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Abstract

In this paper, a generalisation of the Dunkl–Williams inequality is established for strongly integrable
functions with values in a Banach space. Some applications are also presented.
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1. Introduction and preliminaries

The well-known Dunkl–Williams inequality [4] states that for any two nonzero
elements x, y in a normed linear space∥∥∥∥∥ x

‖x‖
−

y
‖y‖

∥∥∥∥∥ ≤ 4‖x − y‖
‖x‖ + ‖y‖

. (1.1)

Over the years, various refinements of (1.1) have been obtained (see, for example,
[1, 2, 7, 8, 11]). In [10], the authors considered the case of equality in some
generalisations of the Dunkl–Williams inequality for elements of a pre-Hilbert C∗-
module. Recently, Pec̆aric̆ et al. [9] presented the following general Dunkl–Williams
inequality for an arbitrary number of finitely many nonzero elements of a normed
linear space: ∥∥∥∥∥ n∑

j=1

x j

‖x j‖

∥∥∥∥∥ ≤ min
1≤i≤n

{ 1
‖xi‖

(∥∥∥∥∥ n∑
j=1

x j

∥∥∥∥∥ +

n∑
j=1

| ‖x j‖ − ‖xi‖ |

)}
, (1.2)

∥∥∥∥∥ n∑
j=1

x j

‖x j‖

∥∥∥∥∥ ≥ max
1≤i≤n

{ 1
‖xi‖

(∥∥∥∥∥ n∑
j=1

x j

∥∥∥∥∥ − n∑
j=1

| ‖x j‖ − ‖xi‖ |

)}
. (1.3)

They also considered conditions for equality in (1.2) and (1.3) to hold in strictly
convex normed linear space. In [9], the authors showed that these inequalities imply

c© 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 $16.00

298

https://doi.org/10.1017/S0004972712000883 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000883


[2] Dunkl–Williams inequalities for integrable functions 299

the following refinements of the generalised triangle inequalities obtained by Kato
et al. in [6]:

n∑
j=1

‖x j‖ ≥

∥∥∥∥∥ n∑
j=1

x j

∥∥∥∥∥ +

(
n −

∥∥∥∥∥ n∑
j=1

x j

‖x j‖

∥∥∥∥∥) min
1≤ j≤n
{‖x j‖}, (1.4)

n∑
j=1

‖x j‖ ≤

∥∥∥∥∥ n∑
j=1

x j

∥∥∥∥∥ +

(
n −

∥∥∥∥∥ n∑
j=1

x j

‖x j‖

∥∥∥∥∥) max
1≤ j≤n
{‖x j‖}. (1.5)

Recently, continuous versions of (1.4) and (1.5) have been obtained by Hsu et al.
in [5]:∫

Ω

a(t)‖ f (t)‖ dµ ≥
∥∥∥∥∥∫

Ω

a(t) f (t) dµ
∥∥∥∥∥ +

(
‖a‖1 −

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥) ess inf(‖ f (·)‖),

(1.6)∫
Ω

a(t)‖ f (t)‖ dµ ≤
∥∥∥∥∥∫

Ω

a(t) f (t) dµ
∥∥∥∥∥ +

(
‖a‖1 −

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥) ess sup(‖ f (·)‖),

(1.7)

where f (respectively, a) is assumed to be an almost everywhere nonzero (respectively,
positive) integrable X-valued (respectively, real-valued) function on a measure space
(Ω, µ) with positive measure µ. Obviously, (1.4) (respectively, (1.5)) is a special case
of (1.6) (respectively, (1.7)).

Motivated by the results established in [5] (see also [3]), and also by the connection
between the Dunkl–Williams inequality and the triangle inequality shown by some
authors, in this paper we shall discuss continuous versions of the generalised Dunkl–
Williams inequality in Banach space. We also investigate some applications to infinite
series.

2. Dunkl–Williams inequalities for integrable functions

T 2.1. Let X be a Banach space, (Ω, µ) be a measure space with positive
measure µ, and a(·) be an essentially bounded positive integrable function on Ω. If
a function f ∈ L1(Ω, X) is such that f (t) , 0 almost everywhere in Ω, then for any
fixed t1, t2 ∈Ω, the following inequalities hold:∥∥∥∥∥∫

Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥ ≤ 1
‖ f (t1)‖

(∥∥∥∥∥∫
Ω

a(t) f (t) dµ
∥∥∥∥∥ +

∫
Ω

| ‖ f (t)‖ − ‖ f (t1)‖ |a(t) dµ
)
, (2.1)∥∥∥∥∥∫

Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥ ≥ 1
‖ f (t2)‖

(∥∥∥∥∥∫
Ω

a(t) f (t) dµ
∥∥∥∥∥ − ∫

Ω

| ‖ f (t)‖ − ‖ f (t2)‖ |a(t) dµ
)
. (2.2)

P. Obviously, if ‖ f (·)‖ is constant almost everywhere in Ω, then both
inequalities (2.1) and (2.2) hold with equality. Therefore, we may assume this is not
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the case. For (2.1), let us fix any t1 ∈Ω such that f (t1) , 0. Then we compute:∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥ =

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t1)‖

dµ −
∫

Ω

a(t) f (t)
‖ f (t1)‖

dµ +

∫
Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥

=

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t1)‖

dµ +

∫
Ω

( 1
‖ f (t)‖

−
1

‖ f (t1)‖

)
a(t) f (t) dµ

∥∥∥∥∥
≤

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t1)‖

dµ
∥∥∥∥∥ +

∥∥∥∥∥∫
Ω

( 1
‖ f (t)‖

−
1

‖ f (t1)‖

)
a(t) f (t) dµ

∥∥∥∥∥
≤

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t1)‖

dµ
∥∥∥∥∥ +

∫
Ω

∣∣∣∣∣ 1
‖ f (t)‖

−
1

‖ f (t1)‖

∣∣∣∣∣a(t)‖ f (t)‖ dµ

=
1

‖ f (t1)‖

(∥∥∥∥∥∫
Ω

a(t) f (t) dµ
∥∥∥∥∥ +

∫
Ω

a(t)| ‖ f (t)‖ − ‖ f (t1)‖ | dµ
)
.

This proves (2.1).
In order to obtain (2.2), we proceed in a similar way for a fixed t2 ∈Ω such that

f (t2) , 0:∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥ =

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t2)‖

dµ −
∫

Ω

a(t) f (t)
‖ f (t2)‖

dµ +

∫
Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥

=

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t2)‖

dµ −
∫

Ω

( 1
‖ f (t2)‖

−
1
‖ f (t)‖

)
a(t) f (t) dµ

∥∥∥∥∥
≥

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t2)‖

dµ
∥∥∥∥∥ − ∥∥∥∥∥∫

Ω

( 1
‖ f (t2)‖

−
1
‖ f (t)‖

)
a(t) f (t) dµ

∥∥∥∥∥
≥

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t2)‖

dµ
∥∥∥∥∥ − ∫

Ω

∣∣∣∣∣ 1
‖ f (t)‖

−
1

‖ f (t2)‖

∣∣∣∣∣a(t)‖ f (t)‖ dµ

=
1

‖ f (t2)‖

(∥∥∥∥∥∫
Ω

a(t) f (t) dµ
∥∥∥∥∥ − ∫

Ω

| ‖ f (t)‖ − ‖ f (t2)‖ |a(t) dµ
)
.

Having obtained (2.2), the proof is complete. �

R 2.2. The inequalities (1.6) and (1.7) established in [5] can be obtained as a
particular case of the results established in Theorem 2.1. We show this as the following
corollary.

C 2.3. Let X be a Banach space, (Ω, µ) be a measure space with positive
measure µ, and a(·) be an essentially bounded positive integrable function on Ω. If
a function f ∈ L1(Ω, X) is such that f (t) , 0 almost everywhere in Ω, then (1.6) and
(1.7) hold.

P. To obtain these results, we follow the proof of [5, Theorem 2.1], but make
some modifications. Inequality (1.6) is obvious for the case ess inf(‖ f (·)‖) = 0. For
the case ess inf(‖ f (·)‖) > 0, take any t1, t2 ∈Ω and redefine f (t1) and f (t2) as ‖ f (t1)‖ :=
ess sup(‖ f (·)‖) (respectively, ‖ f (t2)‖ := ess inf(‖ f (·)‖)). Then, using (2.1) (respectively,
(2.2)) from Theorem 2.1, we obtain (1.6) (respectively, (1.7)). We omit the details. �
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R 2.4. Actually, (1.6) and (1.7) are equivalent to (2.1) and (2.2) with ‖ f (t1)‖ :=
ess sup(‖ f (·)‖) and ‖ f (t2)‖ := ess inf(‖ f (·)‖). But there may be other choices of f (t1)
and f (t2) which give better estimations for (1.6) and (1.7). In this sense, (2.1) and (2.2)
give better estimations than (1.6) and (1.7) obtained by Hsu et al. in [5]. We illustrate
this fact in the following example (see [5, Example 2.2]).

E 2.5. Let a(t) ≡ 1 and let f ∈ L1([−1, 1], R2) be defined by f (t) = (t, −1) for
t ∈ [−1, 0] and f (t) = (t, 1 + t) for t ∈ (0, 1]. Then ‖ f (t)‖1 = 1 − t for t ∈ [−1, 0] and
‖ f (t)‖1 = 1 + 2t for t ∈ (0, 1], and so inf(‖ f (t)‖1) = 1 and sup(‖ f (t)‖1) = 3.

If we take t1 = t2 = −1, then an elementary calculation shows that (2.1) and (2.2)
give − 1

4 < 0.1633 < 3
4 .

However, for (2.1), let ‖ f (t1)‖ = sup(‖ f (t)‖1) = 3; for (2.2), let ‖ f (t2)‖ =

inf(‖ f (t)‖1) = 1. Then

1 × ( 1
2 −

3
2 )(= − 1) < 0.1633 < 1

3 × ( 1
2 + 5

2 )(=1).

So we can choose some t1, t2 ∈ [−1, 1] such that the results (2.1) and (2.2) give
better estimates than those in (1.6) and (1.7). Hence, Theorem 2.1 is more meaningful.

3. Attaining equality in a strictly convex Banach space

In what follows we shall consider the attaining of equality for each of our
inequalities in a strictly convex Banach space. Proposition 2.3 of [5] is quite useful for
our subsequent discussions. In order to cite it conveniently, we list some results as the
following lemma.

L 3.1. Let X be a strictly convex Banach space and (Ω, µ) be a measure space
with positive measure µ, and let f ∈ L1(Ω, X) such that f (t) , 0 almost everywhere
in Ω. Then the following statements are equivalent:

(a) ‖
∫

Ω
f (t) dµ‖ =

∫
Ω
‖ f (t)‖ dµ;

(b) ‖
∫

Ω
|h(t)| f (t) dµ‖ =

∫
Ω
|h(t)| ‖ f (t)‖ dµ for some essentially bounded measurable

function h : (Ω, µ)→ (−∞,∞);
(c) f (t)/‖ f (t)‖ is a constant unit vector almost everywhere in Ω.

The following theorem gives conditions for equality in (2.1) to hold in a strictly
convex Banach space.

T 3.2. Let X be a strictly convex Banach space, (Ω, µ) be a measure space with
positive measure µ, and a(·) be an essentially bounded positive integrable function
on Ω. If a function f ∈ L1(Ω, X) is such that f (t) , 0 almost everywhere in Ω, then, for
any fixed t1 ∈Ω,∥∥∥∥∥∫

Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥ =

1
‖ f (t1)‖

(∥∥∥∥∥∫
Ω

a(t) f (t) dµ
∥∥∥∥∥ +

∫
Ω

| ‖ f (t)‖ − ‖ f (t1)‖ |a(t) dµ
)

(3.1)
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if and only if one of the following two conditions holds:

(a) ‖ f (t)‖ is constant almost everywhere in Ω;
(b) f (t)/‖ f (t)‖ is a constant unit vector almost everywhere in Ω.

P. We first note that, according to (2.1) in the proof of Theorem 2.1, (3.1) holds if
and only if the following two conditions are satisfied:∥∥∥∥∥∫

Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥ =

∥∥∥∥∥∫
Ω

a(t) f (t)
‖ f (t1)‖

dµ
∥∥∥∥∥ +

∥∥∥∥∥∫
Ω

( 1
‖ f (t)‖

−
1

‖ f (t1)‖

)
a(t) f (t) dµ

∥∥∥∥∥, (3.2)

and ∥∥∥∥∥∫
Ω

( 1
‖ f (t)‖

−
1

‖ f (t1)‖

)
a(t) f (t) dµ

∥∥∥∥∥ =

∫
Ω

∣∣∣∣∣ 1
‖ f (t)‖

−
1

‖ f (t1)‖

∣∣∣∣∣a(t)‖ f (t)‖ dµ. (3.3)

Let (3.1) hold true and assume that the assertion (a) is not the case. Then, by (3.3) and
Lemma 3.1, we can prove that f (t)/‖ f (t)‖ is a constant unit vector almost everywhere
in Ω.

Conversely, if ‖ f (t)‖ is constant almost everywhere in Ω, then (3.1) holds trivially.
So we assume that this is not the case. Therefore, we assume case (b). Note that (3.1)
is equivalent to (3.2) and (3.3). Thus, in order to prove (3.1), we must show that (3.2)
and (3.3) hold. Since f (t)/‖ f (t)‖ is a constant unit vector almost everywhere in Ω, then
by Lemma 3.1, noting that X is strictly convex, conditions (3.2) and (3.3) are clearly
satisfied. This completes the proof. �

The next theorem gives conditions for equality in (2.2) to hold in a strictly convex
normed linear space. The proof is similar to that of Theorem 3.2, and we omit it.

T 3.3. Let X be a a strictly convex Banach space, (Ω, µ) be a measure space
with positive measure µ, and a(·) be an essentially bounded positive integrable function
on Ω. If a function f ∈ L1(Ω, X) is such that f (t) , 0 almost everywhere in Ω, then, for
any fixed t2 ∈Ω,∥∥∥∥∥∫

Ω

a(t) f (t)
‖ f (t)‖

dµ
∥∥∥∥∥ =

1
‖ f (t2)‖

(∥∥∥∥∥∫
Ω

a(t) f (t) dµ
∥∥∥∥∥ − ∫

Ω

a(t)| ‖ f (t)‖ − ‖ f (t2)‖ | dµ
)

if and only if one of the following two conditions holds:

(a) ‖ f (t)‖ is constant almost everywhere in Ω;
(b) f (t)/‖ f (t)‖ is a constant unit vector almost everywhere in Ω.

4. Application to infinite series

For discrete versions of the results in Section 2, by letting Ω = N, µ(n) := 1 and
a(n) := an for n ∈ N in Theorem 2.1, we can obtain results about the generalised
Dunkl–Williams inequality and its reverse for infinite series as the following theorem.
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T 4.1. Let {an} be a sequence of nonnegative numbers such that
∑∞

n=1 an <∞.
Then, for any sequence {xn} of nonzero elements in a normed linear space X such
that

∑∞
n=1 an‖xn‖ <∞,∥∥∥∥∥ ∞∑

j=1

a j
x j

‖x j‖

∥∥∥∥∥ ≤ inf
i

{ 1
‖xi‖

(∥∥∥∥∥ ∞∑
j=1

a jx j

∥∥∥∥∥ +

∞∑
j=1

a j| ‖x j‖ − ‖xi‖ |

)}
,

∥∥∥∥∥ ∞∑
j=1

a j
x j

‖x j‖

∥∥∥∥∥ ≥ sup
i

{ 1
‖xi‖

(∥∥∥∥∥ ∞∑
j=1

a jx j

∥∥∥∥∥ − ∞∑
j=1

a j| ‖x j‖ − ‖xi‖ |

)}
.
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