CORRESFONDEINCE.

SUGGESTIONS FOR GEOLOGICAL SURVEYORS.

Sir,-WThe following proposition will, I venture to think, be found very useful to Geological and Mining Surveyors, for none of the text-books give any information on the subject. I hope, therefore, that you will be able to find room for it.
F. W. Hutron.

Wellington, New Zraland, 6th August, 1873.
Given the dip on each side of an anticlinal or synclinal curve, to find the direction of the axis.
(a.) To find the bearing of the axis.

Let $O C$ and $O B$ represent the bearings of the two dips. From O

Consequently

$$
\tan \frac{1}{2}\left(x^{\prime}-x\right)=\frac{\left(\cot d^{\prime}-\cot d\right) \tan \frac{1}{2} A}{\cot d^{\prime}+\cot d}
$$

by which x, and therefore the bearing of the axis, can be found.
(b.) To find the inclination of the axis.

Let, as before, $A C$ represent the
 strike, and DCO the angle of dip (d) of the beds on one side of the curve. Join $A D$. Then $A O$ represents the bearing of the axis, and DAO is its inclination to the horizon. Let $\angle D A O=y$.

$$
\text { Then } \tan y=\frac{D O}{A O}
$$

$$
D O=O C \tan \bar{d}
$$

$$
A O=O C \operatorname{cosec} x
$$

$$
\therefore \tan y=\frac{\tan d}{\operatorname{cosec} x}=\tan d \sin x
$$

which gives the inclination of the axis with the horizon.
N.B.-The axis of an anticlinal curve will incline downward towards the angle formed by the two lines of strike, while the axis of a synclinal curve will incline upwards towards that angle.

