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EXTENSIONS OF REPRESENTATIONS
OF p-ADIC GROUPS

JEFFREY D. ADLER and DIPENDRA PRASAD

To Hiroshi Saito, in memoriam

Abstract. We calculate extensions between certain irreducible admissible rep-

resentations of p-adic groups.

§1. Introduction

The classification of irreducible admissible representations of groups over

local fields has been a very active and successful branch of mathematics.

One next step in the subject would be to understand all possible exten-

sions between irreducible representations. Many results of a general kind

are known about extensions between admissible representations of p-adic

groups, most notably the notion of the Bernstein center and many other

results of Bernstein and Casselman. These results reduce the question to

one between components of one parabolically induced representation (see

Lemma 5.1). Specific calculations seem not to have attracted attention

except for ExtiG(C,C), which is the cohomology H i(G,C) of G in terms of

measurable cochains; besides these, extensions of generalized Steinberg rep-

resentations are studied in [6] and [17]. In this paper, we calculate

ExtiG(π1, π2), abbreviated to Exti(π1, π2), between certain irreducible admis-

sible representations π1, π2 of G = G(k), where G is a connected reductive

algebraic group over a nonarchimedean local field k of characteristic 0; we

abuse notation in the usual way and call G itself a connected reductive

algebraic group.

Received August 15, 2011. Revised January 18, 2012. Accepted May 2, 2012.
2010 Mathematics Subject Classification. Primary 11F70; Secondary 22E55.
The authors’ work was partially supported by National Science Foundation grant

DMS-0854844.

© 2012 by The Editorial Board of the Nagoya Mathematical Journal

https://doi.org/10.1017/S002776300001062X Published online by Cambridge University Press

http://dx.doi.org/10.1215/00277630-1815240
http://www.ams.org/msc/
https://doi.org/10.1017/S002776300001062X


172 J. D. ADLER AND D. PRASAD

Since extensions of representations of abelian groups are well understood

through the cohomology H i(Zn,C) of Zn, it is no loss of generality when

considering extensions Exti(π1, π2) to restrict oneself to the subcategory

Rχ(G) of the categoryR(G) of all smooth representations of G, consisting of

those representations on which the center of G acts via a given character χ,

which we can also assume to be unitary.

We have two main results. The first is as follows.

Theorem 1. Let G be a reductive group over k, and let P be a maximal

k-parabolic subgroup of G with Levi decomposition P =MN . Let σ be an

irreducible, supercuspidal representation of M , and let π = iGPσ, where iGP
denotes normalized induction. If π is irreducible, then

Ext1Rχ(G)(π,π) =C.

If π is reducible, then it has two inequivalent, irreducible subquotients. Let

π1 and π2 denote these two subquotients. Then

Ext1Rχ(G)(πi, πj) =

{
0 if i= j,

C if i �= j.

Remark 1.1. This theorem is an extension of an observation that one of

the authors made concerning reducible unitary principal series representa-

tions of GSp4(k) arising from the Klingen parabolic (see [18, Remark 11.2]),

prompting a similar question for SL2(k), which we found was not known.

A similar statement is true for (g,K)-modules for representations π1, π−1

of SL2(R) of weights 1,−1, respectively, as follows by looking at the complete

list of indecomposable representations of SL2(R) supplied by Howe and Tan

(see [10, Theorem II.1.1.13]).

Our second result concerns the components of certain principal series

representations of SLn(k). Suppose that ω : k× −→ C
× is a character of

order n. We assume that ω is either unramified or totally ramified, in the

sense that the restriction of ω to the group O× of units in k× either is trivial

or has order n. Let π be the principal series representation Ps(1, ω, . . . , ωn−1)

of GLn(k), as well as its restriction to SLn(k), which is known to decompose

into a direct sum of n inequivalent, irreducible, admissible representations

of SLn(k), permuted transitively by the action of GLn(k) on SLn(k) by

conjugation. Embed k× inside GLn(k) as the group of upper left diagonal

matrices with all other diagonal entries 1. This k× also acts transitively on
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the set of irreducible summands of the representation π of SLn(k); call one

of them π1. Then the set of irreducible representations of SLn(k) appearing

in π can be indexed as πe for e belonging to k×, in fact, more precisely, for

e belonging to k×/ker(ω) since it is known that elements of k× belonging

to ker(ω) act trivially on π1. For the statement of the next theorem, the

choice of the base point representation π1 plays no role, but this indexing

of representations occurring in π through k×/ker(ω) is important.

Let Sπ be the group of characters of k× generated by ω; that is, Sπ =

{1, ω, . . . , ωn−1}. Then the character group Ŝπ of Sπ can be identified to

k×/ker(ω) via the natural pairing

Sπ × k×/ker(ω)−→C
×,

(χ,x) �−→ χ(x).

Let X = C[Sπ] be the group ring of Sπ, and let Y = C[Sπ]
0 be the aug-

mentation ideal of C[Sπ]. Then Y and hence ΛiY are representation spaces

of Sπ, and it makes sense to talk of ΛiY [e], the eth isotypic component of

ΛiY , for e a character of Sπ, which as mentioned earlier can be identified

to k×/ker(ω).

Theorem 2. With the notation as above, for a, b ∈ k×/ker(ω), we have

Extr(πa, πb)∼=ΛrY [ba−1].

In particular,

Ext1(πa, πb) =C if a �= b, and Ext1(πa, πa) = 0.

Of course, when n= 2, this is a special case of Theorem 1, and thus we

have two different computations of extensions of representations of SL2(k).

Neither is trivial. One uses Kazhdan’s orthogonality criterion, and the other

uses nontrivial statements about Hecke algebras.

We might add that most of this paper is devoted to the proof of Theo-

rem 2, which is divided into two separate cases depending on whether the

character ω is totally ramified or is unramified. In both of these cases, the

question about calculating the Ext groups is turned into one about mod-

ules over appropriate Hecke algebras, then to modules over certain group

algebras, and finally to questions about cohomology of groups. Although in
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174 J. D. ADLER AND D. PRASAD

these two cases the Hecke algebras involved are quite different, at the end

the questions boil down to the same calculation about

Ext1A�Z/n(χ1, χ2),

where A is the group A =
{
(k1, . . . , kn) ∈ Z

n
∣∣ ∑ki = 0

}
, with the cyclic

permutation action of Z/n on it, and where χ1, χ2 are characters of A�Z/n.

Our Theorem 2 for a very special class of principal series representations

of SLn(k) begs for a formulation more generally; we offer a conjecture for

SLn(k).

Conjecture 1.2. Let π be an irreducible unitary principal series rep-

resentation of GLn(k) induced from a supercuspidal representation σ of a

Levi subgroup M . Define

Sπ = {μ | π⊗ μ∼= π},

where μ ranges over the set of complex characters of k× (considered as

characters of GLn(k) via the determinant map). Similarly, define

Sσ = {μ | σ⊗ μ∼= σ}.

Clearly Sσ ⊂ Sπ, and it is easy to see that Sπ/Sσ is a subgroup of the Weyl

group W (GLn(k),M) = NGLn(k)(M)/M . Let Y be the character group of

SM = M ∩ SLn(k), which is a module for W (GLn(k),M) and, in partic-

ular, for Sπ/Sσ. Then characters of Sπ—parameterized just as before by

a quotient, say, Q, of k×—determine irreducible representations of SLn(k)

contained in π, whereas characters of Sπ/Sσ determine irreducible represen-

tations on SLn(k) contained in a principal series representation, say, π0, of

SLn(k) induced from an irreducible component, say, σ0, of σ restricted to

SM =M ∩ SLn(k). For a, b ∈Q, we conjecture that

Extr(πa, πb)∼=ΛrY [ba−1].

Remark 1.3. We recall that, in the L-packet of SLn(k) determined by π,

there is a further partitioning depending on whether or not the representa-

tions belong to the same Bernstein component; this is the difference between

Sπ, which determines the L-packet, and Sπ/Sσ, which determines the part of

the L-packet in a given Bernstein component. The above conjecture includes

the statement that unless πa and πb belong to the same Bernstein compo-

nent, all the Ext groups are zero.
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Remark 1.4. Although we appeal to existing knowledge about the struc-

ture of Hecke algebras to prove Theorem 2, some details of the equivalence

of the category of representations of p-adic groups versus those of the Hecke

algebra are necessary since to convert the problem about representations of

p-adic groups to one on Hecke modules, we must know what the correspond-

ing objects on the Hecke algebra side are. It is possible sometimes to come

up with the suggested objects on the Hecke algebra with pure thought—for

example, for Theorem 2 in the totally ramified case, these will be exactly

those representations of the Hecke algebra which are of dimension 1, and

there are exactly n of them corresponding to components of the princi-

pal series representation Ps(1, ω, . . . , ωn−1). We have, however, preferred to

identify the modules of the Hecke algebra concretely and in the process have

tried to give an exposition on what goes into it for the benefit of some of

the readers, as well as for the authors.

§2. Preliminary results for Theorem 1

Given a connected reductive k-group G and two admissible, finite-length

representations π and π′ of G having a given central character, one can

consider the Euler-Poincare pairing between π and π′, which is denoted

EP(π,π′) and defined by

EP(π,π′) =
∑
i

(−1)i dimCExt
i(π,π′).

Here, each Exti(π,π′) is a finite-dimensional vector space over C and is zero

when i is greater than the k-split rank of G/Z(G). The notion of the Euler-

Poincare pairing and its usefulness in the context of p-adic groups, especially

Proposition 2.1(d) below, was noted by Kazhdan in [11]. One can find a proof

by Schneider and Stuhler [20] in characteristic 0 for Proposition 2.1(d);

this remains unresolved in positive characteristic, as the convergence of the

integral involved is not known in that case.

Proposition 2.1. Let π and π′ be finite-length, smooth representations

of a reductive p-adic group G. Then

(a) EP is a symmetric, Z-bilinear form on the Grothendieck group of finite-

length representations of G;

(b) EP is locally constant (a family {πλ} of representations on a fixed vec-

tor space V is said to vary continuously if all πλ|K are equivalent for
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some compact open subgroup K and the matrix coefficients 〈πλv, ṽ〉 vary
continuously in λ);

(c) EP(π,π′) = 0 if π or π′ is induced from any proper parabolic subgroup

in G;

(d) EP(π,π′) =
∫
Cell

Θ(c)Θ̄′(c)dc, where Θ and Θ′ are the characters of π

and π′ assumed to have the same unitary central character and where dc

is a natural measure on the set Cell of regular elliptic conjugacy classes

in G/Z(G).

The Euler-Poincare pairing becomes especially useful because of the fol-

lowing two results concerning vanishing of higher Ext groups and Frobenius

reciprocity for Ext.

Proposition 2.2. Suppose that V in Rχ(G) has finite length and that

all of its irreducible subquotients are subquotients of representations induced

from supercuspidal representations of a Levi factor of the standard parabolic

subgroup P of G, defined by a subset Θ of the set of simple roots. Then

ExtiRχ(G)(V,V
′) = 0 for i > d − |Θ| and any representation V ′ in Rχ(G),

where d is the k-split rank of G/Z(G).

Proof. This is [20, Corollary III.3.3].

Proposition 2.3 (Frobenius reciprocity). Let P be a parabolic subgroup

of G with Levi factorization P = MN . Let π be a smooth representation

of G, and let σ be a smooth representation of M . Then

ExtiRχ(G)

(
π, iGP (σ)

)∼=ExtiRχ(M)

(
rN (π), σ

)
,

where Rχ(M) is the category of smooth representations of M on which the

center of G (which is always contained in M) acts via χ, and rN denotes

the Jacquet functor.

Proof. This is [4, Theorem A.12].

Proposition 2.4. Let G be a reductive group over k, and let P be a

maximal k-parabolic subgroup of G with Levi decomposition P =MN . Let

σ be an irreducible, supercuspidal representation of M , and let π = iGPσ. If

NG(M)/M is nontrivial, it is of order 2, in which case write NG(M)/M =

〈w〉.
(1) If NG(M)/M is trivial, then π = iGPσ is irreducible.

(2) If NG(M)/M = 〈w〉 and σ �∼= σw, then if π is reducible, it is indecom-

posable with distinct Jordan-Hölder factors.
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(3) If σ ∼= σw, then by twisting π by a character of G, we can assume that

σ is unitary; hence, if π is reducible it is completely reducible, and is a

direct sum of two distinct irreducible subrepresentations.

Proof. Part (1) of the proposition is [5, Theorem 7.1.4] and is nontrivial;

the other parts are more elementary and follow from considerations of the

Jacquet module, which we undertake now. In these parts we do not have

to go into the deeper aspects of the subject regarding when reducibility

actually occurs.

For P =MN , let P− =MN− be the opposite parabolic. Then P− and

P are conjugate in G if and only if NG(M) �=M . If P and P− are conjugate

in G, then P is the unique parabolic in G up to conjugacy in its associate

class; otherwise, there are two distinct conjugacy classes of parabolics in

the associate class of P . It follows from the geometric lemma (see [2]) that

rN (π) = σ if NG(M) =M and that if NG(M) �=M , then rN (π) has Jordan-

Hölder factors σ and σw. If σ �∼= σw, then since σ is supercuspidal, rN (π) =

σ⊕ σw. In this case, if π is reducible, with π1 and π2 as the Jordan-Hölder

factors of π, then we can assume that rN (π1) = σ and that rN (π2) = σw.

From Frobenius reciprocity,

HomG[π2, π] = HomM [rN (π2), σ] = HomM [σw, σ] = 0,

proving that if σ �∼= σw and if π is reducible, it is indecomposable with

distinct Jordan-Hölder factors, proving part (2) of the proposition.

Note that if NG(M)/M is nontrivial and σw ∼= σ, σ must be unitary

when restricted to the intersection of M and the derived group [G,G] of G.

If the supercuspidal representation σ of the Levi subgroup M is unitary,

then π is completely reducible, and we see that the Jordan-Hölder factors

of π are distinct by a calculation of HomG[π,π] = HomM [rN (π), σ], which is

a 2-dimensional vector space over C. If σ is not unitary when restricted to

M ∩ [G,G], in particular, σ �∼= σw, we see that the Jordan-Hölder factors of

π are distinct by noting that their Jacquet modules are σ and σw, proving

part (3) of the proposition.

§3. Proof of Theorem 1

Proof. If π is irreducible, then the result follows from Proposition 2.1(c)

together with Proposition 2.2.
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Suppose from now on that π is reducible. Assume first that we have a

nonsplit short exact sequence

(∗) 0−→ π1 −→ π −→ π2 −→ 0.

From (∗), we have that Ext1(π2, π1) is nontrivial, and this by Proposition 2.4

implies that the inducing representation σ is not unitary even after twist-

ing by characters of G (restricted to the Levi subgroup). By replacing the

inducing representation σ with its Weyl conjugate, we obtain another prin-

cipal series representation π′ which will have π1 as a quotient and π2 as a

subrepresentation. Since σ is not unitary, Proposition 2.4 implies that π′

does not split. Thus, Ext1(π1, π2) is nontrivial.

Working in the category Rχ(G), apply Hom(π1,−) to (∗) and consider

the induced long exact sequence

0−→Hom(π1, π1)−→Hom(π1, π)−→Hom(π1, π2)

−→ Ext1(π1, π1) −→ Ext1(π1, π) −→ Ext1(π1, π2)

−→ Ext2(π1, π1) −→ · · · .

By Proposition 2.2, Ext2(π1, π1) = 0. From Proposition 2.4, Hom(π1, π2) =

0, so we have a short exact sequence

(�) 0−→ Ext1(π1, π1)−→ Ext1(π1, π)−→ Ext1(π1, π2)−→ 0.

Since Ext1(π1, π2) is nonzero and since rNπ1 ∼= σ, Frobenius reciprocity

(Proposition 2.3) gives

Ext1Rχ(G)(π1, π)
∼=Ext1Rχ(M)(rNπ1, σ)∼=Ext1Rχ(M)(σ,σ).

Let χσ denote the central character of σ. Then σ is projective in Rχσ(M).

Since Z(M)/Z(G) has split rank 1, dimExt1Rχ(M)(σ,σ) = 1. (This amounts

to the assertion that Ext1k×(μ,μ) =C, where μ is a 1-dimensional character

of k×.) From (�), we thus have that Ext1(π1, π1) = 0 and that Ext1(π1, π2) =

C, as desired.

We now turn to the case when π = π1 + π2. This is the nontrivial part

of the proposition, where one wants to construct a nontrivial extension

between π1 and π2, even though the extension afforded by the principal

series representation in which they sit is split.

From Proposition 2.2, Exti(π1, π1) = 0 for i > 1. From [1, Proposi-

tion 2.1(c)], the character of π1 does not vanish on the elliptic set. By
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Proposition 2.1(d), EP(π1, π1) is positive. Thus,

dimExt1(π1, π1) = dimHom(π1, π1)−EP(π1, π1)

= 1−EP(π1, π1)< 1,

and thus Ext1(π1, π1) = 0. From Proposition 2.1(c), dimExt1(π1, π) = 1, so

it follows that dimExt1(π1, π2) = 1. The rest of the proposition follows by

symmetry between π1 and π2.

Remark 3.1. It may be worth emphasizing that although the proof of

Theorem 1 above might look straightforward, it uses rather deep Proposi-

tion 2.1(d). The latter, and thus this theorem, is known only in character-

istic 0.

§4. A construction of Savin

If π is a reducible unitary principal series representation of SL2(k), then

it has two inequivalent, irreducible subquotients π1 and π2. By Theorem 1

we know that

Ext1SL2(k)
(π1, π2) =C.

Savin has offered a natural construction of an extension of π1 by π2, at

least when π arises from an unramified quadratic character of k×. This

construction may be useful in many similar situations, so we outline it,

referring to [19] for details. We begin with some generality.

Let K be an open compact subgroup of a split reductive p-adic group G.

Let H = Cc(K\G/K) be the Hecke algebra of K-bi-invariant compactly

supported functions on G. If V is a smooth G-module, then V K is a left

H-module. It is a standard fact that if V is an irreducible G-module and if

V K is nonzero, the latter is an irreducible H-module. Conversely, if E is a

left H-module, then

I(E) :=Cc(G/K)⊗H E

is a smooth G-module. As a right H-module, Cc(G/K) can be decomposed

as

Cc(G/K) =Cc(G/K)′ ⊕H,

where Cc(G/K)′ denotes the sum of all nontrivial left K-submodules of

Cc(G/K). It follows that I(E)K ∼=E, as H-modules. Note that I(E)K gen-

erates the G-module I(E). Let U(E)⊆ I(E) be the sum of all G-submodules

of I(E) intersecting I(E)K trivially. Let J(E) be the quotient I(E)/U(E).
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Then J(E) is generated by J(E)K ∼=E, and any submodule of J(E) contains

nonzero K-fixed vectors. Using this, the following proposition is proved.

Proposition 4.1. Let E be an irreducible H-module. Then J(E) is the

unique irreducible quotient of I(E).

Assume now that K is hyperspecial, and let I ⊆K be an Iwahori sub-

group. SinceH is commutative, every irreducibleH-module is 1-dimensional.

Pick one, and call it Cχ. Any subquotient of I(Cχ) is generated by its I-fixed
vectors. As in [19], denoting by X the cocharacter group of a maximal split

torus of G, we have

I(Cχ)
I =Cc(I\G/K)⊗H Cχ

∼=C[X]⊗C[X]W Cχ.

From generality about integral extensions of commutative integrally

closed domains, C[X] ⊗C[X]W Cχ has dimension equal to |W |; hence,

dim(I(Cχ)
I) = |W |. We specialize further to G = SL2(k). Let V = π1 be

the unique irreducible tempered representation of G such that dim(V K) =

dim(V I) = 1. Then I(V K) has length 2 and is the representation of SL2(k)

corresponding to a nontrivial element of Ext1SL2(k)
(π1, π2) = C that we

desired to construct since the unique irreducible quotient of I(V K) is V =

π1. If U is the unique irreducible submodule of I(V K), then dim(UK) = 0

and dim(UI) = 1, in particular, U �∼= V , and therefore by generalities (see

Lemma 5.1 below), the only option for U is to be π2.

§5. Preliminary results for Theorem 2

We recall a small part of the theory of types (see [3]). The starting point

is the fundamental result, due to Bernstein, that the category R(G) of

smooth complex representations of G decomposes as a direct product of

certain indecomposable full subcategories, now often called the Bernstein

components of R(G):

R(G) =
∏

s∈B(G)

Rs(G).

The indexing set B(G) consists of (equivalence classes of) irreducible super-

cuspidal representations of Levi subgroups M of G up to conjugation by

G and twisting by unramified characters of M , that is, characters that are

trivial on all compact subgroups of M .

Suppose that s ∈ B(G) corresponds to an irreducible supercuspidal rep-

resentation, say, σ, of a Levi subgroup M of G. The irreducible objects in
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Rs(G) are then precisely the irreducible subquotients of the various parabol-

ically induced representations iGP (σν) as ν varies through the unramified

characters of M , and where P is any parabolic subgroup of G with Levi

component M .

We note the following lemma which is a simple consequence of Bernstein

theory but which, however, does not follow from Frobenius reciprocity. The

result can also be found in [23, Theorem 6.1].

Lemma 5.1. Let π1 and π2 be two irreducible admissible representations

of G with different cuspidal support. Then

Exti(π1, π2) = 0 for all i≥ 0.

Proof. If π1 and π2 belong to different Bernstein components, then there

is nothing to prove. If they belong to the same Bernstein component, then

associated to the component is an irreducible affine algebraic variety over C

whose space of regular functions is the center of the corresponding category.

Now, given two distinct points on the affine algebraic variety corresponding

to π1 and π2, there is an element, call it f , in the center of the category such

that f acts by zero on π1 and by 1 on π2. Standard homological algebra

then proves that Exti(π1, π2) = 0 for all i≥ 0.

A pair (K,ρ) consisting of a compact open subgroupK of G and a smooth

irreducible representation ρ of K is called an s-type if the irreducible smooth

representations of G that contain ρ on restriction to K are exactly the

irreducible objects in Rs(G). In this case, the category Rs(G) is equivalent

to the category of (left) modules over the intertwining or Hecke algebra of ρ.

More precisely, let W denote the space of ρ, and write H(G,ρ) for the space

of compactly supported functions Φ :G→ End(W∨) such that

Φ(k1gk2) = ρ∨(k1)Φ(g)ρ
∨(k2),

where, as usual, ρ∨ is the dual of ρ. This is a convolution algebra (with

respect to a fixed Haar measure on G). The endomorphism algebra

EndG(ind
G
K ρ) is isomorphic to the opposite of the algebra H(G,ρ), so that a

right EndG(ind
G
K ρ)-module is naturally a left H(G,ρ)-module. This allows

one to give a natural H(G,ρ)-module structure on HomK(ρ,π) for any

smooth representation π of G.

We mention two basic examples of s-types which served as precursors to

the general theory. In the first, M =G. Thus, σ is a supercuspidal represen-

tation of G, and the irreducible objects in Rs(G) are simply the unramified
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twists of σ. In this case, elementary arguments show that the existence of

an s-type is closely related to the statement that σ is induced from a com-

pact mod center subgroup of G (see [3, Section 5.4]). In particular, if σ is

induced in this way, then an s-type exists and is easily described in terms

of the inducing data for σ. We note that through the work of Yu [24], Kim

[12], and Stevens [22], the existence of such types is now known for all reduc-

tive groups under a tameness hypothesis and for many classical groups in

odd residual characteristic. Types exist for GL(n) and SL(n) without any

restriction on residue characteristic by the work of Bushnell and Kutzko [3]

and Goldberg and Roche [7], [8].

In the second example, Rs(G) is defined by σ, the trivial representation

of a minimal Levi subgroup M of G. Since a minimal Levi subgroup has no

proper parabolic subgroup, the trivial representation of M is supercuspidal;

further, it is known that M is compact modulo its center. In this case,

the trivial representation of an Iwahori subgroup I provides an s-type; this

is the classical result of Borel and Casselman that an irreducible smooth

representation of G contains nontrivial I-fixed vectors if and only if it is a

constituent of an unramified principal series. The general theory posits that

these two examples are extreme instances of a general phenomenon.

A fundamental feature of Bushnell and Kutzko’s theory of types is that

parabolic induction can be transferred effectively to the Hecke algebra set-

ting, and we make essential use of this feature below. We recall a special case

which is more than adequate to our needs. Let σ be an irreducible supercus-

pidal representation of a Levi subgroup M of G, and write RsM (M) for the

resulting component of R(M). Thus, the irreducible objects in RsM (M)

are simply the various unramified twists of σ. We also write Rs(G) for

the resulting component of R(G). We assume that RsM (M) admits a type

(KM , ρM ). We assume also that (KM , ρM ) admits a G-cover (K,ρ) whose

definition due to Bushnell and Kutzko we recall below (see [3, Section 8]).

Given a parabolic P = MN , with opposite parabolic P− = MN−, we

call a pair (J, τ) consisting of a compact open subgroup J of G and a finite-

dimensional irreducible representation τ of J decomposed with respect to

(P,M) if

(1) J = (J ∩N−) · (J ∩M) · (J ∩N), and

(2) the groups J ∩N− and J ∩N act trivially under τ , so τ restricted to

JM = J ∩M is an irreducible representation; call it τM .
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Let IG(τ) denote the set of elements g in G such that there is a function

f in H(G,τ) whose support contains g. It can be seen that if (J, τ) is

decomposed with respect to (P,M), then

IM (τM ) = IG(τ)∩M.

Further, if φ ∈ H(M,τM ) has support JMzJM for some z ∈ M , there is

a unique T (φ) = Φ ∈ H(G,τ) with support contained in JzJ and with

Φ(z) = φ(z). The map T : φ→ Φ from H(M,τM ) to H(G,τ) is an isomor-

phism of vector spaces onto H(G,τ)M , the subspace of H(G,τ) with support

contained in JMJ .

One calls an element z ∈M positive with respect to (J,N) if it satisfies

z(J ∩N)z−1 ⊂ (J ∩N), z−1(J ∩N−)z ⊂ (J ∩N−).

Let I+ denote the set of positive elements of IM (τM ) = IG(τ) ∩M , and

let H(M,τM )+ denote the space of functions in H(M,τM ) with support

contained in JMI+JM . Then the map T from H(M,τM ) to H(G,τ), when

restricted to H(M,τM )+, is an algebra homomorphism sending the identity

element of H(M,τM ) to the identity element of H(G,τ); it extends uniquely

to an injective algebra homomorphism from H(M,τM ) to H(G,τ) when the

pair (J, τ) is a G-cover (to be defined below) of (JM , τM ).

Define an element ζ of the center Z(M) of M to be strongly positive if

it is positive and has the property that, given compact open subgroups H1

and H2 of N , there is a power ζm, m ≥ 0, which conjugates H1 into H2,

and similarly a property for subgroups of N− by negative powers of ζ.

Here, then, is the definition of a G-cover.

Definition 5.2. Let M be a Levi subgroup of a reductive group G. Let

JM be a compact open subgroup of M , and let (τM ,W ) be an irreducible

smooth representation of JM . Let J be a compact open subgroup of G, and

let τ be an irreducible smooth representation of J . The pair (J, τ) is G-cover

of (JM , τM ) if the following hold:

(1) the pair (J, τ) is decomposed with respect to (M,P ), in the sense defined

earlier, for all parabolics P with Levi M ;

(2) J ∩M = JM , and τ |JM = τM ;

(3) for every parabolic P = MN with Levi M , there exists an invertible

element ofH(G,τ) supported on a double coset JζPJ , where ζP ∈ Z(M)

is strongly (J,N)-positive.
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The definition of a G-cover is tailored to achieve the following result,

which can be found in [3].

Proposition 5.3. Let P be a parabolic subgroup of a reductive k-group G,

and let M be a Levi factor of P . Let JM be a compact open subgroup of M,

and let (τM ,W ) be an irreducible smooth representation of JM . Suppose

that RsM (M) is a component of R(M), defined by the type (τM ,W ). Let

J be a compact open subgroup of G, and let τ be an irreducible smooth

representation of J . If the pair (J, τ) is a G-cover of (JM , τM ), then parabolic

induction from P to G of representations in RsM (M) defines a component

in R(G) with (J, τ) as a type.

Recall the following result of Moy and Prasad [15, Proposition 6.4]. Let

P be a parahoric subgroup of a reductive group G over k, with P
+ the pro-

unipotent radical of P. If Fq is the residue field of k, then P/P+ is the group

of rational points of a reductive Fq-group. There is a unique P-conjugacy

class of Levi subgroups M in G such that M= P∩M is a maximal parahoric

subgroup in M with

M/M+ ∼= P/P+.

The following result of Morris [14] constructs G-covers for all depth-zero

types of Levi subgroups. The relevance of this result for us is that in the

tame case, that is, (n,p) = 1, the representations of SLn(k) that we consider

have depth zero. Although we will obtain G-covers for them from the work

of Goldberg and Roche, in the tame case we could have used Morris’s result

instead. In fact, Morris (see [13]) goes further to identify the Hecke algebra

H(G,ρ) too, but we do not go into that.

Proposition 5.4. Let G be a reductive algebraic group over a nonar-

chimedean local field k. Let P be a parahoric subgroup of G, defining a Levi

subgroup M and maximal parahoric M in M as above with

M/M+ ∼= P/P+,

allowing one to construct representations of P from representations of

M/M+. Let ρ be any irreducible representation of P arising out of this con-

struction. Then (P, ρ) is a G-cover of (M, ρ|M).

Let P be a parabolic subgroup of G with Levi component M . The

functor iGP of normalized parabolic induction from R(M) to R(G) takes

RsM (M) to Rs(G). It therefore corresponds, under the equivalence of Rs(G)
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with H(G,ρ)-modules and its analogue for M , to a certain functor from

H(M,ρM ) -Mod to H(G,ρ) -Mod. To describe this, we note that there is a

certain (explicit) embedding of C-algebras

λP : H(M,ρM )−→H(G,ρ).

This induces a functor (λP )∗ from H(M,ρM ) -Mod to H(G,ρ) -Mod, given

on objects by

S �−→HomH(M,ρM )

(
H(G,ρ), S

)
,

where H(G,ρ) is viewed as a left H(M,ρM )-module via λP and H(G,ρ)

acts by right translations. We have the following commutative diagram (up

to natural equivalence) by [3, Corollary 8.4]:

(5.1)

Rs(G)
�−−−−→ H(G,ρ) -Mod

iGP


⏐⏐ 
⏐⏐(λP )∗

RsM (M)
�−−−−→ H(M,ρM ) -Mod

In other words, normalized parabolic induction from RsM (M) to Rs(G)

corresponds to (λP )∗ under the equivalences of the theory of types. (Note

that although [3] explicitly treats only unnormalized induction, it is a trivial

matter to adjust the arguments so that they apply to normalized induction.)

§6. Proof of Theorem 2 in the totally ramified case

We set G = SLn(k). Let T denote the standard split torus of diagonal

elements in G, and let T 1 denote the unique maximal compact subgroup

of T . We write

A=
{
(a1, . . . , an) ∈ Z

n
∣∣∣∑ai = 0

}
.

Fix a uniformizer � in k. Consider the map a �→�a : A→ T , where

�a = diag(�a1 , . . . ,�an), for a= (a1, . . . , an).

This splits the inclusion T 1 ↪→ T ; that is,

(6.1) (t1, a) �→ t1�
a : T 1 ×A

�−→ T

is an isomorphism. In this way, we can view characters of T as pairs con-

sisting of characters of T 1 and characters of A (equivalently, unramified

characters of T ).
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Let ω : k× →C
× be a character of order n such that the restriction of ω

to O×, call it ωO, remains of order n, where O denotes the ring of integers

in k. Let χ be the character of T 1 given by

χ
(
diag(x1, x2, . . . , xn)

)
= ωO(x1)ωO(x2)

2 · · ·ωO(xn)
n.

We are interested in the resulting Bernstein component Rχ(G). The irre-

ducible objects in this component consist of the irreducible subquotients

of the family of induced representations iGB(χν) as ν varies through the

unramified characters of T (and B is any Borel subgroup containing T ).

We write Rχ(T ) for the Bernstein component of T determined by χ. The

irreducible objects in Rχ(T ) are simply the various extensions of χ to T . It

is obvious that (T 1, χ) is a type for Rχ(T ). By [7], there is a G-cover (K,ρ)

of (T 1, χ) which is therefore a type for Rχ(G). If ω is trivial on 1 +�O,

then K is the Iwahori subgroup of SLn(k). If ω is trivial on 1 +�nO but

not on 1 +�n−1O, for n> 1, then

K =N−([(n+ 1)/2]
)
· T (O) ·N([n/2]),

where [x] denotes the integral part of the rational number x and where N(i)

(resp., N−(i)) denotes the group of upper (resp., lower) triangular unipotent

matrices with nondiagonal entries in �iO. The restriction of ρ to T (O) is

the character (1, ω, . . . , ωn−1).

We next describe the Hecke algebra H(G,ρ) and the algebra embedding

λB :H(T,χ)→H(G,ρ) (for B a fixed Borel containing T ).

To simplify some formulas, we take convolution inH(T,χ) (resp.,H(G,ρ))

with respect to the Haar measure that gives T 1 (resp., K) unit measure.

For a ∈A, let φa denote the unique function in H(T,χ) with support T 1�a

such that φa(�
a) = 1. The assignment φa �→ a, for a ∈A, clearly extends to

a C-algebra isomorphism H(T,χ)�C[A].

Proposition 6.1. Let H = A � Z/n, where Z/n acts on A by cyclic

permutation of the coordinates. Then there is a C-algebra isomorphism

H(G,ρ)�C[H], the complex group algebra of H. This fits into a commuta-

tive diagram

(6.2)

H(G,ρ)
�−−−−→ C[H]

λB


⏐⏐ 
⏐⏐
H(T,χ)

�−−−−→ C[A]
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in which the right vertical arrow is the obvious inclusion and the bottom

horizontal arrow is the isomorphism that sends φa to a, for a ∈A.

Proof. Theorem 11.1 of [8] gives the following description of H(G,ρ).

First, for a ∈A, we set Φa = λB(φa) so that

ΦaΦa′ =Φa+a′

for all a,a′ ∈A. Writing w for the cycle (12 . . . n), there is a special function

Φw ∈H(G,ρ) that satisfies

(1) Φn
w =Φ0, the identity element of H(G,ρ),

(2) ΦwΦaΦ
−1
w

.
=Φw(a) for all a ∈A.

Here w acts on A in the obvious way (by cyclic permutation of the coordi-

nates), and
.
= denotes equality up to multiplication by scalars. (Note that

it follows from (2) that the order of Φw is exactly n.) Finally, H(G,ρ) is

generated as a C-algebra by Φw and the elements Φa, for a ∈A.

To prove the proposition, we will show that (2) is actually an equality. For

this, we consider the induced representation iGB(χ) (viewing χ as a character

of T that is trivial on A). This decomposes as a sum of n distinct irreducible

subrepresentations. This can be seen by noting the following.

• A unitary principal series representation of GLn(k) is irreducible.

• An irreducible admissible representation π of GLn(k), when restricted to

SLn(k), decomposes as a sum of a finite collection of irreducible repre-

sentations whose cardinality is the same as the cardinality of self-twists

of π:

{α : k× →C
× | π⊗ α∼= π}= {1, ω, . . . , ωn−1}.

We now appeal to diagram (5.1). The H(G,ρ)-module that corresponds

to iGB(χ) has dimension n and so must split as a sum of n 1-dimensional

submodules. Note that each φa, for a ∈ A, acts trivially on the H(T,χ)-

module corresponding to the character χ of T . It follows easily that there

is a C-algebra homomorphism Λ :H(G,ρ)→ C such that Λ(Φa) = 1 for all

a ∈ A. (In fact, there are n such homomorphisms.) Applying Λ to (2), we

see that (2) must be an equality.

Combining (6.2) (or, more properly, the diagram induced by (6.2) on

module categories) and (5.1), we obtain a commutative diagram of functors
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(up to equivalence)

(6.3)

Rχ(G)
�−−−−→ C[H] -Mod

iGB


⏐⏐ 
⏐⏐i

Rχ(T )
�−−−−→ C[A] -Mod

Explicitly, ifM is a C[A]-module, then i(M) = HomC[A](C[H],M), where, as

above, the C[H]-action is given by right translations. Let ν be an unramified

character of T viewed as a character of A via a �→ ν(�a). The bottom

horizontal arrow takes the object χν in Rχ(T ) to the simple C[A]-module

Cν corresponding to ν.

We are interested in a particular family of induced representations in

Rχ(G). To describe this family, let ω be an nth root of unity, and write νω
for the unramified character of T given by

νω(�
a) = ωa1ω2a2 · · ·ωnan

for a = diag(a1, . . . , an). To simplify the notation, we write Cω in place

of Cνω for the C[A]-module corresponding to νω. By (6.3), the induced

representation iGB(χνω) corresponds to the C[H]-module i(Cω).

Observe that Cω is fixed under the action of Z/n on A (by cyclic permu-

tations). Indeed,

(kn, k1, . . . , kn−1) �→ ωknω2k1 · · ·ωnkn−1

= ωk1ωk2 · · ·ωkn(ωk1ω2k2 · · ·ωnkn)

= ωk1ω2k2 · · ·ωnkn .

It follows that for any character η : Z/n→C
×, the C[A]-module Cω extends

to a C[H]-module Cω,η in which Z/n acts by η and

i(Cω) =
⊕
η

Cω,η,

as η varies through the distinct characters of Z/n.

To finish, we therefore need to determine Exti
C[H](Cω,η,Cω,η′) for all char-

acters η, η′ of Z/n. We have

Exti
C[H](Cω,η,Cω,η′)� Exti

C[H](C1,1,C1,η′η−1)

=H i(H,C1,η′η−1).
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Of course, C1,η′η−1 is a character of H that is trivial on A. To compute these

cohomology groups, we use the following general result.

Lemma 6.2. Let N be a finite-index normal subgroup of a group G, and

let V be a C[G]-module. Then

H i(G,V )∼=H i(N,V )G/N .

Proof. This follows from the spectral sequence which calculates cohomol-

ogy of G in terms of that of N after we have noted that since G/N is finite,

it has no cohomology in positive degree for a coefficient system which is a

C-vector space.

Corollary 6.3. Let N be a normal subgroup of a group G of finite

index. Let τ be a finite-dimensional complex representation of G on which

N operates trivially. Then,

H i(G,τ)∼= [H i(N,C)⊗ τ ]G.

Proof. By Lemma 6.2,

H i(G,τ)∼=H i(N,τ)G/N ∼= [H i(N,C)⊗ τ ]G.

This corollary allows us to calculate H i(H,C1,η) as follows.

Corollary 6.4. For a character η : Z/n−→C
×,

H i(H,C1,η) = Λi(A∨ ⊗C)[η],

where Λi(A∨⊗C)[η] is the η-isotypic component of Λi(A∨⊗C) for the action

of Z/n as cyclic permutations on A.

Proof. From Corollary 6.3, we have that H i(H,C1,η) = H i(A,C)[η−1].

Since the cohomology of a free abelian group is the exterior algebra on its

dual, the corollary follows.

Theorem 2 in the ramified case now follows from the fact that A∨⊗C as

a module for Z/n is the sum of all nontrivial characters of Z/n.
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§7. Preliminaries on Iwahori-Hecke algebras

Now suppose that ω is an unramified character of k× of order n, and

we are considering the principal series representation Ps(1, ω, . . . , ωn−1) of

GLn(k) restricted to SLn(k). In this case, the corresponding Hecke algebra

governing the situation is the Iwahori-Hecke algebra, which we review below

in greater generality than needed for the problem at hand.

Let G be an unramified group, that is, a quasi-split group over k which

splits over an unramified extension of k with I as an Iwahori subgroup

of G, with I ⊂ K, a hyperspecial maximal compact subgroup of G. Let

T be a maximal torus in G which is maximally split such that T (O)⊂ I.
(Recall that since G is unramified, so is T , and hence it makes sense to

speak of T (O), which is the maximal compact subgroup of T .) Let W =

N(T )(k)/T (k) be the Weyl group associated to the torus T . Let X∗(T ) be
the cocharacter group of T . Fix a uniformizer � in k, and for a cocharacter

μ of T , let �μ denote the image of � in T under the map μ : k× → T .

The map μ �→�μ gives an isomorphism of X∗(T ) with T/T (O) and hence

induces an isomorphism of the group ring R= Z[X∗(T )] with H(T//T (O)).

We recall (from [9]) that according to the Bernstein presentation of the

Iwahori-Hecke algebraH(I) =H(G//I), there is the subalgebraH(T//T (O))

generated as a vector space by the elements I�μI for μ in the set of

coweights; the multiplication is (I�μI)(I�νI) = I�μ+νI for μ and ν dom-

inant coweights. The algebra H(T//T (O)) is a Laurent polynomial algebra

Z[X∗(T )]. There is also the subalgebra H(K//I) of the Iwahori-Hecke alge-

bra consisting of I-bi-invariant functions on G with support in K. The

natural map

H(K//I)⊗H
(
T//T (O)

)
−→H(I)

is an isomorphism of vector spaces. In particular, H(I) is a free module

over R = H(T//T (O)) of rank equal to the order of W . Furthermore, an

irreducible representation of H(I), when restricted to the commutative sub-

algebraH(T//T (O)), breaks up as a sum of characters ofH(T//T (O)), which

are just unramified characters of T which are all conjugate under the action

of W . Any character in this Weyl orbit of characters of T is an inducing

character for the corresponding unramified principal series representation

of G in which this representation of H(I) is contained; in particular, the

unramified principal series representation Ps(1, ω, . . . , ωn−1) defines a char-

acter νω of R=H(T//T (O)).
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It is known that RW =H(T//T (O))W is the center of H(I) and that, if Q

denotes the quotient field of R, then the algebraH(I)⊗RW QW =H(I)⊗RQ

is isomorphic to what is called a twisted group ring of W over Q with the

natural action of W on R and hence on Q. In fact, we do not need to invert

all the nonzero elements of R to get to the twisted group ring, and inverting

just one element,

δ =
∏

(1− q−1�α∨
)

(where q is the order of the residue field of k and the product is over all

coroots α∨), is sufficient. Clearly, δ is a W -invariant element of R, so it

belongs to the center Z =RW of H(I). Note that δ is not invertible in R as

R a Laurent polynomial algebra; the only invertible elements of R are the

monomials.

We now localize H(I), R, Z at the central multiplicative set given by the

powers of δ. Write H(I)δ, Rδ , Zδ for these localizations. The algebra H(I)δ
has a simple structure. In fact,

H(I)δ =
⊕
w∈W

RδKw,

where the normalized intertwining operators Kw are as described in [9,

Section 2.2]. Now W acts naturally on R and Rδ, and we have

Kwr =w(r)Kw for all r ∈R.

We also have

KwKw′ =Kww′ ;

these equations determine the algebra structure on H(I)δ and prove that

H(I)δ ∼=Rδ[W ].

Note that from the explicit form of δ given above, νω(δ) �= 0, and hence the

character νω of R that we work with extends uniquely to Rδ. We continue

to write νω for this extension to Rδ.

§8. Proof of Theorem 2 in the unramified case

Let ω : k× −→ C
× be an unramified character of order n. Recall that

the principal series representation π =Ps(1, ω, . . . , ωn−1) of GLn(k) decom-

poses as a direct sum π =
∑

α πα of n irreducible admissible representations

of SLn(k), where α ∈ k×/ker(ω), all of which have Iwahori-fixed vectors.
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Extensions between these can therefore be determined through the Iwahori-

Hecke algebra H(I) of G. Since the space of I-invariants in a principal series

representation of any split group, in particular SLn(k), has dimension equal

to the order |W | of the Weyl group W , the representations of the Iwahori-

Hecke algebra corresponding to any πα are of dimension (n− 1)! (all being

of equal dimension). To justify this, we note that dim(πI
α) is independent

of α since

(1) GLn(k) operates transitively on the set of πα, and

(2) if N(I) denotes the normalizer of I in GLn(k), then N(I) · SLn(k) =

GLn(k) since I is normalized by an element of GLn(k) whose determi-

nant is a uniformizer of k. For example, if I is the “standard” Iwahori

subgroup, then one such element is⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0

0 1
. . . · · · 0

0
. . . 0 0
. . . 1 0

0 1

� 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the notation from Section 7, our context consists of the following

chain of C-algebras: RW ⊂R⊂H(I), where R and RW are Laurent poly-

nomial algebras and RW is the center of H(I) which we now abbreviate

to H. We have two modules M1,M2 over H which are of dimension (n− 1)!

over C arising from two irreducible components of the principal series repre-

sentation Ps(1, ω,ω2, . . . , ωn−1) of GLn(k) restricted to SLn(k), and we are

interested in calculating

ExtiH(M1,M2).

From results of Section 7, we know that there is an element δ in RW

such that the inclusion Rδ ⊂Hδ is the inclusion Rδ ⊂Rδ[W ]. We also know

from Section 7 that the element δ acts invertibly on M1, and M2, and

therefore M1 and M2 can be considered as modules for Hδ =Rδ[W ]. Since

the inclusion H ⊂ Hδ is flat, generalities from homological algebra imply

that

ExtiH(M1,M2)∼=ExtiHδ
(M1,M2).

Given the inclusion of the twisted group rings R[W ] ⊂ Rδ[W ], let M ′
1

(resp., M ′
2) be the module M1 (resp., M2) restricted to R[W ]. Then we
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have

ExtiR[W ](M
′
1,M

′
2)

∼=ExtiRδ[W ](M1,M2).

The twisted group ring R[W ] is the group ring of A� Sn, where

A=
{
(k1, . . . , kn) ∈ Z

n
∣∣∣∑ki = 0

}
,

on which there is the natural action of the symmetric group Sn. The modules

M ′
1 and M ′

2 can therefore be considered as irreducible representations (say,

M ′′
1 ,M

′′
2 ) of A� Sn, and we have

ExtiR[W ](M
′
1,M

′
2)

∼=ExtiA�Sn
(M ′′

1 ,M
′′
2 ).

Thus, we are led to a question about extensions between representations

of a group, which in this case is A� Sn. Such questions are well known to

be related to the cohomology of groups, using which we will eventually be

able to prove that

ExtiA�Sn
(M ′′

1 ,M
′′
2 )

∼=ExtiA�Z/n(χ1, χ2),

where Z/n is the cyclic group generated by the n-cycle (1,2, . . . , n) in Sn and

where χ1, χ2 are characters of A�Z/n which extend the character φ : (k1,

. . . , kn) �→ ωk1ω2k2 · · ·ωnkn of A with the property that

M ′′
1 = IndA�Sn

A�Z/nχ1,

M ′′
2 = IndA�Sn

A�Z/nχ2.

The existence of the characters χ1, χ2 with the above properties is a sim-

ple consequence of Clifford theory since the character of A being considered

has stabilizer Z/n generated by the n-cycle (1,2, . . . , n) in Sn.

Thus, our calculations made in Section 6 for the totally ramified case

become available, proving Theorem 2. To carry out this outline, we begin

with some simple generalities.

Lemma 8.1. Let G be a group, and let V be a C[G]-module. Assume that

there is an element z of the center of G which operates by a scalar λz �= 1

on V . Then H i(G,V ) = 0 for all i≥ 0.

Proof. The proof of this well-known lemma depends on the observation

that there is a natural action of G on H i(G,V ) in which g ∈G acts on G

by conjugation and which on coefficients V acts by v → g−1v. This action

of G on H i(G,V ) is known to be the identity (see [21, Proposition 3]). On

the other hand, the element z in the center of G operates on H i(G,V ) by

λ−1
z �= 1, proving the lemma.
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Using this, we have the following.

Proposition 8.2. Let A be a finitely generated free abelian group on

which Z/n operates. Let H = A � Z/n. Then for an irreducible finite-

dimensional complex representation V of H, H i(H,V ) = 0 unless A acts

trivially on V .

Proof. Note that by Clifford theory, the representation V is obtained as

induction of a character χ of a subgroup H ′ of H containing A; that is,

V = IndHH′ χ. By Shapiro’s lemma, H i(H,V ) =H i(H ′, χ). The proof is then
clear by using Lemma 8.1 (applied to G=A, an abelian group!) combined

with Lemma 6.2.

We come now to the main proposition needed for our work. Let

A=
{
(k1, . . . , kn) ∈ Z

n
∣∣∣∑ki = 0

}
,

on which there is the natural action of the symmetric group Sn which con-

tains the n-cycle (1,2, . . . , n), so the group Z/n generated by this cycle

too operates on A. This allows one to construct groups H = A�Z/n and

H̃ =A� Sn. Let

φ : (k1, . . . , kn) �→ ωk1ω2k2 · · ·ωnkn

be the character of order n of A as before; as noted earlier, the character φ

of A is invariant under the cyclic permutation action of Z/n on A.

Proposition 8.3. Let χ1 and χ2 be any two extensions of the character φ

of A to characters of H =A�Z/n. Call M1 (resp., M2) the representation

of H̃ =A� Sn, obtained by inducing the characters χ1, χ2 of H. Then

Exti
H̃
(M1,M2)∼=ExtiH(χ1, χ2).

Proof. We recall the generality that

Exti
H̃
(M1,M2)∼=H i(H̃,M∨

1 ⊗M2).

Since Mj = IndH̃H χj (for j = 1,2), we have

M∨
1 ⊗M2

∼= IndH̃H(χ−1
1 ⊗M2|H).

By Shapiro’s lemma, it follows that

H i(H̃,M∨
1 ⊗M2) =H i(H,χ−1

1 ⊗M2|H).
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Since the stabilizer of the character φ of A is the group H =A�Z/n, the

restriction of the representation M2 to A consists of all distinct conjugates

of the character φ under the symmetric group Sn (with Z/n as the isotropy

of φ).

Thus, the part of the representation χ−1
1 ⊗M2|H of H on which A acts

trivially is nothing but the 1-dimensional representation χ−1
1 χ2 of H . By

Proposition 8.2, it follows that

H i(H,χ−1
1 ⊗M2|H) =H i(H,χ−1

1 χ2).

Again noting the generality

ExtiH(χ1, χ2)∼=H i(H,χ−1
1 χ2),

the proposition is proved.

§9. A question of compatibility

Theorem 2 has been stated after fixing an arbitrary base point, called π1,

among the irreducible components of the principal series representation

Ps(1, ω, . . . , ωn−1), which gives rise to a parameterization of all compo-

nents as (π1)
〈e〉 = πe for e ∈ k×/ker(ω) by inner-conjugation action of k× on

SLn(k). In contrast, the Hecke algebras, eventually identified to the group

algebra of A � Z/n in the ramified case and of A � Sn in the unramified

case, give rise to their own parameterizations. The question arises of how

we relate these two very different looking parameterizations.

Recall that a character of A determines an unramified principal series

representation of SLn(k). Each such character is contained in an irreducible

representation of A � Z/n. When the character of A has n distinct con-

jugates under the action of Z/n, one constructs this latter representation

via induction to A� Z/n, and there are no choices to be made: the char-

acter of A uniquely determines the irreducible representation of A � Z/n

to which it belongs. However, in our case, the character of A is invariant

under the action of Z/n, so it extends in n distinct ways to A�Z/n. These

extended characters of A�Z/n are permuted transitively by multiplication

by characters of Z/n since Z/n is a quotient of A�Z/n.

The following proposition answers the question of compatibility. We let

G= SLn(k) below.

Proposition 9.1. For e ∈ k×/ker(ω), the map χ �→ χ(e) establishes an

identification of the character group of {1, ω, . . . , ωn−1} = Z/n with k×/
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ker(ω). Fix an irreducible summand π1 of the principal series representation

Ps(1, ω, . . . , ωn−1) of SLn(k). For ω a ramified character, the corresponding

character of the Hecke algebra H(G,ρ) corresponds to a character—call it

χ0—of A� Z/n. Then the representation of H(G,ρ) corresponding to the

character χ0 · χ of A�Z/n is the same as the one corresponding to πe(χ).

In the unramified case, if π1 corresponds to IndA�Sn

A�Z/n(χ0), then πe(χ) corre-

sponds to IndA�Sn

A�Z/n(χ0 · χ).

The proof of this proposition depends on the following simple lemma,

whose proof is omitted.

Lemma 9.2. Let C be a finite cyclic group of order n, and let ω be a

character C →C
×. Then ω extends to a character ω̃ : Z[C]→C

× by sending

an element c of C to ω(c). The restriction of ω̃ to the augmentation ideal

Z[C]0 is invariant under the translation action of C on Z[C]0. Thus, it

extends to a character, say, ω̃0, of Z[C]0 �C. Since Z[C]0 �C is a normal

subgroup of Z[C]�C, there is an action of [Z[C]�C]/[Z[C]0 �C] = Z on

Z[C]0�C and hence on its character group. Under this action, the element

d ∈ Z takes ω̃0 to ω̃0 · ωd, where ωd is a character of C thought of as a

character of Z[C]�C.

Proof of Proposition 9.1. In both the ramified and unramified cases, we

will embed our Hecke algebraH(G,ρ) for SLn(k) into a similar Hecke algebra

for GLn(k).

In the case where ω is totally ramified, the type (K,ρ) for SLn(k) has a

natural variant for GLn(k) with the type (k× ·K,ρ′), where ρ′ is the exten-

sion of the representation ρ of K to k× ·K by using the central character

of the principal series representation π on k×.
In the case where ω is unramified, consider the chain of groups SLn(k)⊂

k× · SLn(k) ⊂ GLn(k) and the corresponding Iwahori subgroups I ⊂ O× ·
I ⊂ Ĩ. We can embed the Iwahori algebra H(I) of SLn(k) into the analogous

algebra H(k× · SLn(k)//O× · I). We will then compare this latter Hecke

algebra with the Iwahori-Hecke algebra H(Ĩ) of GLn(k).

Recall that instead of considering H(I) we are considering H(I)δ,
obtained by inverting an element δ of its center, which can be related to the

group algebra of A� Sn. A similar assertion for GLn(k) allows one to turn

questions on Hecke algebras for GLn(k) to one on the affine Weyl groups

for GLn(k).
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The affine Weyl groups for k× · SLn(k) and GLn(k), parameterizing the

double coset spaces

I\
(
k× · SLn(k)

)
/O× · I and Ĩ\GLn(k)/Ĩ,

respectively, can be identified with

(A+ΔZ)� Sn and Z
n
� Sn,

respectively, where ΔZ denotes the image of Z under the diagonal embed-

ding Δ: Z−→ Z
n. Consider the short exact sequence

(†) 0−→ (A+ΔZ)� Sn −→ Z
n
� Sn −→ Z/n−→ 0,

with the natural map from Z
n
�Sn to Z being the sum of coordinates on Z

n.

Thus, there is a natural action of Zn
�Sn on A�Sn via inner conjugation,

hence on irreducible representations of A�Sn by inner conjugation, giving

rise to an action of Z/n on irreducible representations of A� Sn.

The proof of the proposition in the unramified case now follows from

Lemma 9.2, applied to the exact sequence

0−→ (A+ΔZ)�Z/n−→ Z
n
�Z/n−→ Z/n−→ 0,

which is the restriction of the exact sequence (†) to the subgroup Z/n

inside Sn. We leave the details, as well as the case of ramified character,

to the reader. We only add that in the ramified case one identifies the

Hecke algebra for GLn(k) for the type (k× ·K,ρ′) mentioned earlier in the

section to the group algebra of Zn�Z/n such that the previous short exact

sequence applies and, together with Lemma 9.2, gives the proof of the propo-

sition.
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