Short Article

The Use of Mercury against Pediculosis in the Renaissance: The Case of Ferdinand II of Aragon, King of Naples, 1467–96

GINO FORNACIARI, SILVIA MARINOZZI, VALENTINA GAZZANIGA, VALENTINA GIUFFRA, MALAYKA SAMANTHA PICCHI, MARIO GIUSIANI, and MASSIMO MASETTI*

Abstract: The hair samples of Ferdinand II of Aragon (1467–1496), King of Naples, whose mummy is preserved in the Basilica of San Domenico Maggiore in Naples, showed a high content of mercury, with a value of 827ppm. Furthermore, examination using a stereomicroscope and a scanning electron microscope (SEM) of head and pubic hairs of Ferdinand II, revealed a lice infestation. The reasons for the massive presence of the mercury in the king’s hair are discussed and contemporary literature regarding the use of this metal in medical therapies and in cosmetic practices is analysed. As a result, the high value of mercury in the hair of Ferdinand II can be attributed to antipediculosis therapy, applied as a topic medicament. This case represents an important finding for the history of medicine, because demonstrates that in the Renaissance mercury was applied locally not only to treat syphilis, as well attested by direct and indirect sources, but also to prevent or eliminate lice infestation.

Keywords: Mercurial Therapy; Lice; Naples; Renaissance; Ferdinand II of Aragon
Introduction

The Basilica of San Domenico Maggiore, dating back to the beginning of the fourteenth century, is one of the largest and most important churches in Naples. An overhanging chamber overlooking the monumental sacristy houses a total of thirty-eight wooden sarcophagi containing the artificial or natural mummies of ten Aragonese princes and other Neapolitan noblemen, who died between the fifteenth and sixteenth centuries.1

Ferdinand II (1467–96, Figure 1) also known as ‘Ferrandino’, ‘little Ferdinand’, was the eldest son of Alfonso II of Naples and Ippolita Maria Sforza of Calabria. In 1494, his father placed him at the head of an army against Charles VIII, King of France, but he was defeated in 1495. In the same year he ascended the throne and, after a military campaign which led to the victory against the French, he re-conquered almost all the kingdom of Naples. He then married his aunt, Giovanna of Aragon, half-sister of his father Alfonso and daughter of Ferdinand I and his second wife Giovanna of Aragon. He died of malignant tertian malaria on 7 October 1496, only a few months after his marriage.2

The mummy of Ferdinand II was badly preserved in part. The soft tissues were present at the level of the trunk, whereas the head and limbs were completely skeletonised. Strands of hair and pubic hairs still present on the mummy were sampled and then submitted to a specific procedure aimed at checking the concentration of mercury. Heavy metals, in general, and mercury in particular, tend to accumulate in the hair system and therefore the presence of these elements in the hair of the king could prove exposure to this metal. Two different techniques were used: Atomic Absorption Spectroscopy (AAS)3 and, at a later stage, Flame Emission Spectrophotometry (FES) using the hydride method to determine the exact concentration of mercury in any samples that had previously given positive results.4 Both types of hair were then carefully examined by means of a stereomicroscope to detect the presence of parasites.

Findings

Investigation gave a positive result for mercury in the hair, which was 827ppm. The presence of mercury also in the liquid used to wash the hair confirms the likelihood of external application of the metal. Further toxicological analyses were carried out to verify the eventual presence of mercury even on the skin, on the spongy material that filled the body cavities and on the pubic hairs; the results showed very low values, of 18ppm,
7ppm and 10ppm respectively. The careful macroscopic and radiological examination showed no traces of mercury in the cranial or body cavities of Ferdinand’s mummy.

Examination of Ferdinand’s hair samples with a stereomicroscope revealed the presence of the terminal part of the adult leg of a head louse (Figure 2a), the terminal part of two adult abdomens, belonging to male lice (Figure 2b), seven incomplete nits attached to a hair, and another five nit fragments, not cemented to a hair. Similar tests performed on the pubic hairs revealed the presence of two hairs each bearing the fragment of a louse nit (Figure 2c). Morphologically, it is not possible to distinguish nits observed on head hairs from those on pubic hairs.

Three species of lice infest humans: Pediculus capitis, or head louse, Pediculus humanus, the louse found on clothes or on the body, and Pthirus pubis, the pubic or crab louse. All three species belong to the order of the Anoplura, the Pediculidae family, and are distributed worldwide. The three species are responsible for pediculosis, the

6 They are wingless and dorsoventrally flattened insects with short antennae and poorly developed eyes. The three strong pairs of legs terminate with a spine and a claw that allow anchoring to the hairs or clothing of the host. The head louse and the body louse measure about 3mm in length and are morphologically so similar to each other, that still today some authors consider them as subspecies of *P. humanus*, while others prefer to see them as two
most common symptom of which is intense itching. There is no evidence that *P. capitis* and *P. pubis* are vectors of important diseases, whereas *P. humanus* is a natural vector of trench fever, louse-borne epidemic typhus and relapsing fever.⁷

On the basis of the morphology and distribution of insect fragments associated with Ferdinand’s remains, it is possible to infer that the king was affected by a double infestation of lice belonging to the species of *P. capitis* and *P. pubis*. This case is of particular interest because, although archaeological findings show that pediculosis has afflicted humans since the most ancient times and that lice were distributed worldwide,⁸ this is the first time these parasites have been found in the hair of a king, demonstrating that even the wealthy social classes were subjected to lice infestation.

Use of Mercury in Mediaeval and Renaissance Medicine

Fundamental to earlier interpretation of the nature of the louse is the biological thinking of Aristotle, who claimed that some animals could be generated spontaneously from putrid or rotten matter in other animals.⁹ Lice, for example, develop and reproduce through an excess of humidity in the brain, which is wet by nature. Galen of Pergamum (129–c.216) identified the subcutaneous region as the place of development of lice, which generate through the extreme heat produced by warm excess humidity, and suggested that desiccant drugs, including nitre and alum, could counteract the excess of wet and hot vapours.¹⁰ Oribasius (325–403) advocated a topical application of nitre, stavesacre, sandarac and cedar in salt water and/or vinegar, because desiccant and evacuative drugs are necessary to destroy the lice that develop from an excess of humours and insufficiency of heat.¹¹

This Galenic theory, which explained both the spontaneous generation of lice and the development of dandruff and other skin complaints, formed the basis for the treatment of pediculosis and similar conditions from Antiquity onwards. On the one hand, various procedures were recommended to the patient, such as an appropriate diet, bathing, change of clothing and phlebotomy to eliminate excessive moisture and hot vapours from the body. On the other, topical drugs and ointments were to be applied externally. Although individual elements in the prescription might change—some preferring rose oil, liquid pitch, egg white, wormwood, orpiment, pyrethrum or soap among the ingre-
Texts contemporary with Ferdinand show clearly that mercury was also frequently employed in cosmetic recipes: quicksilver and sublimate were included in the composition of products used to whiten the skin, or to remove erythema, blotches and freckles from the face, and to treat putrid ulcers and sores, warts, pocks, etc. Like cinnabar, it was included among darkening substances called ‘browning’, but its use as a hair dye is unlikely, as Ferdinand was only twenty-nine years old when he died and probably had no white hair to mask.

Another possible use of mercury at this period is as an antiputrefactive balm that, although not attested in the literature, is evidenced by palaeopathological findings. The mummies of Antonio of Aragon (1540–84), third Duke of Montalto, and that of the son of Antonio Carafa, a child of six months who died in 1607 and who was buried with other members of the dynasty in the Basilica of San Domenico Maggiore in Naples, bear direct witness to the use of mercury for embalming at the Aragonese court. The metal was used in such high quantities that during the unwrapping operations and the autopsy performed by Professor Gino Fornaciari, little drops of metallic mercury poured out of the body cavities of these two mummies. Under radiological examination mercury was visible as little rounded formations of radio-opaque density.

However, no traces of mercury were found in the cranial or body cavities of Ferdinand’s mummy, as revealed by macroscopic and radiological examination. These findings are confirmed by the toxicological analysis, which revealed very low values of mercury in the skin samples and in the sponge used as filling material in the body cavities. These results demonstrate that the high quantities of metal detected in the hair are not to be referred to the embalming method.

Mercury is also known to have been used since the end of the fifteenth century for antisyphilitic therapy, the treatment of ulcers and luetic swellings, in ointments to smear the body or in fumigations mostly based on cinnabar. However, the concentration of mercury found in the king’s hair is much too high for it to be ascribed to antiluetic treatments, and suggests rather a topical usage instead.16

Conclusion

The massive presence of mercury in the hair of Ferdinand II cannot be explained by the use of quicksilver for artificial embalming of the corpse, considering that no trace of the metal was found in the mummy except in the hair. The possibility that cinnabar was employed for aesthetic purposes in hair dyes and waters for darkening the hair seems improbable, considering the young age of the king. Moreover, the indications for the treatment of other pathologies, such as *tinea* and *scabies*, prescribe a topical use of mercurial remedies on the cutaneous lesion alone, whereas traces of mercury have been found in all the hair analysed. It thus seems more reasonable to attribute the high value of mercury to the employment of solutions and ointments against lice. This hypothesis is supported by the remains of lice in Ferdinand’s hair, and is confirmed by the numerous medical prescriptions related to anti-pediculosis therapy provided by mediaeval and early modern authors. The low value of mercury in the pubic hairs, which showed lice infestation as well as the head, demonstrate that this region received no anti-pediculosis treatment. These results seem to be confirmed by the literary sources, which do not mention the application of local dermatological therapies to the pubis.

This is an interesting case from an historical point of view, because it is the first time a direct attestation of topical mercury treatment to prevent or eliminate lice infestation has been found in an ancient body.

Acknowledgement

We wish to thank Simone Gabrielli at the Department of Biology, University of Pisa, Italy, for his technical assistance.
