 1]

]
= IP[k − 1]QP[k] − IP[k]QP[k − 1]

εFLL
DD [k] = sign

(
εFLL
I×Q[k]

)
εFLL
I×Q[k]. (1.104)

Finally, it is interesting to note that the phase difference taking place in
yP[k]y∗P[k−1] can be extended to the product of two prompt correlations separated
apart by more than one epoch. The general case would be products in the form
yP[k]y∗P[k − m] for m ≥ 1. The combination of several of these terms helps in miti-
gating the noise increase that is experienced when two noisy samples are multiplied,
as it is the case in the FLL discriminators presented so far. This approach has its roots
on autocorrelation-based frequency estimators such as the Kay, Fitz and Luise & Reg-
giannini methods widely adopted in digital communication receivers. The interested
reader is referred to [61, Section 3.2] for a detailed while comprehensive discussion
on the topic.
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1.7.2 Code Tracking

Code tracking shares the same principle as carrier tracking, but now the magnitude
being tracked is not the carrier phase or carrier frequency but the code offset of the
local code replica with respect to the incoming signal. Contrary to carrier tracking,
which uses only the prompt correlator, code tracking requires more than one correlator
to ascertain whether the local code replica is truly aligned with the received one or not.
In practice, two more correlators, each of them referred to as the early and the late
correlator, often suffice for this purpose apart from the prompt one already used for
carrier tracking. Each of these two additional correlators is placed on each side of the
correlation time, at a distance δ/2 from the central correlation peak. The separation δ
is therefore referred to as early-late separation.

The generic block diagram of a code tracking architecture is shown below in
Figure 1.29, where the three aforementioned correlators are denoted by yE[k], yP[k]
and yL[k] for the early, prompt and late, respectively. The output of these correlators
is a complex value indicating how well each specific code replica is aligned with the
received signal. It is for this reason that code tracking architectures are often referred to
as Delay-Locked Loops (DLL) . Following the same convention as for carrier tracking,
their in-phase and quadrature components are referred herein as IE,P,L[k] and QE,P,L[k]
depending on the specific correlator under analysis. Note that the input signal for code
tracking is the received signal r[n] with the carrier already wiped off using the carrier
replica generated by the carrier tracking module. This indicates that both carrier and
code tracking must operate simultaneously, since the output of each of them has an
impact on the other.

Delay-Locked Loop Correlator Spacing
Regarding the correlator spacing, typically δ = 1 chip is used in most GNSS receiver
implementations, especially for BPSK signals. A narrower separation provides better
accuracy in determining the code delay of the input signal and is more robust to the
presence of multipath. A narrower separation is needed as well to track BOC signals
in order to monitor the central correlation peak, whose width is typically a fraction of
chip. However, using a too narrow spacing is troublesome when rapid variations of the
code delay are experienced, either because of the user’s dynamics or because of rapidly

c[n − τ̂ ]

yP[k]

kNT

n=(k−1)NT

kNT

n=(k−1)NT

kNT

n=(k−1)NTc[n − τ̂ − δ/2]

c[n − τ̂ + δ/2]

yE[k]

yL[k]

r[n]e−jθ̂[n]

DLL[k]

D̃LL[k]

Figure 1.29 Generic block diagram for code tracking in a GNSS receiver.

https://doi.org/10.1017/9781108934176.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108934176.003


70 José A. López-Salcedo et al.

fluctuating multipath. In these circumstances, it is beneficial to use a wider early-late
separation. Modern GNSS receivers allow the early-late spacing to be adjusted while
the receiver is tracking the signal. This has the advantage of providing an additional
degree of freedom for the receiver to adapt the tracking stage to the working condi-
tions, in order to cope with situations where the C/N0 suddenly drops, and thus to
reduce the risk of loss of lock.

To better illustrate the underlying concept of code tracking let us consider the fol-
lowing example. In Figure 1.30, right, the late code has the highest correlation, so the
estimated code delay τ̂ must be increased. In Figure 1.30, left, however, the highest
peak is located at the prompt replica, and the early and late replicas have equal corre-
lation. It is in this situation where one can claim that the code delay is being properly
tracked. The estimated code delay τ̂ is now aligned with the true delay τ of the received
signal, and the resulting delay error τε goes to zero. From Figure 1.30, one can also
infer the correlation process as a multiplication of the sampled replica and signal, and
accumulation. The black samples in the replicas contribute to the correlation gain, as
they multiply a +1 by a +1, or a −1 by a −1. The grey samples do not, as they multiply
a +1 by a −1, which happens when the replica and the code are not well aligned. Note
that, in reality, the signal is buried in noise, so the correlation of several samples is
needed to raise the signal above the noise level. Figure 1.30 also shows why it is con-
venient to select a sampling frequency Fs that is not a multiple of the spreading code
frequency, to avoid aliasing, as otherwise several contiguous replicas would have the
same gain, leading to an accuracy reduction.

Figure 1.30 Example where the early, prompt and late replicas are correlated with the incoming
signal. Left: The prompt code has the highest correlation and IE [k] ≈ IL [k], so the loop is
perfectly tuned. Right: The late replica has the highest correlation, so the code delay must be
increased, that is, the code must be delayed. Note that Ts is purposely not a multiple of Tc.
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Another example is shown in Figure 1.31 with the evolution of the early, late and
prompt correlator outputs as a function of time. Figure 1.31(a) corresponds to the case
where the PLL is not locked. As can be seen, the early, late and prompt outputs of
the DLL are not locked either. They are actually rotating in the complex plane, and
their energy is moving from the in-phase (upper subplot) to the quadrature component
(bottom subplot) and vice versa. In contrast, Figure 1.31(b) corresponds to the case
where the PLL is locked so that the carrier is properly wiped off from the received
signal. In that case, all the energy is now on the in-phase component of the DLL,
as shown in the upper plot of Figure 1.31(b). The DLL is also found to operate as
expected, with the early and late correlators having a similar magnitude, indicating
that the code replica is well aligned with the received signal. The square value of the
early, late and prompt correlators is shown in Figure 1.31. It is for this reason that the
upper plot in Figure 1.31(b) has a magnitude of 0.25 for the early and late correlators,
which is 0.52, being 0.5, half, the height of a unit-amplitude correlation peak when a
rectangular chip pulse is considered.

Delay-Locked Loop Discriminators
Similarly to carrier tracking, the way in which the error signal is obtained from the
correlation between the received signal and the local code replica plays an important
role in the code tracking performance. For a DLL, such error signal is obtained by
means of a code or DLL discriminator whose output εDLL[k] is fed back to the code
replica generator, in order to compensate for the misaligment of the local replica with
respect to the received signal. There are essentially two different types of DLL dis-
criminators depending on their sensitivity to carrier phase mismatches. The first type
is composed of the so-called coherent discriminators, which operate straight-away on
the correlation output samples assuming that the carrier phase is perfectly tracked.
This is the case of the early-minus-late (EML) discriminator given by

εDLL
EML[k] =

1
2

(IE[k] − IL[k]), (1.105)

which is the simplest form of DLL discriminator. It has the problem, though, that it
depends on the signal amplitude and thus, variations in the received signal power cause
the EML output to vary as well. In order to avoid this problem, the EML discriminator
is often normalized by the magnitude of the early plus the late correlator outputs. This
leads to the so-called normalized EML (NEML) discriminator as follows:

εDLL
NEML[k] =

1
2

IE[k] − IL[k]
|IE[k]| + |IL[k]| . (1.106)

Another problem of the EML discriminator is that it is sensitive to the presence of
data-modulating symbols. To circumvent this limitation, the EML is often replaced by
the dot-product (DP) discriminator, which takes the same expression in Eq. (1.105)
but multiplies by the in-phase component of the prompt correlator. The latter contains
the sign of the data-modulated symbols and thus multiplying by it, the symbol is effec-
tively removed from the discriminator output. The expression of the DP discriminator
is therefore,
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εDLL
DP [k] =

1
2

(IE[k] − IL[k]) IP[k]. (1.107)

The result is again affected by variations of the received signal power, so a normalized
version of the DP discriminator is often used by dividing Eq. (1.107) with the square
of the prompt correlator, which acts as an estimate of the instantaneous power. This,
however, is only valid when the code delay error is small. Otherwise, the square of
the prompt correlator is no longer a reliable estimate of the received power because
it is affected by the code delay error, and thus, the output of the discriminator would
become biased. According to the aforementioned discussion, the resulting normalized
DP (NDP) discriminator is given by

εDLL
NDP[k] =

1
2

IE[k] − IL[k]
IP[k]

. (1.108)

The second type of DLL discriminators are the noncoherent ones, which typi-
cally take the square or the magnitude of the correlation outputs in order to become
insensitive to residual phase errors and to the presence of data symbols. As can be
inferred, such robustness comes at the price of increasing the noise due to the non-
linear operation on the noisy input samples. The impact is often acceptable and the
fact of being insensitive to the two aforementioned effects typically pays off. One of
the most popular noncoherent DLL discriminators is the normalized early minus late
power (NEMLP) discriminator,

εDLL
NEMLP[k] =

1
4

(I2
E[k] +Q2

E[k]) − (I2
L[k] +Q2

L[k])

(I2
E[k] +Q2

E[k]) + (I2
L[k] +Q2

L[k])
, (1.109)

which relies on the squared modulus of the early and late correlators. An alternative
using just the modulus instead of the squared value is the normalized noncoher-
ent EML (NNEML), which can be seen as the noncoherent implementation of the
EML in Eq. (1.105), and it is the discriminator actually used in the software receiver
accompanying the present book. It is given by29

εDLL
NNEML[k] =

1
2

√
I2
E[k] +Q2

E[k] −
√

I2
L[k] +Q2

L[k]
√

I2
E[k] +Q2

E[k] +
√

I2
L[k] +Q2

L[k]
. (1.110)

The output of the six discriminators discussed above is shown in Figure 1.32 for the
case of an infinite bandwidth rectangular chip pulse. As can be seen, they all exhibit
a linear behavior with a unitary slope when the input code delay error is small, that
is, τε → 0. For larger values of the input code delay error, the widest linear region
is provided by the EML-type discriminators, namely the EML, NEML and NNEML
discriminators, spanning within the interval τε/Tc ∈ [−0.5,+0.5] chips. At least, in

29 The 1/2 scaling factor in Eq. (1.110) is merely used here for the sake of convenience to guarantee a
unitary slope within the linear region of the discriminator, as shown in Figure 1.32. This scaling factor,
as those in the rest of discriminators discussed herein, is actually not needed provided that its effect is
accounted for in the design of the DLL tracking loops, as it was done in our software receiver.
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Figure 1.32 Output provided by different code discriminators as a function of the code delay
difference τε at their input. Infinite bandwidth is assumed.

the absence of noise, as considered herein. In contrast, the NDP and NEMLP dis-
criminators do only provide a linear response over a much narrower interval of barely
τε/Tc ∈ [−0.15,+0.15] chips. This involves that the two latter discriminators are more
sensitive to the presence of input noise, since variations on the early and late correla-
tors can easily lead the discriminator output to lie outside of the linear region and thus
to incur in bias.

Delay-Locked Loop Performance and Filter Bandwidth
Regarding the performance of code tracking, the variance of the closed-loop estimated
code delay for a coherent DLL discriminator such as the EML can be approximated
for a BPSK signal by

σ2
τ̂,EML ≈

BLδ

2 C
N0

(chips2), (1.111)

with BL the loop filter bandwidth. Similarly, the variance of the closed-loop esti-
mated code delay for a noncoherent DLL discriminator such as the NEMLP can be
approximated by

σ2
τ̂,NEMLP ≈

BLδ

2 C
N0

�
�
1 +

2
C
N0

T

�

(chips2), (1.112)

as shown in [4, Eq. (12.34)]. Finally, it is interesting to note that, as a rule of thumb,
code tracking is assumed to be in lock when στ̂ < δ/12 [13, Section 19.4]. This is
a simple guideline that can be used to ascertain whether the receiver is in track at
code level or the tracking has been lost and then re-acquisition may be needed. The
interested reader can find the derivation of Eqs. (1.111) and (1.112) in [62, Chapters
7–8], [4, Chapter 12] or [13, Chapter 19].

https://doi.org/10.1017/9781108934176.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108934176.003


1 GNSS Signals and Receivers 75

1.7.3 C/N0 Estimation

As already introduced in Section 1.4.1, the C/N0 is a key metric to measure the
strength of the received GNSS signal, and it is usually measured in the tracking block.
However, the receiver cannot measure this ratio directly and it has to estimate it.
A well-known technique for (C/N0) estimation will be described here. It is called
Narrow-band Wide-band Power Ratio (NWPR),30 and is based on the ratio of the
signal wideband power to its narrow-band power as mentioned in [62, Chapter 8]:

(
C
N0

)
[k] = 10 log10

(
1
T
· μ̂NP[k] − 1

M − μ̂NP[k]

)
, (1.113)

where μ̂NP is the mean normalized power, as expressed in the following equation:

μ̂NP[k] =
1
K

K∑

k=1

NP[k], (1.114)

where NP[k] is the normalized power between narrow-band power and wide-band
power, given by

NP[k] =
NBP[k]
WBP[k]

, (1.115)

with NBP[k] and WBP[k] defined as follows:

NBP[k] = �
�

M∑

n=1

IP[n + k M]
�

2

+ �
�

M∑

n=1

QP[n + k M]
�

2

, (1.116)

WBP[k] =
M∑

n=1

I2
P[n + k M] +Q2

P[n + k M]. (1.117)

In the equations above, M stands for the number of correlation output samples that
are accumulated to get one sample of the ratio in Eq. (1.115). Typically M = 20 in
GPS L1 C/A signals in order to implement a one symbol length coherent integration,
assuming that symbol synchronization has already been achieved. Then, K is usually
set to K = 50 in order to have one smoothed C/N0 estimate at a rate of one value per
second.

The NWPR estimation is useful for receivers tracking signals that can be coherently
integrated for relatively long periods. However, this is not the case for tracking signals
with frequent symbol transitions or snapshot receivers. For these two cases, this book
proposes alternative C/N0 estimators. Section 7.2.1 proposes a C/N0 estimator where
there are frequent symbol transitions, based on the signal-to-noise power ratio (SNPR),
and Section 9.2.6 presents an estimator for snapshot positioning based on noncoherent
integrations.

30 This technique is implemented in the FGI-GSRx software companion of this book.
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1.8 Navigation Message

The previous sections have explained how the signals can be acquired and tracked,
allowing us to generate the range measurements and demodulate the symbols. This
section focuses on the navigation message. The navigation message provides the infor-
mation to calculate the satellite position, among other data. This section presents how
the receiver can synchronise to the signal and start interpreting the symbols, how
these symbols encode the navigation bits to enhance reception even in case of signal
impairments and what are the main navigation message parameters.

1.8.1 Synchronization to the Signal

We have described how to track the carrier phase and the code delay through the
PLL/FLL and DLL, respectively. However, none of these outputs allow, strictly speak-
ing, calculation of the satellite-receiver range. The carrier phase measurement provides
an estimation of the signal phase at a given cycle, but the number of cycles, or wave-
lengths, between the satellite and the receiver is unknown. Since GNSS wavelengths
are in the order of 18 to 25 cm, this carrier phase integer ambiguity will remain
unknown unless the receiver has very accurate error information and uses special tech-
niques such as real-time kinematics (RTK) or PPP, which are out of the scope of this
book (see, for example, Part B of [63] for an updated guide on these techniques).
Similarly, the DLL output provides an estimate of the code delay, or the fractional
measurement of the satellite-to-receiver signal delay within one code length. That is, a
value between 0 and 1 ms (0 and 300 km) for GPS L1 C/A, and between 0 and 4 ms (0
and 1200 km), for Galileo E1-C or E1-B. In order to compute the full range measure-
ment, the receiver needs to know the integer number of full codes to be added to the
fractional code delay measurement, that is, the remaining part of the total distance. In
order to do that, classic receivers need to synchronize to the navigation message. By
this synchronization, the receiver can determine the transmit time, or when the code
associated with the measured code delay was transmitted. This is achieved because the
message time-tags symbol transitions in the data stream, and this allows determining
the number of codes, or time, between our code delay measurement, and the sym-
bol transition associated with the time reported in the signal, as explained in the next
section.

The synchronization process starts with the receiver processing symbols until a
fixed sequence is received. For GPS L1 C/A, this sequence is composed of the bits
(10001011) and it is called preamble. It is within a field called Telemetry Word that
is followed by another field called Hand-Over Word, that provides the GPS Time
(GPST). These fields appear once every GPS L1 C/A subframe, or every 6 sec-
onds. Often, after recognizing the preamble, receivers check the parity of the message
portion in which it is embedded, to verify that the sequence is not due to a com-
bination of bits from other sections of the message. From that point onward, the
receiver can interpret the bits of the navigation message. The next step is, by inter-
preting these bits, to synchronize with the beginning of a 30-second frame. Once

https://doi.org/10.1017/9781108934176.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108934176.003


1 GNSS Signals and Receivers 77

Figure 1.33 Receiver synchronization with the navigation message for GPS L1 C/A and Galileo
I/NAV.

this is achieved, the receiver can wait for another 30 seconds to decode the satel-
lite position data, or ephemeris, described later in this chapter. Receivers can save
some time by combining data from two contiguous frames so the total decoding
time can be around 30 seconds. The GPS L1 C/A navigation message lasts 12.5
minutes due to the almanacs, also explained later, but the receiver does not need
this information to have a position. We call the time to compute the first position
Time To First Fix (TTFF). The process for Galileo E1-B I/NAV is very similar.
The message provides a 10-bit synchronization pattern (0101100000), every 2 sec-
onds, similar to the GPS preamble. From that sequence onward, the receiver can
process the navigation data. Galileo I/NAV also transmits the satellite position data
and time every 30 seconds, or Galileo I/NAV subframe, so the TTFF process is sim-
ilar. Figure 1.33 illustrates the receiver synchronization process for GPS L1 C/A and
Galileo I/NAV.

1.8.2 Channel Encoding and Decoding

The navigation data are often received with errors due to the impairments in its path
from the satellite to the receiver. Therefore, channel encoding schemes are added at the
transmitter to encode the data bits, allowing the receiver to detect corrupted bits, and
even recover them in some cases. The main error detection and correction principles
used in GNSS are outlined in this section.

Error Detection
The navigation message has some extra bits allowing the receiver to check if it has
been corrupted. This is commonly defined as a checksum. For example, the GPS L1
C/A signal provides six bits of parity, or check bits, for every 24 bits of information,
through a (32,26) Hamming code [64]. Most messages, as for example the Galileo
I/NAV, F/NAV and C/NAV, provide a cyclic redundancy check (CRC). The principle
of CRC generation is to predefine a generator polynomial G of degree equal to the size
of the CRC, create a polynomial including the bit stream to check, divide it by G and
check that the reminder R obtained from the division is the same as the transmitted
CRC. For example, in the case of Galileo I/NAV, M is the stream of 196 bits, that
is expressed as a polynomial of degree 196. For I/NAV, F/NAV and C/NAV, G(X )
is a predefined polynomial of degree 24 which depends on the prime, primitive or
irreducible polynomial P(X ):
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G(X ) = (1 + X )P(X )

P(X ) = X23 + X17 + X13 + X12 + X11 + X9 + X8 + X7 + X5 + X3 + 1.
(1.118)

Then, the polynomial m(X )X24, that is, the original message m(X ) with 24 zeros
appended, is divided by G(X ), and the 24-bit reminder is the CRC.

Error Correction
Modern coding techniques allow not only error detection but also error correction.
There are multiple error detection algorithms which are described in the various ICDs.
For example, Galileo, GPS L5, NAVIC L5 and satellite-based augmentation system
(SBAS) signals include forward error correction (FEC) convolutional encoding, by
which n bits are encoded into k symbols, where r = n/k is the code rate. The con-
volutional property implies that each symbol depends on a number of bits, which is
the constraint length of the encoder. The encoding process for most of these signals is
depicted in Figure 1.34,31 where r = 1/2, the constraint length c = 7 and the encoding
sequence is performed through two polynomials (G1 = 171 octal, or 1111001 binary,
and G2 = 133 octal, or 1011011 binary; they are equivalent to the arrows pointing up
and down, respectively, in Figure 1.34, where D expresses one bit shift, or delay). The
encoded sequence alternates symbols from G1 and G2. Other error detection tech-
niques are low-density parity check, for GPS L1C signals, and Reed Solomon, used
for Galileo [65] and QZSS [66]. See Figure 1.34 as an example of FEC encoding.

As regards decoding in the receiver, the most common decoder used for convolu-
tional codes is the Viterbi decoder. The main property of the Viterbi decoder is that
it estimates the bits recursively until the sequence with the maximum likelihood is
found. The Viterbi decoder can be implemented through hard-decision or soft-decision
decoding, where the former takes as an input only binary symbol values and the latter
takes as an input intermediate values. For more details on Viterbi decoders, see [67]
or [68].

Interleaving
Due to the perturbations in the signal transmission channel, bit errors often come in
bursts, affecting several continuous bits. In order to make the encoded sequence more

Figure 1.34 Convolutional encoder.

31 For Galileo, the G2 symbol is inverted at the end.
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robust against bursts, the order of the symbols is changed before transmission through
interleaving, which means that the encoded sequence is written in columns and then
read in rows before transmission. Interleaving is normally implemented by using a
two-dimensional buffer array. The data enter the array column by column and leave
the array row by row. A burst of errors in the communication channel is spread out
into single-symbol errors, which are easier to correct than consecutive errors.

We illustrate in the following example how an input data stream is written into an
array column by column. Then, it is read out row by row, to achieve the bit interleaving
operation:

– Data input: x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16

– Interleaving array: x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16

– Interleaved data output for transmission:

x1 x5 x9 x13 x2 x6 x10 x14 x3 x7 x11 x15 x4 x8 x12 x16

In this simple example, three consecutive errors in the interleaved transmitted data, let
us say x1, x5, x9, are translated into three isolated, single errors when interleaving is
reversed at the receiver end.

More details on navigation message encoding are provided in the next chapters for
each GNSS. For a more general description of channel encoding techniques, see [69].

1.8.3 Message Parameters

Once synchronized, our receiver can start interpreting the data transmitted by the satel-
lite. The satellite data are generally structured in a navigation message that is repeated
continuously for all users worldwide. The most relevant information that the receiver
needs are the satellite position and time. This information is conveyed through what
GNSS call satellite ephemeris, which include the satellite orbital parameters.

Satellite Orbits
Most GNSS satellites are describing almost circular orbits around the Earth. Their
trajectories, as with any other bodies in space, follow Newton’s Law of Universal
Gravitation32:

F1,2 =
Gm1m2

r2
, (1.119)

where F1,2 is the gravitational force between the two bodies, m1 and m2 are their
masses, r is the distance between them, and G is the universal gravitational constant
(G = 6.674 ·10−11 m3 kg−1 s−2). Dividing the force by the satellite mass, we obtain the
satellite acceleration, and rearranging terms and expressing Newton’s law in vectors
we obtain the following:

32 Particularized here for a two-body problem with masses m1 and m2.
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r̈ +
μr
r3
= 0, (1.120)

where μ is G times the Earth mass (5.972 · 1024 kg), or 3.98 · 1014 m3/s2, also known
as the Earth’s gravitational constant; and r is the vector from the Earth center of mass
to the satellite center of mass.33 The expression in Eq. (1.120) is usually called the
fundamental orbital differential equation. It already encompasses Kepler’s three laws
which, prior to Newton, described the planetary orbits as ellipses sweeping a constant
area around one of its focus with a period proportional to a3/2 (their semimajor axis at
the power of 3/2). A body that follows a trajectory as per Newton’s law will also fulfil
Kepler’s laws. However, for convenience, orbits are often described according to their
so-called Keplerian elements, which are the following:

– the orbit semimajor axis (a),
– the orbit eccentricity (e),
– the orbit inclination with respect to the equatorial plane (i),
– the right ascension of the ascending node (RAAN, Ω), or angle between the point

where the satellite orbit crosses to the northern hemisphere and the vernal
equinox,34 a reference point in the celestial sphere; it is also called Longitude of
the Ascending Node (LAN),

– the argument of the perigee (ω), or the angle between the equatorial plane and the
semimajor axis (perigee direction),

– the true anomaly (ν), which defines where the satellite is in the orbit; in particular,
ν defines the angle between the perigee and the satellite, as seen from the Earth’s
center of mass.35

The first two parameters, a and e, describe the ellipse that the orbit follows. The
second three (i, Ω, ω), describe how the orbit is positioned with respect to the Earth.
The last parameter (ν) describes the location of the satellite in the orbit at a given time,
which is sometimes considered as the seventh parameter.

The navigation message provides mostly these parameters, although with some
alterations and additions. The complete table of parameters is provided in Table 1.3.
This table provides first the time of applicability of the corrections, then the six (mod-
ified) Keplerian parameters, and finally, some linear and periodical corrections to the
orbits.

33 Note that, while the orbit parameters give the position at the center of mass of the satellite, the signal
departs from the antenna phase center, which is some decimeters apart. The navigation message transmits
the position of the antenna phase center, but high accuracy applications generally calculate the center of
mass and correct this offset, and to correct it, they also need the satellite attitude and to compensate for
antenna phase center offset variations.

34 The vernal equinox can be defined by the intersection between the ecliptic, or rotation plane of the Earth,
and the equatorial plane at the equinoxes. It used to point at the Ares constellation, therefore the symbol
representing it in Figure 1.35. RAAN always refers to the vernal equinox, but the term longitude in
LAN may relate to the usual longitude used in Earth-centered Earth-fixed systems, which relates to the
Greenwich meridian, or another one, depending on how it is defined.

35 Note that ν here does not refer to the signal Doppler shift used in the previous signal processing sections,
but we use it here again in order to follow the standard Keplerian nomenclature.
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Table 1.3 Ephemeris parameters.

t0e ephemeris reference time
√

a square root of the semimajor axis
e eccentricity
i0 inclination angle at reference time
Ω0 right ascension of ascending node at reference time
ω argument of perigee
M0 mean anomaly at reference time
Δn mean motion difference from computed value
i̇ rate of change of inclination angle
Ω̇ rate of change of right ascension
Cuc , Cus amplitude of cosine and sine corrections to argument of latitude
Crc , Cr s amplitude of cosine and sine corrections to orbit radius
Cic , Cis amplitude of cosine and sine corrections to inclination

Figure 1.35 Satellite orbital parameters. Left: Keplerian parameters. Right: True anomaly versus
eccentric anomaly.

Figure 1.35 shows the Keplerian parameters. The left plot depicts a satellite in its
orbit, with respect to the Earth, while the right plot depicts the true anomaly ν and
the eccentric anomaly E. For more details on satellite and GNSS orbits, see [70] or
[4]. You can also consult the SIS ICDs of GPS [2], Galileo [71] or BeiDou [72],
implemented in our MATLAB receivers.36

Satellite Position Computation
Here, we explain how to determine the satellite position at a given time t from the
ephemeris in the navigation message (t0e in Table 1.3). This is the process that
is applied to GPS and Galileo ephemerides according to their signal specifications
[2] [71].

Our first task is to calculate the true anomaly at the reference time t, or νt . Then we
calculate the x, y satellite position in the orbital plane. Finally, we rotate the satellite
position into an Earth-centered Earth-fixed (ECEF) coordinate system.

36 GLONASS navigation message provides the satellite positions in a different format [73].
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The GNSS Keplerian parameters do not transmit the true anomaly ν but the mean
anomaly at reference time, or M0. The advantage of M0 is that it allows to linearly
extrapolate to the mean anomaly, M , at our time of interest. The disadvantage is that
it requires to convert to the eccentric anomaly, E, depicted in Figure 1.35, and then
to ν. For this conversion, we need to use the semimajor axis a and the eccentricity
e =
√

1 − a2/b2, where b is the semiminor axis. We also need to calculate the mean
motion n, which is constant, but it is affected by Δn, provided in Table 1.3. We start
by calculating the mean anomaly Mt at our target time t (1.121).37 Then, we estimate
the eccentric anomaly Et by iteration in Eq. (1.122). With Et we calculate the true
anomaly νt :

Mt = M0 +

√
μ

a3
(t − t0e ) (1.121)

Mt = Et − e sin(Et ) (1.122)

νt = 2 atan
(
√

1 + e
1 − e

tan
(Et

2

))
. (1.123)

Once the satellite is located in the orbital plane by νt , its position can be expressed
in rectangular coordinates. For that, we first add the argument of perigee ω to get the
argument of latitude Φt :

Φt = νt + ω. (1.124)

The receiver needs now to apply harmonic corrections from the message. These
corrections are due to the gravitational force of third bodies not taken into account in
our model, like the Sun and the Moon, the solar radiation pressure, and the nonuni-
formity of the Earth’s gravitational field. We call the result the corrected argument of
latitude, ut :

δut = Cus sin(2Φt ) + Cuc cos(2Φt ) (1.125)

ut = Φt + δut . (1.126)

We now calculate the orbital radius rt , to which we also add harmonic corrections
from the broadcast message:

δrt = Cr s sin(2Φt ) + Crc cos(2Φt ) (1.127)

rt = a(1 − e cos Et ) + δrt . (1.128)

With rt and ut we can express the satellite position in rectangular coordinates in
the orbital plane, or perifocal coordinates:

x ′t = rt cos ut (1.129)

y′t = rt sin ut . (1.130)

Now, the satellite position must be rotated into an Earth-centered inertial (ECI)
reference frame, that is, a coordinate system centered at the Earth that does not take

37 Note the appearance of Kepler’s third law on the right side, second term.
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Table 1.4 Clock correction parameters.

t0c clock correction reference time

a f 0 clock bias correction
a f 1 clock drift correction
a f 2 clock drift rate correction

Earth rotation into account, and then into an ECEF reference frame, solidary to the
Earth rotation. For that, we need first to obtain the corrected inclination i and the
corrected argument of latitude Ωt , which already takes into account the Earth rotation
angular speed, Ω̇e = 7.2921151467 · 10−5 rad/s, to convert from ECI to ECEF:

δi = Cis sin(2Φt ) + Cic cos(2Φt ) (1.131)

i = i0 + i̇(t − t0e ) + δi (1.132)

Ωt = Ω0 + (Ω̇ − Ω̇e )(t − t0e ) − Ω̇et0e . (1.133)

Finally, we can rotate our satellite position from perifocal coordinates and obtain
our final ECEF position xt , yt , zt at the time of interest t:

xt = x ′t cos(Ωt ) − y′t cos(i) cos(Ωt ) (1.134)

yt = x ′t sin(Ωt ) + y′t cos(i) cos(Ωt ) (1.135)

zt = y′t sin(i). (1.136)

Satellite Clock Corrections
As important as the satellite position is the satellite time. Even if the satellites have
extremely accurate atomic clocks, they have deviations with respect to the GNSS time.
These clock deviations usually remain low, but they get into the range measurement
(a one-microsecond clock error would add an error of 300 m) and therefore need to be
provided in the navigation message, so the receiver can correct them.38 They are usu-
ally expressed as a polynomial with fixed, linear and quadratic parameters, according
to Table 1.4. Notice that the time of applicability of the clock corrections, t0c , usually
coincides with that of the orbital parameters, t0e .

The clock corrections are applied as follows:

dt(t) = a f 0 + a f 1(t − t0c ) + a f 2(t − t0c )2 + Δtrel, (1.137)

where dt(t) is the clock correction to be applied at time t; a f 0, f 1, f 2 are the correction
coefficients and Δtrel is the relativistic correction term, an additional time error due to
relativity.

Relativistic Effect
The theory of relativity affects GNSS in various ways: first, the satellite clocks must
be adjusted to account for it. Due to their speed, and the special relativity, the clocks
run slightly faster in orbit than on Earth, where they are built, but due to their lower

38 For a performance characterization of clocks on-board GNSS satellites, see [74] or [11, Chapter 7].
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gravitational force, they run at a slightly slower pace in orbit than on Earth. The net
effect is a slight slowdown of a few tens of microseconds per day, depending on the
GNSS orbit (e.g. 38 µs per day for GPS orbits [12]). This is already accounted for
in the satellite clock manufacturing process, so the receiver does not have to care
about it. However, this assumes a perfectly circular orbit. When the orbits have some
eccentricity, the relativistic correction term needs to be taken into account, depending
on where the satellite is located in its orbit:

Δtrel = Fe
√

a sin(Et ), (1.138)

where e is the eccentricity, a is the semimajor axis, Et is the eccentric anomaly at t
calculated from the Keplerian orbital parameters and F is a constant:

F =
√
μ/c2 = −4.442807309 · 10−10 (s/m1/2), (1.139)

where μ and c are the Earth gravitational constant and the speed of light, respectively.

Broadcast Group Delays
A sometimes omitted term in the position computation is the satellite broadcast group
delay also referred to as Timing/Total Group Delay (TGD), instrumental delay, satel-
lite inter-frequency bias (IFB), differential code bias or hardware bias. It encompasses
the time biases in the generation of different signals due to the satellite hardware.
Many GNSS, GPS and Galileo among them, provide their clock correction not refer-
ring to L1 C/A or E1, but to measurements generated in the receiver by combining
two frequencies, L1 and L2 in GPS, and E1 and E5b in Galileo, into the so-called
ionosphere-free combination. The reason is that the service is formally defined for a
dual-frequency user, for a better performance. The clock correction is therefore trans-
mitted to cancel the bias in the dual-frequency combination, and the clock correction
for the single-frequency user (e.g. L1 C/A) is not straightforwardly available in the
navigation message. As a consequence, in order to navigate with a single-frequency,
the receiver needs to subtract the inter-frequency bias to the broadcast clock correc-
tion. Therefore, a user navigating with a frequency F1 will need to apply this additional
bias:

dt(t)F1 = dt(t)F1,F2 − BF1,F2 , (1.140)

where BF1,F2 is also broadcast in the navigation message, or a term allowing to
calculate it following the signal specification; and dt(t)F1,F2 is the term calcu-
lated in Eq. (1.137). This is because, as mentioned earlier, the clock corrections of
Table 1.4 have been adapted so that these biases cancel when the receiver applies
the F1 and F2 iono-free combination. For more details on multifrequency naviga-
tion and generating ionosphere-free measurements, see Eq. (8.11) and Eq. (8.12) in
Chapter 8.

Other Formats and Navigation Data
These parameters and corrections are used nowadays by GPS and most GNSS. How-
ever, there are multiple ways to provide the satellite position. For example, GLONASS
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transmits the satellite position coordinates, velocity and acceleration perturbations,
as discussed later in Chapter 3, and Galileo has recently started providing a short
ephemeris message in similar, yet reduced format [75].

The navigation message also includes other parameters supporting the receiver. One
of them is an ionospheric model (Klobuchar for GPS, NeQuick for Galileo), which
corrects around half of the ionospheric error and is outlined later. Another part of
the message is the almanac. The almanac is a long message by which each satellite
transmits the rough (at the few-kilometer error level) position of all the satellites in the
constellation, with the purpose of speeding up the acquisition time: If a receiver has
a rough approximation of its own position, and that of the satellites, it will not search
for satellite PRNs that are not visible. Almanacs are not widely used nowadays, but
they are still transmitted for legacy reasons. Other information includes an indicator
of the accuracy of the transmitted signal and its parameters, named URA (User Range
Accuracy) or SISA (Signal-In-Space Accuracy) for GPS and Galileo, respectively,
other satellite flags reporting general satellite and data health or the offset between the
GNSS time and other time references such as UTC (Universal Time Coordinated).39

Galileo will also transmit data authentication, also known as OSNMA (Open Service
Navigation Message Authentication) [76].

1.9 Pseudorange Errors

Once the navigation data are decoded, the receiver can determine the coordinates of
the satellite position as well as the time at which the signal is transmitted. The receiver
can then estimate the exact time of arrival (ToA) of the signal. Based on the time
difference between the transmission and reception time, the receiver can compute the
distance between the satellite and the receiver by multiplying the time difference by
the speed of light. However, this is not the actual distance, but a pseudodistance, as it
includes also the offset in the receiver clock. The pseudorange is therefore the distance
between a satellite and a receiver including the receiver clock offset. It is composed
by the integer number of codes since a bit transition in the message, that the receiver
can time-tag once it is synchronized, and the fractional code delay measurement. The
reason we speak of pseudoranges rather than ranges is therefore because the quantity
includes a receiver clock offset which is common to all pseudoranges. Together with
the satellite position, it is one of the unknowns to be solved in our system of equations,
as described later.

The pseudorange also contains, together with the true geometric distance and the
receiver clock bias, some additional distance errors related to propagation effects

39 UTC is useful to align the reference time with some standards, such as the National Marine Electronics
Association (NMEA) standard, which is used by many applications far beyond the maritime domain.
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due to the ionosphere, the troposphere, local effects in the vicinity of the receiver
leading to multipath errors and receiver noise. This is expressed in Eq. (1.141) as
follows:

ρ
(p)
m = r (p) + c(dtu − dt (p) ) + I (p) + T (p) + ε(p) , (1.141)

where ρ(p)
m is the measured pseudorange for satellite (p), before applying any correc-

tion; r (p) is the range, or actual distance between the satellite and the receiver; c is the
speed of light; dtu is the user receiver clock bias; dt (p) is the satellite clock bias I (p)

is the range ionospheric error; T (p) is the tropospheric error and ε(p) contains other
unmodelled measurement errors including multipath, interference and noise. These
errors are described in the next subsections.

1.9.1 Ionospheric Error

The ionosphere, as the name suggests, is a layer of the atmosphere that contains elec-
trically charged, or ionized, particles that affect the propagation of electromagnetic
waves. It can be the most significant source of errors in GNSS measurements, up
to a hundred meters. The ionospheric variations depend on the solar activity, which
oscillates in cycles of approximately 11 years. The last solar maximum was in 2014
when writing this text. At a solar maximum, there is a higher amount of solar spots
and flares, and a higher amount of ionized particles arrive to the Earth and remain in
the ionosphere. Therefore, the ionosphere is active during the day, but in some cases,
ionospheric perturbations occur at or after sunset. The particles are also affected by
the Earth’s magnetic field, and therefore, activity is higher close to the poles and the
geomagnetic equator. Ionospheric activity is measured by the Total Electron Content
(TEC), which is usually expressed in TECU (TEC Units), or total number of electrons
per square meter.

Ionosphere affects the signals in two different ways. Ionospheric refraction induces
a group delay to the ranging code modulation and a carrier phase advance of the same
magnitude [4, Chapter 5]. Its effect is present everywhere within the atmosphere. In
contrast, ionospheric scintillation causes rapid signal power fading and phase fluctua-
tions, and it is usually encountered at equatorial and polar latitudes. In this section,
we describe approaches to mitigate the ionospheric refraction; scintillation is not
addressed here, but the interested reader may refer to [77] for more information. In
the remainder of this section, we will refer to the ionospheric refraction effect as a
delay, which corresponds to the refractive effect on the pseudorange measurement.
The same concepts apply to the carrier phase measurement but with the sign reversed
(see Eq. (8.7) for more details).

The ionospheric delay depends on the carrier frequency. The first-order ionospheric
delay is proportional to TEC along the propagation path between the receiver and
satellite (p) as

I (p) ( f ) =
40.3 TEC(p)

f 2
. (1.142)
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Higher order ionospheric delay effects exist, but their contribution on the ionospheric
delay is in the order of centimeters so they can be neglected except for high accuracy
applications [78].

There are three main approaches to compensate for the ionospheric delay: evaluat-
ing an ionosphere model using the parameters transmitted by the satellites, exploiting
the frequency dependence of Eq. (1.142) with a dual-frequency receiver and using
external correction data. The first method is outlined here. The second one is described
in Chapter 8, which covers a dual-frequency receiver, and some more details about the
ionosphere. Some references for the third one are provided in Chapter 7.

Broadcast Ionospheric Correction Models
For single-frequency users, the most straightforward way for mitigating ionospheric
delays is to apply the correction parameters broadcast as part of the naviga-
tion message. GPS and BeiDou support the Klobuchar ionosphere model [79],
whereas Galileo supports the NeQuick G algorithm [80]. This model is a vari-
ant of the NeQuick electron density model [81], which has specifically been
adapted for GNSS. In addition to the ionosphere parameters, broadcast models
require the receiver and satellite positions as well as the time of measurement as
inputs.

The ionospheric data transmitted by GNSS satellites are based on predictions and
not updated in real time. It is also transmitted in very few bits, for example, 41 and
64 bits for Galileo and GPS, respectively. Therefore, the user cannot expect them
to compensate for the ionospheric error perfectly. For instance, the GPS ionospheric
corrections are estimated to reduce the RMS error by at least 50% [2], whereas the
NeQuick G model has been designed to correct 70% or more of RMS ionospheric
delays under regular conditions [80]. Since the ionospheric delay in Eq. (1.142)
depends only on the TEC value and the carrier frequency, any model to estimate the
TEC value can be used with any GNSS constellation. Consequently, Galileo-based
NeQuick G corrections can be used with GPS and BeiDou. Similarly, Klobuchar
corrections can be applied to Galileo signals instead of NeQuick G.

The two different approaches are illustrated in Figure 1.36. The Klobuchar model
takes eight input parameters {αi , βi }i=0...3 that characterize the amplitude and period
of the vertical ionospheric delay. It models the ionosphere as a thin shell at a height
of 350 km above the Earth surface. The correction algorithm determines the point
where the LOS ray from the satellite to the receiver pierces the shell, computes the
vertical ionospheric delay at the piercing point and adjusts this estimate based on the
satellite elevation angle to obtain the slant ionospheric delay. A detailed description of
the algorithm is available in [2].

NeQuick G is fundamentally different from the thin-shell Klobuchar model sup-
ported by GPS and BeiDou. NeQuick G is a full model of the ionosphere consisting
of three layers (E, F1, F2), allowing the evaluation of the local electron density at an
arbitrary point. Therefore, the TEC estimate is obtained by numerically integrating the
electron density along the path from the satellite to the receiver antenna. In general,
the NeQuick G algorithm is computationally much heavier than the Klobuchar, and
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F2
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E

(b) NeQuick G(a) Klobuchar

Figure 1.36 Principles of ionosphere compensation algorithms (illustrations not to scale). Black
dots denote points where the delay is evaluated; note that in (b), the amount and spacing of
evaluation points are determined by the numerical integration algorithm.

for this reason, it is recommended to update the TEC estimates at a low rate, such as
every 30 seconds [80].

The Galileo navigation message provides three NeQuick G parameters (a0,a1,a2)
which are the coefficients of a second-order polynomial to evaluate the effective ion-
ization level. In addition, the receiver must have access to two sets of precomputed
data: a grid to compute the modified dip latitude and a set of spherical harmonic coef-
ficients to characterize the monthly median transmission factor and critical frequency
of the F2 layer. For details, please refer to the NeQuick G algorithm specification [80].

1.9.2 Tropospheric Error

The troposphere is the lowest layer of the atmosphere. It is between the Earth surface
and about 9–10 kilometers high. Unlike the ionosphere, the troposphere is nondisper-
sive, that is, there is no frequency-dependent effect. The temperature, pressure and
humidity will, however, alter the velocity of radio waves. The resulting delay highly
depends on the distance travelled through the troposphere. Since signals from low-
elevation satellites travel a longer distance than a signal from a satellite at zenith, we
often model the tropospheric delay using a zenith delay and a mapping function. The
zenith tropospheric delay is about 2.4 m, and the tropospheric delay can be as high as
10 m for low-elevation satellites. Applying relatively simple tropospheric models can
reduce these errors to below 0.5 m.

The total tropospheric delay in the direction of a satellite can be divided into two
parts: the “dry,” hydrostatic component, and the “wet”, nonhydrostatic component.
These two delays are then projected onto the zenith direction using some mapping
functions, for example, using the Niell model [82]:

SPD(el) = mHD(el) ZHD + mWD(el) ZWD, (1.143)
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where SPD(el) is the slant path delay in meters along elevation angle el, ZHD is
the zenith hydrostatic delay in meters, ZWD is the zenith wet delay in meters and
mHD(el) and mWD(el) are the mapping functions of the hydrostatic and wet path delay
along elevation angle el. The model proposed in [82] is currently used as the mapping
function in the multi-GNSS SDR receiver accompanying this book. Another tropo-
spheric model commonly used is the UNB3 model [83], used in the SBAS Minimum
Operational Performance Standards (MOPS) of the Radio-Technical Commission for
Aeronautics (RTCA) [84]. Further information about the troposphere and its models
is provided in [85].

1.9.3 Multipath

Multipath is the effect of the reflections of the satellite signal in objects around the
receiver. These reflections may be received and tracked by the receiver and the conse-
quence is that our correlation peak is distorted, and this distortion leads to an error in
the code delay measurement. The multipath error depends on the amplitude and dis-
tance of the reflections. More than one reflection can be received by the receiver, and
this is generally the case in reality. The multipath error observed in the measurement
depends on many factors: the signal tracked, the amplitude, the distance and the car-
rier phase of the reflection, the receiver bandwidth, and the correlator spacing. Even
if the multipath echoes arrive always later than the original signal, they can lead to a
negative delay if the carrier phase is rotated 180◦ with respect to the original signal.
This is usually measured in the multipath error envelope (MEE) plot, treated in more
detail in Chapter 10, where an example of MEE is provided (Figure 10.12).

Generally, mitigation techniques are effective in the case of LOS multipath, that
is, when both the satellite-to-receiver LOS and the echoes are received. When only
the echoes are received, this situation is referred to as non-line of sight (NLOS) mul-
tipath, and its effect may be more detrimental in the receiver than LOS multipath,
especially if the reflection arrives with a delay of tens, or even hundreds of meters.
Further details on state-of-the-art multipath detection and mitigation techniques and
their performance can be found in Chapter 10. A low-complexity multipath detec-
tion method is also proposed in Chapter 9 for snapshot receivers. For more details on
multipath, see [10, Chapter 9].

1.9.4 Interference

GNSS RFI can be defined as unwanted energy that gets into the GNSS receiver,
excluding natural causes such as electromagnetic radiation from the sky or the ground,
which we consider as noise. Typical GNSS interference can come from multiple
sources, such as radars, aviation equipment, jammers, spoofers, GNSS repeaters,
solar bursts, energy spillover from signals in other bands, such as TV signals, or
even self-interference if the receiver has several RF devices, as it is the case for
smartphones. There are multiple ways to classify interference, depending on the
interferer’s intention (intentional, nonintentional, collateral), whether it’s natural (e.g.
solar bursts) or man-made, the signal waveform (e.g. pulsed, narrow-band, wideband,
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chirped, matched spectrum...), or the impact on the receiver (e.g. signal degradation,
service denial, or service integrity failure) [86]. For more details, [87] presents a
thorough description of interference, including their mathematical representation and
countermeasures. In our book and related software, we will not develop specific inter-
ference mitigation or detection techniques, although SDRs are powerful platforms for
developing and improving such techniques thanks to their flexibility.

1.9.5 Receiver Noise

We refer to receiver noise as all other effects that contribute to the measurement error
which are not described before. They include the electromagnetic noise radiated by
the sky and the ground that reach the antenna together with the signal, and the thermal
noise added by the receiver. The combination of these noise sources are represented
by the noise power in Eq. (1.44). The signal filters also add a delay to our measure-
ment. This delay can be considered noise as well, although, if constant, it is estimated
as part of the receiver clock bias. If it is frequency-dependent, it is considered as a
receiver group delay or hardware bias and can be estimated separately or removed
with the ionospheric delay. Other noise effects relate to the sampling and quantization
of the signal, described previously in Section 1.4.3. More details on receiver noise
components can be found in [12, Chapter 6].

1.9.6 Error Budgets

Once we have introduced all the errors, we present in Table 1.5 the error budgets or
contributions to the pseudorange measurement. The purpose of the table is to provide
the reader a grasp of the different error contributions, but the error magnitudes can
vary significantly depending on many factors. Satellite orbit and clock error contribu-
tions are gradually reduced due to the improvements in satellite on-board clocks and
ground orbit determination capabilities. Ionosphere and multipath are very variable,
as described before, and multipath and noise highly depend on the receiver signal and
measurement processing. Note also that the error contribution can be composed of a
fixed term (bias) and a random term (variance). Finally, the table illustrates the error

Table 1.5 Approximate average error contributions to the pseudorange measurement. Some of them
can significantly vary and depend on many factors.

Source Typical Error (m) Comments

Satellite orbit 0.2−0.5 Gradually reduced with GNSS modernization.
Satellite clock 0.2−0.5 Gradually reduced with GNSS modernization.
Ionosphere 2.5−5 Very variable. 5–10 m before navigation message

correction.
Troposphere 0.5 Around 3−10 m before receiver model correction.
Multipath 1−2 In open-sky conditions. Very variable and up to around

20 m in degraded conditions or higher if NLOS.
Receiver noise 0.5 Includes receiver hardware noise, filtering,

sampling and quantization.
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in the corrected pseudorange ρ, while the error in the measured pseudorange ρm from
Eq. (1.141) is quantified in the right column, where pertinent. Further considerations
on error modeling are provided in section 1.10.4. For a more exhaustive measurement
error characterization, see [4, Chapter 5], [10] or [11].

1.10 Computation of Position and Time

The principle of GNSS positioning is simple. By knowing the position of the satel-
lites and the satellite-receiver distance, or range, as the signals travel at the speed
of light, the receiver can compute its position. In order to calculate a 3D position,
three exact range measurements would be required, but the receiver does not know
its own time, so it cannot calculate the exact time of arrival (ToA). The receiver time
uncertainty, or bias b, is common to all range measurements, so it is calculated as an
additional unknown. This means we need at least four pseudoranges to build a system
of equations, as follows:

ρ(p) =

√
(x (p) − x)2 + (y(p) − y)2 + (z(p) − z)2 + b + e(p) , (1.144)

where the unknonws are in the vector x = (x, y, z,b), that we call the state vector,
(x (p) , y(p) , z(p) ) are satellite p’s coordinates, and b is the receiver clock bias, in meters
(b = dtuc). When we have four measurements, we can solve the system. Note that
ρ(p) is the corrected pseudorange after removing the errors we can estimate: iono-
sphere and satellite clock bias from the navigation message, and troposphere from our
model. However, ρ(p) still has an error e(p) that includes everything that has not been
corrected yet.

1.10.1 Linearization

The system of equations from Eq. (1.144) when (p) = 1, . . . ,4 is nonlinear, so it
has to be linearized. We will explain the linearization process algebraically and then
geometrically.

Algebraic Explanation
In order to solve a nonlinear system of equations, it is typical to use the Newton, or
Netwon-Raphson, approximation, which consists of approaching the value of a func-
tion at a certain point by its value in the proximity and its derivative multiplied by an
increment. A function can be expressed as a series of powers, according to a Taylor
series, which also depend on the function derivatives. In our case, the function is the
pseudorange ρ(p) , which depends on our state vector x = (x, y, z,b), and the Taylor
series is expanded as follows:

ρ(p) = ρ(p) (x0) +
∂ρ(p) (x0)
∂x

Δx +
1
2!
∂2ρ(p) (x0)

∂2x
Δx2 + ... (1.145)

where ρ(p) (x0) is the pseudorange between the satellite position and our initial posi-
tion estimate x0, (1:3) (note that full initial state vector x0 includes also the bias in the
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fourth term). We consider sufficient to take the first derivative, as later we will perform
several iterations. Thus, and developing Eq. (1.145) into the partial derivatives on the
variables of our four-state vector, we have:

ρ(p) ≈ ρ(p) (x0) +
∂ρ(p) (x0)
∂x

Δx +
∂ρ(p) (y0)
∂y

Δy +
∂ρ(p) (z0)
∂z

Δz +
∂ρ(p) (b0)
∂b

Δb.

(1.146)

If we perform the partial derivatives and slightly rearrange Eq. (1.146), we obtain
the following:

ρ(p) − ρ(p) (x0) ≈ x − x (p)

r (p)
Δx +

y − y(p)

r (p)
Δy +

z − z(p)

r (p)
Δz + Δb, (1.147)

where r (p) = r (p) (x0) =
√

(x (p) − x0)2 + (y(p) − y0)2 + (z(p) − z0)2. The terms
applying to the user position coordinates (Δx,Δy,Δz) can be expressed as the unitary
vector e(p) that points from the estimated position solution x0 to satellite (p) position,
x(p) , with opposite sign:

e(p) =

(
x (p) − x

r (p)
,
y(p) − y

r (p)
,

z(p) − z

r (p)

)
=

x(p) − x0, (1:3)

|x(p) − x0, (1:3) | . (1.148)

Finally, our system of equations can be expressed in a matrix form as follows:

Δρ =

[−e(1) 1
...

]
· Δx, (1.149)

where Δx = x − x0 and Δρ is a vector of differences between the corrected pseu-
doranges and the theoretical estimation based on the initial position. For satellite
(p):

Δρ(p) = ρ(p) − ρ(p) (x0). (1.150)

Note that, in some other references, ρ(p) (x0) is referred as ρ̂(p) (x0), or just ρ̂(p) ,
to highlight that it is a theoretical estimation of the pseudorange. The linear system
in Eq. (1.149) leads to a recursion where the new receiver position is used as initial
position x0 for the next iteration, and so on, until the position improvement converges.
Usually, around four iterations are sufficient, and more iterations do not improve the
result. We will call the matrix with the unitary vectors as the geometry matrix, also
known as observation matrix, or design matrix, and it will be denoted by A:

Δρ = A · Δx. (1.151)

For more information on the linear algebra behind the satellite navigation position-
ing equations, see [88].

Geometric Explanation
Our geometric interpretation of the positioning problem is depicted in Figure 1.37,
again for satellite (p). For our explanation, we reduce the state vector to the position
vector (x, y, z). In the figure, we start from an initial position vector x0 and we want
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Figure 1.37 Linear relationship between measurements and position.

to obtain vector Δx toward x, the true position, through a linear relationship with our
pseudoranges. We define the delta range for satellite (p) as

Δr (p) = r (p) − r̂ (p) (x0). (1.152)

Then, as shown in Figure 1.37:

Δr (p) ≈ |Δx| cos θ, (1.153)

which can also be expressed as the dot product of vectors −e(p) and Δx,

Δr (p) ≈ −e(p) · Δx = |Δx| cos θ. (1.154)

We use ≈ in Eq. (1.153) because of the linearization error, which is reduced at each
iteration.

We have now established our linear relationship between measurements and posi-
tion. We add the bias term b to the expression and obtain the system of equations from
Eq. (1.149).

1.10.2 Least Squares and Weighted Least Squares

When we have four pseudorange measurements, we can solve our four unknowns by
calculating the inverse of matrix A for each iteration:

Δx = A−1 · Δρ, (1.155)

where (·)−1 is the inverse matrix operator. However, even after applying the iono-
spheric and tropospheric models and satellite clock corrections, our measurements still
have errors, and these errors will propagate into the position error. In order to minimize
this error, we want to use more measurements. When we have more than four mea-
surements, our system is overdetermined, meaning that it has many possible solutions
for our state vector. What we want is that the chosen solution minimizes the posi-
tion error. In order to minimize this position error, we use the least-squares estimator,
which computes the state vector that minimizes the sum of the squares of the resid-
ual measurement errors with respect to our solution, that is, the differences between
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the measured and theoretical pseudoranges for our solution (Δρ in the last iteration).
When applying least squares, our iterative system of equations is expressed as

Δx = (ATA)−1ATΔρ, (1.156)

where (·)T is the transpose matrix operator. Sometimes the matrix (ATA)−1AT is
referred to as the pseudo-inverse matrix.

Some measurements will be of higher quality than others. For example, those from
a higher satellite elevation use to have a lower ionospheric and tropospheric delay, less
multipath and possibly a higher signal strength due to the satellite and receiver antenna
gain patterns. The estimator may weight the measurements so that those believed to
be better have a higher weight in the position solution. In this case, we use

Δx = (ATWA)−1ATWΔρ, (1.157)

where W is the weight matrix, a diagonal (m × m) matrix, where m is the number
of measurements and where each coefficient in the diagonal represents the weight.
Usually, weights are determined depending on the satellite elevation or C/N0, but other
criteria can be used, such as the satellite type or information in the navigation message,
like URA/SISA as explained later in this chapter. If the variances of the satellite errors
could be estimated, its weight could be their inverse, so that W (p) = 1/σ2

(p) (we will

later refer to these variances as UERE2).
Least squares is one of the simplest methods to estimate the receiver position, but it

has the inconvenience that the resulting position is not smoothed in time, as it depends
on the instantaneous errors of the measurements. Kalman filters [89] are often used for
that purpose. Other standard algorithms use least squares, but over carrier-smoothed
pseudoranges such as Hatch filters discussed in [90] or in Chapter 8 (8.18). Also,
for the estimation of the receiver velocity based on the range rate measurements,
see [4, Chapter 6].

1.10.3 Coordinates and Reference Frames

Our satellite position was calculated in ECEF Cartesian coordinates, so our posi-
tion solution (x, y, z) is by default referred to ECEF as well. However, users are
often interested in the longitude and latitude, or geographic coordinates. As shown in
Figure 1.38, the transformation between latitude and longitude40 (la , lo ) and (x, y, z)
is as follows:

x = R cos(la )cos(lo )

y = R cos(la )sin(lo )

z = R sin(la ),

(1.158)

where R is the position vector module. However, we often want to express our
coordinates with respect to a reference frame. A reference frame includes not only

40 We avoid the usual notation of ϕ and λ symbols as both have been used before in this chapter.
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latitude and longitude but also height, among other information. For example, GPS
uses WGS84. WGS84 defines the specific values of the main constants used in the
position computation: the Earth rotation rate Ω̇e and the Earth gravitational constant
μ. WGS84 also defines an ellipsoid that models the Earth. This way, a position can be
expressed in (la , lo ,h) where h is the height with respect to the ellipsoid. The ellip-
soid is defined by the Earth semimajor axis (a = 6,378,137 m) and the flattening factor
( f = 1/298.257223563). Then, la , lo and h can be calculated with respect to the
WGS84 ellipsoid as follows:

lo = atan
(
y

x

)
(1.159)

Nϕ =
a

√
1 − f (2 − f ) sin2(la )

(1.160)

la = atan �
�

z
√

x2 + y2

(
1 − (2 − f ) f Nϕ

Nϕ + h

)−1

�

(1.161)

h =

√
x2 + y2

cos(la )
− Nϕ . (1.162)

Note that, once again, we have a nonlinear system to solve Nϕ , la and h. This is
usually solved by iteration.

In addition to the simple ellipsoid, WGS84 defines the geoid as a more irregular sur-
face through some harmonic corrections. Further information on the WGS84 and all
its parameters, which also include gravitational models, magnetic models and datum
transformations, can be found in [91].

Topocentric coordinate systems are also relevant for receivers. They express coor-
dinates with respect to the horizon, or a horizontal plane that is tangent to the Earth
surface at the user location. They are particularly relevant to express errors and
covariances in the horizontal plane and vertical component, as mentioned later. A
usual right-handed topocentric coordinate system is ENU (East, North, Up). It is also
depicted in Figure 1.38. Another one is NED (North, East Down).

Reference frames, also known as datums, can be different for different GNSS. Ref-
erence frame parameters are defined by a set of monitor stations precisely located
on Earth. Each terrestrial reference frame, like Galileo Terrestrial Reference Frame
(GTRF) for Galileo, or WGS84 for GPS, uses its own set of stations. Both GTRF and
WGS84 are based on International Terrestrial Reference Frame, produced by the Inter-
national Earth Rotation and Reference Systems Service (IERS), and their differences
are minimal, in the order of centimeters, so they are not relevant for code-based posi-
tioning. They may be relevant though for high accuracy centimeter-level positioning,
which may require reference frame transformations to avoid this error. More details
on reference frames can be found in [11, Chapter 2] and [92, Chapter 2].
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Figure 1.38 ECEF and ENU coordinate systems and conversion to geographic coordinates.

1.10.4 Dilution of Precision, Measurement Residuals and Position Accuracy

Dilution of Precision
Position accuracy depends on two independent factors: satellite geometry and mea-
surement errors. If we have four satellites in view but they are aligned in the sky, our
matrix A will be rank-deficient and no solution will be obtained, or at best our preci-
sion would be highly diluted. This is measured by the Dilution of Precision (DOP),
and is reflected in the DOP matrix D:

D = (ATA)−1 (1.163)

D is a (4× 4) matrix where the diagonal terms d11 to d44 express how good our geom-
etry is. The advantage of DOP is that it gives an indication of the solution precision
(or its dillution) without looking at the pseudorange measurements. Depending on our
interest, we can look at different terms:

–
√

d11 + d22 + d33 + d44 : Geometric Dilution of Precision (GDOP). It expresses
the overall impact of geometry in the position and time solution.

–
√

d11 + d22 + d33 : Position Dilution of Precision (PDOP). It expresses the
geometry impact in the position solution.

–
√

d44 : Time Dilution of Precision (TDOP). It expresses the geometry impact in
the time solution.

One limitation of these DOP indicators is that they do not allow expressing DOP in
the receiver vertical and horizontal components, which is desirable. For this, we need
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to express D in a topocentric coordinate system. We can rotate our DOP matrix and
express it in ENU coordinates as follows:

Denu,3×3 = Fenu
xyz

T · D3×3 · Fenu
xyz, (1.164)

where Denu,3×3 is the (3 × 3) DOP matrix rotated to ENU including elements denu,11

to denu,33, and D3×3 is the (3 × 3) DOP matrix in XYZ, including elements denu,11 to
denu,33. We define here matrix Fenu

xyz, that allows to convert from a Cartesian to an ENU
coordinate system, as follows:

Fenu
xyz =

⎡⎢⎢⎢⎢⎢⎢⎣

−sin(lo ) −sin(la )cos(lo ) cos(la )cos(lo )
cos(lo ) −sin(la )sin(lo ) cos(la )sin(lo )

0 cos(la ) sin(la )

⎤⎥⎥⎥⎥⎥⎥⎦
. (1.165)

Now we can estimate DOP in the horizontal plane and vertically:

–
√

denu,11 + denu,22 : Horizontal Dilution of Precision (HDOP). Geometry impact in
the horizontal components of the position.

–
√

denu,33 : Vertical Dilution of Precision (VDOP). Geometry impact in the vertical
component of the position.

VDOP and HDOP are widely used for many applications. For example, an airplane
using GNSS for precision approach will be sensitive to VDOP, while a car will be more
sensitive to HDOP. Generally, VDOP will be worse than HDOP, as satellites are only in
the sky, that is, in the upper side in the vertical dimension. HDOP and VDOP usually
range between almost one and two, where lower implies a better geometry. Thanks
to multi-GNSS, geometry can be highly improved. Practical examples of HDOP and
VDOP values, for different GNSS combinations, are shown in Chapter 7, Table 7.6.

User Equivalent Range Error and Covariance Matrix
The other element that drives position accuracy is the measurement error. In practice,
when solving Eq. (1.149) we apply the troposphere, ionosphere and satellite clock
corrections to our receiver measurement ρm and the satellite orbital errors to the
estimated pseudorange ρ̂ and A. We may apply multipath mitigation through specific
tracking loop discriminators, or smoothing of the pseudorange measurements.
Note also that no interference error is explicitly considered as, unlike the others,
interference is sporadic or considered under the noise term. With these actions, we
reduce the measurement errors as much as we can, but we still want to estimate how
big these errors are. The estimations of error contributions introduced in Section 1.9
are aggregated into the User Equivalent Range Error (UERE), which represents the
standard deviation of the total error:

UERE =
√
σ2

orb + σ
2
clk + σ

2
iono + σ

2
tropo + σ

2
mpath + σ

2
noise , (1.166)

where σorb, σclk, σiono, σtropo, σmpath, and σnoise are the standard deviations of error
distributions of the satellite orbits and clocks, ionospheric and tropospheric delays,
multipath and receiver noise. In Eq. (1.166), we are assuming that the variance of the
sum of stochastic variables is the sum of the variances of each variable. This implies
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that all variables are independent, that is, each error source is uncorrelated with the
rest.

Usually, UERE is divided in two components: signal-in-space ranging error
(SISRE), including the error of the orbits, clocks and group delays when applied, and
user equipment error (UEE), which includes everything else41:

SISRE =
√
σ2

orb + σ
2
clk (1.167)

UEE =
√
σ2

iono + σ
2
tropo + σ

2
mpath + σ

2
noise (1.168)

UERE =
√

SISRE2 + UEE2. (1.169)

The assumption that errors are uncorrelated may not be correct sometimes. Also,
if we want to characterize the errors by their standard deviation, we are assuming
that they are zero-mean, which may also not be true. Therefore, UERE is not very
representative in many cases. In spite of that, it is widely used. For example, it allows
us to roughly characterize the horizontal user position error as UERE × HDOP, and
the vertical position error as UERE×VDOP. We can also use a generic UERE value to
estimate the covariance matrix of our solution that shows the variances of the different
components (σ2

x ,σ
2
y ...) and their interrelationships, or covariances, (σxy , σxz ...), as

COVxyz = UERE2 · D. (1.170)

Measurement Residuals
So far, DOP and UERE have been described independently from the actual measure-
ments. In order to assess the goodness of our position in relation to the measurement
errors, we use the measurement residuals. Once we obtain our solution, our residuals
vector β is commonly expressed as

β = Ax − Δρ. (1.171)

The residuals are a good, yet limited, indicator of the position accuracy. Having a vec-
tor with low residuals is often an indicator of a good solution accuracy. It means that
the measurements “agree” with the computed position. However, this is a good indi-
cator only if the measurement errors are uncorrelated. If, for example, measurements
are reflections from a building, the position may be off by much more than the resid-
uals suggest. Therefore, measurement residuals are not a perfect indicator of the user
accuracy either.

Measuring and Bounding Position Errors and Integrity
We have presented an overview of how the receiver can estimate the goodness of its
position through its geometry (DOP), a-priori errors (UERE) and measurement resid-
uals β. However, in the next chapters, the actual errors are measured with respect to
the true position, which is known, instead of using UERE and DOP. When we measure

41 Note that, in this convention, we include all propagation errors as part of the user equipment error. Note
also that SISRE is sometimes referred to as signal-in-space error (SISE).
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position errors, we have to do it through an unambiguous statistical characterization.
For example, while RMS and standard deviation (σ) are used sometimes as synonyms,
and the same occurs for 95 percentile and 2σ, there are subtleties that depend on the
number of dimensions of the error used and other factors. In the next chapters, the posi-
tion accuracy is provided through the horizontal RMS error, vertical RMS error and 3D
RMS error. For more details on the differences on accuracy indicators, see the excellent
analysis in [93]. When the user position is unknown but we want to better characterize
our errors beyond an a-priori UERE, we can use the information provided by some
GNSS or augmentation systems. For example, GPS and Galileo provide an indicator
of the error statistical distribution in the user range accuracy (URA) and signal-in-
space accuracy (SISA), respectively. URA bounds the user range error, or URE, which
includes the orbit and clock errors42 by 4.42 times with a probability of 1−10−5 every
hour (or 5.73 times with a probability of 1 − 10−8 every hour, depending on the nav-
igation flags). Similarly, SISA provides the standard deviation (1σ) of the zero-mean
Gaussian distribution that bounds the URE. The exact definitions and further details
are provided in the official GNSS service definition documents [94] [95].

Measurement errors are at the core of satellite navigation because they drive the
position accuracy. Also, by modeling the error statistical distributions correctly, the
user can have an estimate of the goodness of its position and the maximum bound of
its error with a certain probability. This is important for critical applications, such as
airplane precision approaches, which in addition to accuracy, require position integrity.
Integrity can only be provided effectively with additional monitoring means, either on-
board, through external information or combined. The GNSS integrity concept also
requires that when the errors cannot be bounded, the receiver is alerted in a few sec-
onds maximum. On-board integrity is usually called receiver autonomous integrity
monitoring (RAIM). RAIM is usually based on looking at a priori and/or residu-
als information available, and detecting and excluding faulty measurements from the
solution. Augmentations monitor the satellites and sometimes ionosphere and trans-
mit error bounds and alert the users through satellite or local ground channels, in the
case of SBAS or ground-based augmentation systems (GBAS), respectively. GPS III
already provides an “integrity flag,” that allows to switch from the 4.42,10−5 to the
5.73,10−8 URA characterization mentioned earlier. New SBAS provide the covari-
ance matrix of each satellite, allowing a better computation of COV than that in Eq.
(1.170). Other modern integrity systems, such as advanced RAIM (ARAIM), combine
error bounds provided from the system with RAIM. Integrity is beyond the scope of
this book, but for more details on RAIM, SBAS, GBAS and ARAIM, see [96], [97],
[98] and [99] respectively.

42 Note that before we defined SISRE/SISE as the one-sigma or RMS URE.
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Figure 1.39 Satellite position computation for pseudoranges measured at the same time.

1.10.5 Other Practical Aspects

How to put our PVT engine to work is not so obvious in practical terms, so we will
discuss some practicalities in this subsection.

Earth Rotation and Receiver Time Reference
Apart from the satellite clock offset, which can be neglected here, all satellites are
synchronized and provide the time of the start of the frame in the transmitted signal
tt , with which the receiver can synchronize, as illustrated in Figure 1.39, left. As the
satellites are located at different distances to the receiver, this time tag will be received
at different instants tr,1, tr,2, etc. However, our receiver measures the pseudoranges at
a given instant for all satellites, tr , as shown in the top right part. What is measured
is a satellite spreading code that was transmitted by each satellite at a different time,
tt,1, tt,2, etc. The subtlety here is that, for our range estimation, we need to have the
satellite positions in ECEF. To do that, we need to convert from an inertial reference
frame, not accounting for the Earth rotation, to ECEF, but conversion to ECEF at tt,2
is not the same as conversion to ECEF at tt,3, as the Earth has rotated between the two
timestamps. Therefore, we have to convert to ECEF separately for each satellite. This
can be done through the following rotation matrix:

x(p) =

⎡⎢⎢⎢⎢⎢⎢⎣

cos(Ω̇e τ̂
(p) ) sin(Ω̇e τ̂

(p) ) 0
− sin(Ω̇e τ̂

(p) ) cos(Ω̇e τ̂
(p) ) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
x(p)
nr , (1.172)

where x(p) is the rotated satellite position vector, Ω̇e is the Earth’s rotation speed, τ̂(p)

is the expected ToA for satellite (p) (τ̂(p) = r (p)/c) and x(p)
nr is the satellite position

vector before rotation. This per-satellite rotation is sometimes called Sagnac effect.
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Figure 1.40 Position and time computation process, including inputs (measurements and
navigation message), outputs (position and time) and dependencies.

The concept of receiver time reference in an SDR, and more generally, in postpro-
cessing, may not be obvious. Our receivers make an estimation of the reference time
based on the GNSS signal. A way to estimate its own time is to assume that the sig-
nal of the closest GPS satellite takes, for example, 67 ms, which corresponds to the
approximate distance of a GPS satellite at the zenith and use this as an initial time
reference that will be refined as part of the position solution. This is also illustrated in
Figure 1.39, right. Also, the receiver can estimate the time just with one satellite, with
a certain error, by subtracting a rough arrival time estimation from one satellite.

Data Flows and Dependencies
A data flow diagram with the dependencies of the position computation elements
is presented in Figure 1.40. The pseudorange measurements are generated from the
DLL, after the addition of the integer number of codes to the code delay, and the
data bits from the PLL are decoded to form the navigation message. From the nav-
igation message, we obtain the orbits, clocks and ionospheric information (note that
signal synchronization is assumed to be achieved and removed from the figure for
simplicity). The satellite positions x(p) at the expected time are computed and used,
together with the estimated receiver position in x0, for the predicted pseudoranges ρ̂
and geometry matrix A. A requires the receiver-to-satellite unitary vector e, also using
the estimated receiver position in x0. Our best initial estimation (x0 in Figure 1.40)
can be the Earth center or the center between sub-satellite points. The measured pseu-
doranges (ρm) are corrected with the iono and tropo models and clock corrections to
generate the corrected pseudoranges ρ. From these, we subtract the predicted pseudo-
ranges ρ̂ and plug the result Δρ into the navigation equation. The equation is iterated
until the final solution, x, is obtained.
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