
J. Fluid Mech. (2021), vol. 915, A59, doi:10.1017/jfm.2021.11

Mesoscopic models for electrohydrodynamic
interactions of polyelectrolytes
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Two mean-field models for polyelectrolytes in simultaneous electric field and
pressure-driven flow field were developed and compared. The models predict migration
perpendicular to the anti-parallel or parallel fields, where the migration is caused
by electrohydrodynamic interactions calculated using either a short- or long-range
approximation. Inputs for the mean-field models were determined from Brownian
dynamics simulations in a simple shear flow. Both models qualitatively reproduce
experimental observations of DNA focusing as reported in previous publications.
Specifically, it is observed that combination of the shear and electric fields leads to
polyelectrolyte motion in the direction transverse to the flow and electric field direction,
which in turn leads to concentration of the polyelectrolyte in the centre of a microfluidic
channel. Furthermore, both models predict that there is an optimal strength of electric
field that leads to the narrowest distribution profile of the polyelectrolyte in the centre
of the channel. The analysis suggests that this is due to dispersion induced by the
electrohydrodynamic interactions. However, quantitative disagreement between the model
predictions and the experimental data indicates that further progress in the model
development is needed.
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1. Introduction

Parallel application of a pressure-driven flow and electric field can drive a net migration
of long DNA strands to the walls of a capillary, and reversing the relative directions of the
flow and electric field causes the DNA strands to migrate towards the centre of the capillary
(Zheng & Yeung 2002, 2003; Arca, Butler & Ladd 2015). This transverse migration has
been used to trap and concentrate DNA within a microfluidic chip of simple design, and
evidence suggests that the process can separate DNA from other macromolecules and
particulates (Arca, Ladd & Butler 2016; Montes, Butler & Ladd 2019a; Valley et al. 2020).
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Figure 1. (a) Applying an electric field E anti-parallel to a pressure-driven flow (blue) causes an initially
uniform distribution of DNA, which is negatively charged, to lead the flow (red) and migrate towards the centre
of the channel (grey field). The width of the concentration profile (green) is characterized by the standard
deviation σ(x) corresponding to the concentration profile C( y|x) at position x. (b) Dependence of widths σ∞ =
σ(x → ∞) of the developed concentration profiles of DNA molecules in a microfluidic channel on the electric
field E obtained in the experiments of Arca et al. (2015) for several mean shear rates γ̄ and Debye lengths λD.
The normalization for the axes was chosen to collapse the data onto a single curve.

The transverse migration of DNA strands has been attributed to intramolecular
velocity disturbances caused by the electric field acting on the charged backbone of the
polyelectrolyte and its surrounding counterion cloud (Butler et al. 2007; Usta, Butler
& Ladd 2007; Kekre, Butler & Ladd 2010b; Pandey & Underhill 2015; Ladd 2018).
These electrohydrodynamic interactions are commonly ignored when calculating the
electrophoretic motion of DNA and other polyelectrolytes. However, these interactions
can alter the motion if the electric double layer is large in comparison with the backbone
cross-section and the DNA molecule is distorted from its equilibrium (roughly spherical)
configuration. In the case of migration during a pressure-driven flow, hydrodynamic
forces stretch the DNA molecule within the extensional quadrants of the local shear flow.
Then, the electric field and resulting electrohydrodynamic interactions induce additional
components of motion, including one transverse to the flow and field direction. When a
flexible polyelectrolyte leads a pressure-driven flow upon application of an axial electric
field, the transverse motion is towards the centre of the channel, as illustrated in figure 1(a);
upon reversing the electric field direction, the same polyelectrolyte will lag the flow and
move towards the bounding walls.

Two different approximations for electrohydrodynamic interactions have been employed
to calculate the centre-of-mass distribution of bead–spring models of polyelectrolytes.
The long-range model (Butler et al. 2007; Kekre et al. 2010b) treats each bead as a
uniformly distributed collection of point charges, where each point charge is surrounded
by counterions. The velocity disturbances caused by the electric field acting on the point
charges and counterions within each bead are calculated using the algebraically decaying
terms in the Green’s function, while ignoring the exponentially decaying terms (Allison
& Stigter 2000; Long & Ajdari 2001). The net velocity disturbance from each bead is
summed pairwise over all other beads of the polymer, but velocity disturbances within the
beads are ignored.

The other model assumes that the electrohydrodynamic interactions are localized to
individual Kuhn steps (Liao et al. 2010; Pandey & Underhill 2015; Ladd 2018). This
short-range approximation uses the electrophoretic mobility of rigid rods (Chen & Koch
1996) to represent the motion of each Kuhn step. Rigid rods can move perpendicular to
the electric field if the Debye length is sufficiently large and the rods are aligned at an
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Electrohydrodynamic interactions of polyelectrolytes

angle with respect to the electric field. The mobility tensor relating the electric field to the
motion of each bead of the polymer is obtained by averaging over the mobilities of the
rods composing it. Like the long-range model, transverse motions to the flow and field are
predicted only if the polyelectrolyte is distorted from its equilibrium configuration and if
the electric double layer is sufficiently large with respect to the polymer backbone size.

The proposed mechanism of electrohydrodynamic migration has been validated, at
least qualitatively, against experimental observations of DNA migration. For example,
experiments (Arca et al. 2015; Montes, Ladd & Butler 2019b) demonstrated that
migration can be eliminated by increasing the buffer salt concentration, which reduces the
double-layer thickness and screens the electrohydrodynamic interactions. Some alternative
mechanisms were also investigated by Montes et al. (2019b) and were found to be
inadequate to explain the observed migration. Additionally, experiments with anti-parallel
fields (Arca et al. 2015) indicate that DNA initially focuses more strongly in the centre
of the channel with increasing electric field, but focusing diminishes once a critical
electric field is surpassed (see figure 1b). Brownian dynamics simulations using the
long-range approximation predicted this increase and subsequent decline of concentration
upon increasing the electric field (Kekre et al. 2010b). Simulations using the short-range
approximation (Pandey & Underhill 2015) also predict an increase in concentration for
weak fields, and more recent analysis (Setaro & Underhill 2019) also suggests that the
concentration declines as the electric field increases beyond a critical value.

Quantitative differences between the models and the experimental results are evident
from previous studies (Kekre et al. 2010b; Pandey & Underhill 2015; Ladd 2018), but
assessing the relative merits of the short- and long-range approximations is difficult due to
the different parameters used. Here we report a mean-field model for a polyelectrolyte
in a pressure-driven flow and an electric field which causes the polyelectrolyte to
lead the flow, and hence migrate towards the centre of the channel. The model is a
convection–diffusion equation with diffusion tensor and convective velocities obtained
from Brownian dynamics simulations in a simple shear flow, and the mean-field model
is also validated using Brownian dynamics simulations in parabolic flows. Mean-field
models with the short-range and long-range approximations of the electrohydrodynamic
interactions were considered.

Comparing the results with the experiments of Arca et al. (2015) provides a number
of conclusions regarding the models. Among them, predicting the observed migration
requires setting the Debye length to a value much larger than in the experiments for the
long-range model, as previously determined (Ladd 2018). The short-range model predicts
significant migration even when the Debye length is comparable to that in the experiments,
but the electric field at which focusing diminishes is much larger than measured in
experiments. Also, analysis demonstrates that dispersion caused by the coupling of
fluctuations of the polymer configuration and electric field causes the maximum in the
extent of migration. Furthermore, the experimentally observed scaling of the width σ∞
of the developed concentration profile with the mean shear rate γ̄ (σ∞ ∝ γ̄ −1/2; see
figure 1b) is explained. These results and conclusions are discussed in §§ 3–5, following
presentation of the relevant theoretical background and numerical methods in § 2.

2. Theoretical background and model development

2.1. Model
We consider a DNA molecule in an ambient flow field u∞(r) and a uniform electric
field E. The molecule is modelled as a chain of N beads with coordinates r1, r2, . . . , rN
connected by N − 1 springs. The dynamics of the DNA beads is described by the Langevin
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equation:

dri

dt
= u∞(ri) +

N∑
j=1

μH
ij · (F C

j + F B
j ) + μE

0 E + vE
i . (2.1)

Here, F C
i and F B

i are the conservative and Brownian forces acting on bead i,
μH

ij is the mobility tensor which includes hydrodynamic interactions, μE
0 is the

electrophoretic mobility in the absence of shear and vE
i is the velocity disturbance due

to electrohydrodynamic interactions.
The conservative force includes the spring force F S

i , the bead–bead repulsion force F R
i

and the bead–wall repulsion force F W
i :

F C
i = F S

i + F R
i + F W

i . (2.2)

The springs connecting the beads represent freely jointed chains of NK Kuhn steps
of length lK , with the tension approximated by the finitely extensible nonlinear elastic
(FENE) force (Warner 1972):

F S
i = −

∑
j

κrij

1 − (rij/r0)2 . (2.3)

Here, the summation is performed over beads j = i ± 1 connected to bead i, rij = ri − rj
is the vector connecting beads j and i, rij is the magnitude of rij, κ = 3kBT/lKr0 is the
spring constant, kB is the Boltzmann constant, T is the temperature and r0 = NKlK is the
maximum spring extension.

Excluded volume between beads is enforced using a repulsive force with potential
(Kekre, Butler & Ladd 2010a)

ΦR(rij) = A exp(−βr2
ij), (2.4)

where parameters A and β specify the force magnitude and range. Simulations of polymers
in pressure-driven flows also include a repulsive force to prevent polymer beads from
passing through the channel walls. The potential energy of interaction between each bead
i and the bounding walls is

ΦW(dij) = 2A exp(−β(dij − a)2), (2.5)

where a is the bead radius and dij is the distance between the bead centre and wall j.
Brownian forces acting on the polymer beads satisfy the fluctuation–dissipation

theorem:

〈F B(t)〉 = 0,

〈F B(t)F B(t + τ)〉 = 2kBT(μH)−1δ(τ ),

}
(2.6)

where F B = (F B
1 , F B

2 , . . . , F B
N) is the 3N-dimensional vector containing Brownian forces

acting on all of the beads, μH is the 3N × 3N grand mobility tensor and δ is the Dirac
delta function.
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The Rotne–Prager tensor is used to describe the hydrodynamic interactions between
individual beads (Rotne & Prager 1969):

μH
ij (rij) = 1

ζ

{
I, i = j,
C1(rij)I + C2(rij)r̂ijr̂ij, i /= j, (2.7)

where ζ = 6πηa is the drag coefficient, η is the fluid viscosity, r̂ij = rij/rij is the unit
vector pointing from bead j to bead i and

C1(rij) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3a
4rij

+ a3

2r3
ij
, rij ≥ 2a,

1 − 9rij

32a
, rij < 2a,

C2(rij) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3a
4rij

− 3a3

2r3
ij
, rij ≥ 2a,

3rij

32a
, rij < 2a.

(2.8a,b)

Hydrodynamic interactions between beads and walls were neglected. Kekre et al.
(2010b) demonstrated that these interactions have a negligible effect on the developed
concentration profile for the case studied here, where the channel dimension is much larger
than the polyelectrolyte and the polyelectrolyte migrates towards the centre of the channel.

2.2. Models of electrohydrodynamic interaction
Two alternative approaches to modelling electrohydrodynamic interactions (vE

i ) were
investigated. The long-range model (Butler et al. 2007; Kekre et al. 2010b) assumes that
each bead of the polymer model represents a blob of uniformly distributed charges and
utilizes the Green’s function for the velocity field caused by an electric field acting on
a point charge and its surrounding counterion cloud (Allison & Stigter 2000; Long &
Ajdari 2001). The short-range model (Liao et al. 2010; Pandey & Underhill 2015; Ladd
2018) approximates electrohydrodynamic mobilities of each polymer bead by averaging
the mobilities of Kuhn steps comprising the bead. The motion due to the electric field of
each Kuhn step is approximated as that of a charged rigid rod (Chen & Koch 1996) and
electrohydrodynamic interactions between the Kuhn steps are neglected.

As shown in appendix A, the velocity vE
i of each bead i can be written as

vE
i = Em

∑
j /= i

μ̂E
m,ij(rij)A(r̂ij) · Ê, (2.9)

where the subscript m indicates the model (m = L for long-range model and m = S for
short-range model) and Ê = E/E is the unit vector parallel to the electric field. The
parameter Em characterizes the strength of the electrohydrodynamic interactions, while
μ̂E

m,ij(r) describes the dependence of the electrohydrodynamic interactions between beads
i and j on the distance r between them. The tensor

A(r̂ij) = 3r̂ijr̂ij − I (2.10)

is zero on average when the distribution of beads is isotropic, i.e. 〈r̂ijr̂ij〉 = I/3. This
condition is met in the absence of shear, and on average the electrohydrodynamic
interactions between different beads cancel out. Consequently no net migration occurs
perpendicular to the electric field in this case, as expected.
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For the long-range model, the summation in (2.9) is performed over all j /= i, and the
model-dependent parameters in the equations are given by

μ̂E
L,ij(r) =

{
r−3, r ≥ 2a,

0, r < 2a (2.11)

and

EL = 3aλ2
DQE

2ζ
. (2.12)

Here, Q is the charge of a bead and λD is the Debye length. For the short-range model,
the summation on the right-hand side of (2.9) is performed only over beads j = i ± 1
connected to bead i. The parameters in this case are given by

μ̂E
S,i,i±1(r) = 2

Ns(i)
(r/r0)

2

3 − (r/r0)2 , (2.13a)

where

Ns(i) =
{

1, i = 1 or i = N,

2, otherwise, (2.13b)

and

ES = 1 − αμ

1 + 2αμ

μE
0 E. (2.14)

Here, Ns(i) is the number of springs connected to the ith bead and αμ = μ
E,rod
⊥ /μ

E,rod
‖

is the ratio of the Kuhn step (rod) mobility in the directions perpendicular and parallel to
the rod axis. The value of αμ varies between 1/2 and 1, depending on the Debye length
λD. According to the slender-body model for a cylinder (Chen & Koch 1996), αμ ≈ 1/2
for the range of λD considered in the experiment of Arca et al. (2015) (d < λD < lK ,
where d is the diameter of the rod). For a thin double layer (λD � d), the model for
an infinitely long cylinder (Ohshima 1996) yields αμ ≈ 1 and ES = 0. No net migration
occurs perpendicular to the electric field in this limit.

2.3. Model parameters
Here, λ-DNA molecules are modelled by a chain consisting of 20 beads to facilitate
comparison with experiments. Each subchain connecting neighbouring beads corresponds
to NK = 10 Kuhn steps of length lK = 106 nm each. The corresponding bead charge
obtained from the Manning condensation model (Manning 1969) is Q = 1493.6e.
Throughout this work, parameter values are normalized using the characteristic length b =√

kBT/κ = lK
√

NK/3 = 193.5 nm, characteristic time tc = ζ/κ = 0.0122 s, characteristic
energy kBT and elementary charge e. With this choice of characteristic values, the
dimensionless values of the spring constant κ and the drag coefficient ζ both equal one.
Dimensionless values of other model parameters that are kept constant throughout this
work are summarized in table 1. These values match those used by Kekre et al. (2010a,b),
with the exception of the electrophoretic mobility μE

0 . The value of μE
0 = 120.7 measured

in experiments (Montes 2018) for a buffer with an estimated Debye length λD = 0.03
was used (see § S1 of the supplementary material available at https://doi.org/10.1017/jfm.
2021.11).

Additional parameters that characterize the strength of the electrohydrodynamic
interactions, such as the Debye length λD for the long-range model and the ratio αμ for the
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Electrohydrodynamic interactions of polyelectrolytes

Parameter Value

Number of beads N = 20
Hydrodynamic radius of a bead a = 0.36
Maximum extension of the FENE spring r0 = 5.0
Magnitude of excluded volume interactions (2.4), (2.5) A = 2.7
Parameter of excluded volume potential (2.4), (2.5) β = 1.8
Electrophoretic mobility of DNA μE

0 = 120.7
Bead charge Q = 1493.6

Table 1. Dimensionless values of the parameters of the λ-DNA model that are kept constant throughout this
work.

short-range model, are absorbed into the parameters EL and ES, respectively. These latter
parameters are varied systematically in the computations.

It should be noted that the parameters EL and ES corresponding to the same electric
field strength E differ by three orders of magnitude for typical experimental conditions,
αμ ≈ 1/2, λD = O(10−2). For these conditions, (2.12) and (2.14) yield

EL

ES
≈ 6aλ2

DQ

μE
0

= O(10−3). (2.15)

2.4. Brownian dynamics simulations
Simulations of the Langevin equation (2.1) were performed using the Brownian dynamics
method (Ermak & McCammon 1978). Three different flow fields u∞(r) were investigated,
namely pressure-driven flows in two different geometries and a simple shear flow. In all
simulations, the flow and electric field were directed along the x axis, which causes the
polyelectrolyte to lead the flow since μE

0 > 0. As a result, transverse migration occurs
from regions of high flow rate to regions of low flow rate.

Initial configurations of the bead positions were sampled from simulations in the
absence of a flow and electric field, where these equilibrium simulations were long
compared to the correlation time of 42 for the end-to-end vector (see § S2 of the
supplementary material). Time steps between 10−4 and 10−3 were used, depending on
the shear rate and the strength of the electric field, with stronger rates and fields requiring
smaller time steps. The step-size selection was validated by confirming that the structural
and transport properties of polymers were consistent with those obtained with simulations
using smaller step sizes.

The considered pressure-driven flows were flows between parallel plates separated by
a distance H (referred to as the two-dimensional or 2-D flow) and through a channel of
cross-section H × H (referred to as the three-dimensional or 3-D flow). The dimension
of H = 413 was chosen to match the experiments of Arca et al. (2015), and the flow is
characterized by the mean shear rate γ̄ = 2v0/H, where v0 is the centreline flow velocity.
For flows through a square cross-section, u∞(r) was determined numerically using a
finite-difference solution of the Stokes equation for a unidirectional flow and u∞(ri) for
each bead was obtained by the bilinear interpolation of the numerically obtained velocity
values stored on a square grid.

For each set of conditions (flow and electric fields, geometry), a total of 104 bead–spring
chains were initially distributed at the entry (x = 0) and simulated for a channel length
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sufficient to attain a fully developed concentration profile. Concentration profiles C(ρ|x)
at various positions x along the channel were computed (ρ represents the transversal
coordinates of the polymer centre of mass, ρ = y for 2-D flows and ρ = ( y, z) for 3-D
flows). The width of the concentration profile in the 2-D channel is characterized by the
standard deviation σ(x) corresponding to the concentration profile C( y|x) at position x.
To obtain the width of the concentration profile in the 3-D channel, the concentration
C( y, z|x) was first averaged in the depth (z direction) to obtain a 2-D profile Cav( y|x).
This was followed by computing the standard deviation σ(x) of Cav( y|x). This approach
was chosen over a more straightforward calculation of the standard deviation of the 3-D
concentration profile C( y, z|x) to mimic experimental measurements of Arca et al. (2015).

For simple shear flow, at least 2000 trajectories were simulated for each set of parameter
values (shear rate and electric field). Each trajectory was simulated for a duration of 5000,
but only data for times greater that 500 were used in the analysis. The mean polymer
velocity V c was obtained by fitting the ensemble average of the polymer displacement
from its initial equilibrated position to a straight line, 〈Rc(t)〉 = V ct. The diffusion tensor
was obtained from deviations ξ c(t) ≡ Rc(t) − V ct of individual trajectories from the mean
trajectory by fitting each of the components of the mean-squared displacement tensor
〈ξ c(t)ξ c(t)〉 to a straight line. Both 〈Rc(t)〉 and 〈ξ c(t)ξ c(t)〉 increase linearly in time (see
§ S3.1 of the supplementary material), and consequently the motion of the polymer centre
of mass can be modelled by a Langevin equation, as described next.

2.5. Mean-field model
Results from Brownian dynamics simulations of polyelectrolytes in simple shear flows
were used to develop a mean-field model for the polymer distribution in more complex
geometries. The model assumes that motion of the polymer centre of mass Rc can be
described by the following Langevin equation:

Ṙc(t) = u∞(Rc) + μE
0 E + V c + Γ c(t), (2.16)

where V c is the mean contribution of the electrohydrodynamic interactions to the velocity
of the centre of mass and Γ c is the effective random force acting on the centre of mass.
Here Γ c contains contributions from the Brownian force and the fluctuating component of
the electrohydrodynamic interactions caused by fluctuations of the polymer configuration.
The random force Γ c has a zero mean and covariance

〈Γ c(t)Γ c(t + τ)〉 = 2Dδ(τ ), (2.17)

where D is the effective diffusion tensor.
Therefore, the polymer concentration C(r) is expected to obey a convection–diffusion

equation with position-dependent drift velocity and diffusivity:

∂C
∂t

= ∇ · [D∇ − (u∞ + μE
0 E + V c)]C. (2.18)

In a simple shear flow, statistics of the polymer configuration are independent of the
polymer position and, hence, V c and D are constant. In a more complex flow geometry,
V c and D are position-dependent, with their value determined by the local shear γ (r).
The model (2.18) is valid if the memory effects can be neglected, i.e. the polymer
instantly acquires its diffusivity and velocity corresponding to the local environment. This
assumption holds since the response time of the polymer to changes in the environment is
much smaller than the time it takes the polymer to move from one streamline to another.
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This is verified by the Brownian dynamics simulations discussed in § 3 and the time-scale
analysis presented in § S4.3.1 of the supplementary material.

The mean-field model is applied to pressure-driven unidirectional flows in the same 2-D
and 3-D geometries as those considered in the Brownian dynamics simulations. In these
systems, the local shear rate γ (r) depends only on the transverse coordinates ρ and is
independent of the position x along the channel length. Hence, the local drift velocity and
diffusivity are also independent of x. Moreover, transport in the x direction is dominated
by the convective and electrophoretic velocities and the diffusivity in the x direction can
be neglected (see § S4.3.2 of the supplementary material). Assuming furthermore that the
system is at steady state, (2.18) can be approximated as

(u∞
x (ρ) + μE

0 E + Vc,x(ρ))
∂C(x, ρ)

∂x
= LρC(x, ρ), (2.19)

where

Lρ = ∇ρ · (Dρ∇ρ − V c,ρ) (2.20)

is the convection–diffusion operator in the transverse directions. The diffusion tensor Dρ

and the mean velocity V c,ρ in (2.20) contain only the elements corresponding to the
transverse motion, i.e. for the 2-D flows, V c,ρ = Vc,y, Dρ = Dyy and for the 3-D flows,

V c,ρ =
[

Vc,y
Vc,z

]
, Dρ =

[
Dyy Dyz
Dyz Dzz

]
. (2.21a,b)

The values of V c and D were obtained from a series of Brownian dynamics simulations
in a simple shear flow, which yield dependence of V c and D on γ . To utilize these
quantities in the mean-field model for a pressure-driven flow, the local shear γ (ρ) in the
flow is computed and spline interpolation of V c(γ ) and D(γ ) is performed to obtain their
values corresponding to γ (ρ). This yields velocities and diffusivities in a local system of
coordinates xηζ with the η and ζ axes pointing in the directions of (0, ∂yu∞

x , ∂zu∞
x ) and

(0, −∂zu∞
x , ∂yu∞

x ), respectively. The tensor D and the vector V c are then rotated to obtain
the diffusivity and the velocity in the directions of x, y and z.

Equation (2.19) was solved numerically using a finite-difference approximation for the
operator Lρ and the Runge–Kutta method for integration in the x direction. In addition,
the developed profiles (corresponding to ∂C/∂x = 0) were obtained directly by solving
(2.19) with zero left-hand side. In the 2-D channel, this equation is solved analytically
(see appendix B). In the 3-D channel, the developed profiles were obtained by numerically
computing the eigenfunction corresponding to the zero eigenvalue of the operator Lρ .

3. Results

Results of Brownian dynamics simulations in a simple shear flow are presented in
§§ 3.1 and 3.2, with comparisons between the long-range and short-range models for
the electrohydrodynamic interactions. Then, results for pressure-driven flows are given
in § 3.3, which include results of Brownian dynamics simulations and mean-field
calculations. The shear rate is reported in terms of the Peclet number, i.e. dimensionless
γ . Note that the Weissenberg number is given by 12γ (see § S2 of the supplementary
material).
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Figure 2. Mean transverse velocity Vc,y in simple shear flows with rate γ . The results were obtained from
Brownian dynamics simulations using (a) long-range and (b) short-range models for the electrohydrodynamic
interactions. The velocities are normalized by the strength of the electric field Em to facilitate discussion of the
effects of Em on Vc,y.

3.1. Mean velocity in simple shear flow
Dependence of the transverse velocity Vc,y(γ, Em) of the polymer centre of mass in
the simple shear flow on the shear rate γ is shown in figure 2 for several values
of the electric field strength Em. Drift in the transverse direction is caused solely by
electrohydrodynamic interactions. At zero shear rate, the polymer shape is nearly isotropic
and the electrohydrodynamic interactions between polymer beads cancel out (see the
discussion following (2.10)). Hence, Vc,y(γ = 0; Em) = 0 for all Em. Application of shear
stretches and tilts the polymer with respect to the field direction, resulting in a non-zero
electrohydrodynamic velocity Vc,y in the transverse direction.

The long- and short-range electrohydrodynamic models predict qualitatively different
dependence of Vc,y on γ . The long-range model yields a non-monotonic dependence of
Vc,y on γ (see figure 2a): Vc,y increases with γ for sufficiently small γ and decreases with
further increase of γ , where both the maximum value and shear rate at which it occurs are
functions of EL. In contrast, the short-range model predicts a monotonic increase of Vc,y
with γ (see figure 2b).

The qualitative differences observed in figure 2 cannot be attributed to changes in
the structural properties of the polymer arising from the choice of electrohydrodynamic
model. As shown in figure 3, the electrohydrodynamic model alters the structure
quantitatively, but not qualitatively. Instead, the differences in Vc,y arise from the
dependencies of the electrohydrodynamic interactions on polymer stretching. As the
polymer end-to-end distance increases in response to larger shear rates (see figure 3a,b),
the magnitude of the electrohydrodynamic interactions can decrease or increase depending
on which model is used.

Within the long-range model, μ̂E
L,ij(r) decreases as the distance r between beads

increases (see (2.11)). This is consistent with the behaviour of Vc,y obtained with the
long-range model at high shear rates. The behaviour of Vc,y at low shear rates is explained
by the effect of the bond direction on electrohydrodynamic interactions. It follows from
(2.9) and (2.10) that the velocity in the y direction induced by an electric field applied
in the x direction is proportional to r̂xr̂y, where r̂ is the normalized vector connecting
pairs of polymer beads. On average, r̂xr̂y can be characterized by the normalized
covariance between the x and y components of the end-to-end vector R of the polymer,
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Figure 3. Structural properties of the polymer in a simple shear flow obtained from Brownian dynamics
simulations. The root-mean-squared end-to-end distance 〈R2〉1/2 is shown for the (a) long- and (b) short-range
electrohydrodynamic models. The normalized covariance Σxy = 〈RxRy〉/〈R2〉 of the x and y components of the
end-to-end vector R are also shown for the (c) long- and (d) short-range models. Data are shown as a function
of shear rate γ and electric field Em.

Σxy = 〈RxRy〉/〈R2〉. This covariance, shown in figure 3(c,d), exhibits a non-monotonic
dependence on γ . Therefore, at low shear rates, the decreasing trend of μ̂E

L,ij(r) competes
with a very rapid increase of Σxy. Thus, Vc,y obtained with the long-range model increases
with γ at low shear rates.

Within the short-range model, μ̂E
S,i,i±1(r) increases as the distance r between beads

increases (see (2.13a)), which is consistent with the observed dependence of Vc,y on the
shear rate (see figure 2b). At large γ , there is a competition between decreasing Σxy and
increasing μ̂E

S,i,i±1(r). For the range of γ considered in the current work, the increase of
μ̂E

S,i,i±1(r) is more substantial than the decrease of Σxy and, hence, the magnitude of Vc,y
grows with γ . The theoretical prediction of Ladd (2018) (which neglected the effect of the
electrohydrodynamic interactions on the polymer configuration) shows that Vc,y eventually
reaches a maximum at large γ . However, this maximum is observed at a very high shear
rate (γ > 4 in the current normalization), which is well beyond the values considered in
the current simulations and the experiments of Arca et al. (2015). Moreover, this maximum
is very weak, i.e. the rate of decrease of Vc,y beyond this maximum is very small.

Figure 2 indicates that the transverse velocity depends on the field strength Em as well as
the shear rate. Since the magnitude of the instantaneous electrohydrodynamic velocity vE

i
of a bead is directly proportional to Em, it is expected that Vc,y is also proportional to Em.
This is indeed the case for the short-range model, as evident from figure 2(b). However,
this is not always the case for the long-range model. The discrepancy is caused by changes
in the polymer configuration induced by the electric field. For example, figure 3 shows
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Figure 4. Power-law exponents p and q for the empirical relationships (3.1) and (3.2) describing the effect
of the strength of the electric field Em on the velocity Vc,y and the diffusivity Dyy in the transverse direction
predicted by the long-range (LR) and short-range (SR) electrohydrodynamic models.

that the root-mean-squared end-to-end distance 〈R2〉1/2 and the normalized covariance
Σxy of the end-to-end vector are affected by Em. Although the electric field also affects
the polymer shape in the short-range model, its effect on Vc,y is not as significant as in the
long-range model. Despite the deviation from the linear dependence of Vc,y on Em in the
long-range model, Vc,y can be approximated by a power-law dependence on Em:

Vc,y(γ, Em) = V̂c,y(γ )Ep(γ )
m (3.1)

(see figure S4 in the supplementary material), with the exponent p(γ ) close to one.
Dependence of the power-law exponent p(γ ) on the shear rate is shown in figure 4.

In addition to the qualitative difference in the mean drift velocities Vc,y, the long- and
short-range models yield a substantial quantitative difference. Since the magnitudes of the
parameters EL and ES corresponding to the same electric field strength E differ by three
orders of magnitude for typical experimental conditions (see (2.15)) and the magnitudes
of the normalized velocities Vc,y/Em (m = L or S) predicted by both electrohydrodynamic
models are comparable (see figure 2), the values of velocities predicted by the long-range
model are substantially smaller than those predicted by the short-range model at the same
electric field and Debye length. To achieve the same transverse velocity at the same electric
field in the long- and short-range models, it is necessary to increase the Debye length in
the long-range model. This finding matches that of Ladd (2018).

3.2. Diffusivity in simple shear flow
The polymer diffusivity is also sensitive to Em, as shown in figure 5. This is explained
by dispersion effects of electrohydrodynamic interactions: as the polymer configuration
fluctuates, so do the electrohydrodynamic interactions between its beads. Therefore, in
addition to the regular Brownian force due to thermal collisions between the polymer
and the solvent, the random force acting on the polymer contains a contribution from
the fluctuating component of electrohydrodynamic interactions. More specifically, the
dynamics of internal degrees of freedom of the polymer contribute to translation of
the polymer centre of mass. It is shown in § S3.3 of the supplementary material that the
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Figure 5. Contribution of electrohydrodynamic dispersion to polymer diffusivity in the y direction in the
simple shear flow obtained from Brownian dynamics simulations using (a) long-range and (b) short-range
models. The dashed lines show fits of the data to the empirical relationship (3.2).

electrohydrodynamic dispersion is dominated by fast fluctuations of individual polymer
beads. Contribution of slow fluctuations of the molecule as a whole (e.g. tumbling) is
negligible in comparison with the fast fluctuations.

Fluctuations of electrohydrodynamic velocity increase in magnitude as the electric field
becomes stronger. If the electric field were not to alter the polymer configuration, the
instantaneous electrohydrodynamic force would be proportional to the field strength Em

and, hence, the contribution of this force to the diffusivity would scale as E2
m. However,

as in the case with the mean drift velocity Vc,y, the polymer deformation caused by the
electric field alters the value of the exponent. Therefore, the diffusivity is approximated by
a more general expression:

Dyy(γ, Em) = DB
yy(γ ) + DE

yy(γ )Eq(γ )
m , (3.2)

where DB
yy(γ ) = Dyy(γ, 0) is the diffusivity due to the Brownian force and the second

term of (3.2) represents the electrohydrodynamic dispersion. The Brownian diffusivity is
obtained from simulations in the absence of an electric field and the characteristics of the
electrohydrodynamic dispersion, DE

yy and q, are obtained by fitting [Dyy(γ, Em) − DB
yy(γ )]

to a power law, as shown in figure 5. Dependence of the power-law exponent q(γ ) on the
shear rate γ is shown in figure 4. It is observed that q(γ ) > 1 for all considered shear rates
γ .

In addition to Vc,y and Dyy, the mean-field model for the 3-D pressure-driven flow
requires Dzz and Dyz. The component Dzz exhibits trends qualitatively similar to those of
Dyy (see figure S5 in the supplementary material), with the power-law exponents q within
the same range. The component Dyz is at least an order of magnitude smaller than Dyy
and Dzz (see figure S3 in the supplementary material) and is therefore neglected in the
mean-field analysis presented in § 3.3.

3.3. Pressure-driven flows
Brownian dynamics simulations of 2-D and 3-D pressure-driven flows were performed for
a mean shear rate γ̄ = 0.146, which corresponds to the largest used in the experiments of
Arca et al. (2015). Typical evolution of the concentration profile in the 2-D flow is shown
in figure 6. It is observed that the distribution of the polyelectrolyte narrows downstream
of the channel entrance at x = 0, where the distribution was uniform. The concentration
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Figure 6. Concentration profiles in a 2-D pressure-driven flow at various positions x along the channel
obtained by the Brownian dynamics simulations with uniform initial conditions. The results were generated
using the long-range model with EL = 9.41 and γ̄ = 0.146. Positions x ≥ 105 correspond to the fully developed
profile. The profiles are normalized so that

∫
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Figure 7. Dependence of widths σ of the concentration profiles on position x along the channel in 2-D
pressure-driven flows. The data were obtained by the Brownian dynamics simulations (solid lines) and the
mean-field model (dashed lines) at γ̄ = 0.146 using (a) long-range and (b) short-range approximations. The
inset in (b) shows a magnified area corresponding to developed profiles for ES = 6.15, 12.30 and 16.40.

profile eventually becomes independent of the position x along the channel, and this fully
developed concentration profile is independent of the initial conditions as shown in figures
S9–S11 in the supplementary material. Therefore, unless stated otherwise, we focus on
results obtained with the initial conditions determined from the experimental data (see
§ S4.1 in the supplementary material) which are not quite uniform at x = 0.

Evolution of the concentration profile width σ (see figure 1a for definition) along the
channel length is shown in figure 7 for 2-D flows; similar results were obtained for 3-D
flows, as shown in figure S12 in the supplementary material. Results, shown for a range
of electric fields with a fixed flow rate (mean shear), indicate that the distribution moves
towards its developed value more rapidly with increasing electric field.

To further facilitate analysis of pressure-driven flows, we utilize the mean-field model
described in § 2.5. One of the main assumptions of this model is that the polymer adjusts
to its local environment (determined by a local shear rate) much faster than it travels
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Figure 8. Widths (σ∞) of the developed profiles in 2-D and 3-D pressure-driven flows with mean shear rate
γ̄ = 0.146 in channels of width H = 413 obtained using the mean-field model for the long-range (LR) and
short-range (SR) approximations of the electrohydrodynamic interactions. The asterisks and crosses indicate
the approximate solutions (3.9) of the 2-D mean-field model.

in the transverse direction. This enables us to use the values of the velocity V c and
the diffusivity D determined from the Brownian dynamics simulations in simple shear
flows. This assumption is validated by an order-of-magnitude estimation of the relevant
time scales presented in § S4.3.1 of the supplementary material. In addition, the validity
of the mean-field model is confirmed by a direct comparison of its predictions with
the Brownian dynamics simulations. As shown in figure 7, results of the mean-field
model (shown by the dashed lines) and the Brownian dynamics (solid lines) are in
excellent agreement for the 2-D pressure-driven flow; the mean-field model accurately
predicts not only the developed profiles, but also the transient states. Similarly good
agreement between the mean-field model and the Brownian dynamics simulations is
observed for the 3-D pressure-driven flow (see figure S14 in the supplementary material).
In § S4.4 of the supplementary material we utilize the mean-field model to investigate
developing concentration profiles and assess effects of the electric field strength and
the mean shear rate on the entrance length required to reach a developed profile. In
the remainder of this section, we apply the mean-field model to analyse well-developed
profiles.

Figure 7 indicates that the width σ∞ (σ as x → ∞) of the fully developed profile is a
non-monotonic function of the electric field Em for both models of electrohydrodynamic
interactions. This non-monotonic dependence is shown more clearly in figure 8 using
data from the mean-field calculations. The difference between σ∞ in the 2-D and 3-D
flows is small, with the 3-D flow producing slightly wider concentration profiles than
the 2-D flow at the same Em and γ̄ . The similarity between the 2-D and 3-D flows is also
observed during the development stage of the profiles (see figure S12 in the supplementary
material). In particular, the rate of convergence towards a developed profile is almost the
same in 2-D and 3-D geometries at identical Em and γ̄ .

Since the 2-D and 3-D pressure-driven flows yield similar results, the remainder of this
paper focuses on analysis of the 2-D flow. The 2-D flow velocity profile and the local shear
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rate corresponding to the mean shear rate of γ̄ are

u∞
x ( y) = 2γ̄

H

[(
H
2

)2

− y2

]
(3.3)

and

γ ( y) = −4γ̄ y
H

, (3.4)

respectively (the system of coordinates is chosen so that y = 0 corresponds to the centre
of the channel). As shown in appendix B, the developed concentration profile in a 2-D
channel is

C( y; Em) ∝ exp
[∫ y

0
R(γ ( y′); Em) dy′

]
, (3.5)

where

R(γ ; Em) = Vc,y(γ ; Em)

Dyy(γ ; Em)
(3.6)

is the ratio of the transverse velocity and diffusivity.
The electrohydrodynamic drift vanishes in the absence of shear, Vc,y(γ = 0) = 0.

Therefore, to leading order,

R(γ ; Em) ≈ c(Em)γ (3.7)

for small γ . The function c depends only on the type of the electrohydrodynamic model
and the strength Em of the electric field. Substituting (3.4) and (3.7) into (3.5), we obtain

C( y; Em) ∝ exp
[∫ y

0
c(Em)γ ( y′) dy′

]
= exp

[
−2c(Em)γ̄

H
y2

]
. (3.8)

Hence, the developed concentration profile can be approximated by a Gaussian distribution
with the standard deviation

σ∞(γ̄ ; Em) = 1
2

[
H

c(Em)γ̄

]1/2

. (3.9)

As shown in figure 8, this approximation is in good agreement with the solution of
the full 2-D mean-field equation (B1) for most of the considered conditions. The only
exception is the profile at the lowest considered electric field strength (EL = 0.03) in the
long-range model. The discrepancy is caused by an inaccuracy of the linear approximation
(3.7) inside this wide profile: the local shear rate at distance σ∞(EL = 0.03) ≈ 80
from the channel centre is γ ≈ 0.1. It is clear from figure 9(a) that dependence of
R(γ ; EL ≤ 0.31) deviates from the linear behaviour for 0 ≤ γ ≤ 0.1, which explains the
discrepancy between the approximate and full solution of the mean-field model. Note that
the approximation (3.9) works much better for a concentration profile of comparable width
obtained with the short-range model (at ES = 0.21). This good agreement is due to the
fact that R(γ ; ES = 0.21) exhibits a linear dependence on γ for a wide range of γ (see
figure 9b).
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Figure 9. Ratio R = Vc,y/Dyy of the transverse velocity and diffusivity in a simple shear flow. The ratio R
was obtained from the Brownian dynamics simulations using (a) long-range and (b) short-range models.

4. Discussion

4.1. Dependence of the profile width on the mean shear rate
The approximate expression (3.9) for the developed profile width σ∞ indicates that
σ∞ ∝ γ̄ −1/2. This scaling is consistent with the experimental observations of Arca
et al. (2015) (see figure 1b). This scaling was also obtained analytically for a dumbbell
polyelectrolyte model with the long-range (Butler et al. 2007) and short-range (Setaro &
Underhill 2019) approximations of the electrohydrodynamic interactions. The current work
demonstrates that the scaling holds for more general multi-bead polymer models. Since the
approximation (3.9) is based on the leading-order term of the Taylor series expansion of
the ratio R = Vc,y/Dyy (see (3.7)), the scaling σ∞ ∝ γ̄ −1/2 does not depend on details of
the electrohydrodynamic model, as long as γ̄ is sufficiently small.

Furthermore, this scaling may hold even at a relatively large mean shear rate γ̄ , provided
that the ratio of the transverse velocity and diffusivity remains proportional to the shear
rate (3.7) within the fully developed flow. This condition is satisfied if the developed
concentration profile is sufficiently narrow (i.e. the polymers are concentrated in the
low-shear region) and/or the linear approximation (3.7) is valid for a wide range of γ .
Figure 9 indicates that the latter condition is satisfied for the short-range model, whereas
the long-range model exhibits a strongly nonlinear (non-monotonic) dependence of the
ratio R on γ . Therefore, it is expected that, within the short-range model, the γ̄ −1/2 scaling
of σ∞ holds even for wide concentration profiles and large shear rates. On the other hand,
the long-range model is expected to yield this scaling only for small shear rates and/or
sufficiently large electric field strength (since the latter produces a strong focusing of the
polyelectrolyte).

This is confirmed by figure 10, which shows σ∞(γ̄ ) obtained by solving the full
mean-field equation (B1) for the 2-D pressure-driven flow. For the short-range model,
the scaling σ∞ ∝ γ̄ −1/2 holds even for relatively wide concentration profiles (observed at
a low electric field strength). In contrast, in the long-range model, this scaling holds only
for relatively narrow concentration profiles. At a weak electric field, the long-range model
predicts the γ̄ −1/2 scaling only for very small γ̄ . However, at a moderate electric field
strength, the concentration profile is sufficiently narrow so that the γ̄ −1/2 scaling holds at
relatively large γ̄ even with the long-range model.
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γ̄
10–1 100

σ∞

101

102

∝ γ̄−1/2

EL = 0.16; LR model
EL = 1.19; LR model
ES = 0.21; SR model
ES = 1.58; SR model

Figure 10. Effect of the mean shear rate γ̄ on the width σ∞ of the developed concentration profile in a
2-D pressure-driven flow predicted by the mean-field model for the long-range (LR) and short-range (SR)
approximations of the electrohydrodynamic interactions. The dashed lines show results of a fit of σ∞(γ̄ ) to
σ0γ̄

−1/2 (σ0 is a constant).

4.2. Dependence of the profile width on the electric field strength
As shown in figure 8, both the long- and short-range models predict the existence of
an optimal field strength E∗

m leading to the narrowest concentration profile. This is in
qualitative agreement with experimental observations of Arca et al. (2015) (see figure 1b),
previous simulations of the long-range model (Kekre et al. 2010b) and analysis of the
short-range model for a dumbbell approximation to a polymer (Setaro & Underhill 2019).
Here, we explain the mechanism leading to existence of the optimal field strength.

Equation (3.9) indicates that the optimal field E∗
m corresponds to the maximum of

c(Em) = ∂R(γ ; Em)/∂γ |γ=0. Therefore, at small shear rates γ , E∗
m corresponds to the

maximum of the ratio R(γ ; Em) of the drift velocity and diffusivity in the transverse
direction. This maximum arises due to an interplay between the Brownian motion and
the electrohydrodynamic drift and dispersion. To see this, consider the inverse of R and
use the empirical relationships (3.1) and (3.2) for Vc,y and Dyy:

R−1(γ ; Em) = Dyy(γ ; Em)

Vc,y(γ ; Em)
= DB

yy(γ )

V̂c,y(γ )
E−p

m + DE
yy(γ )

V̂c,y(γ )
Eq−p

m . (4.1)

Since q > p > 0 (see figure 4), the first and second terms of (4.1) are monotonically
decreasing and increasing functions, respectively. Therefore, the sum of these functions
has a single minimum corresponding to the optimal electric field strength E∗

m, as illustrated
in figure 11. This result holds for both considered models because in both cases the
electrohydrodynamic velocity is approximately proportional to the electric field (p ≈ 1)
and the electrohydrodynamic dispersion scales as Eq

m with q > 1. These scalings are
expected to be quite general, since the mean and variance of the electrohydrodynamic
velocity are expected to be proportional to Em and E2

m, respectively. The discrepancy
between these expected scalings and those observed in the Brownian dynamics simulations
is due to polymer deformation caused by the electrohydrodynamic interactions.

Although σ∞(Em) predicted by both models is in qualitative agreement with the
experiment of Arca et al. (2015), there is a substantial quantitative difference between
the model predictions and the experimental data, as summarized in table 2. The values of
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ln
 R

−1
 (E

m
)

RB

RE

Em
∗

ln Em

Figure 11. Schematic of contributions of individual terms of (4.1) to R−1. The contributions of the Brownian
force (RB = (DB

yy/V̂c,y)E−p
m ) and the electrohydrodynamic dispersion (RE = (DE

yy/V̂c,y)Eq−p
m ) are shown by

the blue dashed and red dash-dotted lines, respectively. The solid black line is R−1 and the optimal electric
field E∗

m is shown by the filled circle. The dotted lines show the effect of increasing the magnitude of the
electrohydrodynamic dispersion relative to the electrohydrodynamic drift (the green and black dotted lines
show new RE and R−1, respectively, and the open circle shows new E∗

m).

λD E∗
exp αμ E∗

L E∗
S

0.019 0.14 0.52 4.3 0.43
0.120 0.02 0.55 0.1 0.48

Table 2. Comparison of the optimal electric fields obtained from experiment (Arca et al. 2015) and the
combination of the Brownian dynamics simulations with the mean-field analysis. Here E∗

exp, E∗
L and E∗

S denote
the optimal electric fields obtained, respectively, from the experiment and the analysis with the long- and
short-range models. The electric field is normalized by the characteristic electric field kBT/be = 1305 V cm−1.

the predicted optimal electric fields E∗
m (m = L and S) reported in this table are computed

from the optimal values of Em (E∗
L = 1.19 and E∗

S = 12.30) using (2.12) and (2.14) for the
Debye lengths λD used in the experiment. The ratio αμ of the parallel and perpendicular
components of the electrohydrodynamic rod mobility tensor (needed to compute E∗

S from
E∗

S ) is obtained using the slender body model (Chen & Koch 1996) approximating a single
Kuhn step as a cylinder of diameter 1 nm and length 106 nm.

Both considered models for electrohydrodynamic interactions overestimate the
magnitude of the optimal electric field E∗. Moreover, scaling of E∗ with λD suggested
by the experimental data (E∗ ∝ λ−1

D ) is different from that predicted by the models.
According to the long-range model, E∗ ∝ λ−2

D (see (2.12)) and the short-range model
predicts a very weak dependence of αμ on λD, with αμ varying between 0.5 and 0.6
for the range of experimental values of λD. Hence, according to the short-range model,
changing the Debye length should have a small effect on the optimal electric field E∗,
which contradicts the experimental results.
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In addition to overestimating the magnitude of the optimal electric field E∗
m, the

considered electrohydrodynamic interaction models underestimate the width σ∞(E∗
m) of

the narrowest concentration profile. Both models yield σ∞(E∗
m) ≈ 13 at γ̄ = 0.146 in

the 3-D channel (see figure 8), whereas the experimental value for these conditions is
σ∞(E∗

m) ≈ 20 (see figure 1). Therefore, to improve agreement with the experiment, an
improved model for electrohydrodynamic interactions should yield a smaller E∗

m and
a larger σ∞(E∗

m). As illustrated in figure 11, this can be accomplished by increasing
RE ≡ (DE

yy/V̂c,y)Eq−p
m , i.e. the magnitude of the electrohydrodynamic dispersion relative

to the magnitude of the electrohydrodynamic drift.

5. Conclusions

The Brownian dynamics simulations and the mean-field analysis performed in the
current study elucidated mechanisms of two electrohydrodynamic phenomena observed
in earlier experimental (Arca et al. 2015) and computational and analytical (Kekre et al.
2010b; Setaro & Underhill 2019) studies of pressure-driven flows of polyelectrolytes in
microfluidic channels. Specifically, the current work confirms and explains the scaling
of the width σ∞ of the fully developed concentration profile with the mean shear
rate γ̄ , σ∞ ∝ γ̄ −1/2. It is demonstrated that this scaling holds for both the long- and
short-range approximations of electrohydrodynamic interactions. However, the long-range
model produces the scaling only at small shear rates and/or sufficiently strong electric
fields, whereas the short-range model does not require these additional restrictions.

Furthermore, the current work explains the observed dependence of the profile width
σ∞ on the electric field E. Specifically, it is shown that the non-monotonic dependence
of σ∞ on E is caused by dispersion created by fluctuations of electrohydrodynamic
interactions within a polymer. The specific value of E∗ is determined by a balance
between the Brownian diffusion and the electrohydrodynamic drift and dispersion (see
figure 11). The optimal electric field E∗ is observed with both the short- and long-range
electrohydrodynamic models considered in the current work, in qualitative agreement with
the experiment. In addition, the mechanism is expected to be general and hold for any
future refinements of the electrohydrodynamic models.

That these refinements are necessary is indicated by the quantitative discrepancy
between the predicted and experimental values of E∗. Both the long- and short-range
models overestimate E∗ and underestimate the profile width σ∞(E∗) at this E∗. As
discussed in § 4.2, this indicates that these models underestimate the ratio of the
electrohydrodynamic dispersion and drift. An improved model should contain features
of both the long- and short-range models, i.e. it should contain electrohydrodynamic
interactions between different groups of a polymer (as in the long-range model) as well as
mobility of individual Kuhn steps of the polymer chain (as in the short-range model). This
model should also account for medium-range electrohydrodynamic interactions between
the Kuhn steps (Ladd 2018), which were neglected in the current work. Since each of
these factors contributes to electrohydrodynamic dispersion, a model combining them is
expected to yield a larger total dispersion. The medium-range model requires development
of an accurate model for electrohydrodynamic interactions between rods, which can be
accomplished by extending the slender body model of Chen & Koch (1996). The rod
interaction model can then be validated by experiments on electrophoresis of non-dilute
rigid segments of polyelectrolyte.

In addition, dispersion is expected to be sensitive to the number of beads in the
bead–spring model and one needs to select an appropriate level of discretization when
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approximating electrohydrodynamic interactions in the polymer. This, together with a
model combining long-, medium- and short-range interactions will be explored in future
work.
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Appendix A. Details of electrohydrodynamic models

This appendix reviews the derivation of the long- and short-range models, demonstrates
that both of these models can be written as (2.9) and obtains the expressions for parameters
Em and functions μ̂E

m,ij characterizing electrohydrodynamic interactions.

A.1. Long-range model
Within the framework of this model (Butler et al. 2007; Kekre et al. 2010b), each bead
of the polymer chain is assumed to be a sphere containing uniformly distributed point
charges. The electrohydrodynamic flow at the centre of mass of the ith bead generated
by charges contained in the jth bead is approximated by the leading term of a multi-pole
expansion:

vE
ij =

∫
|r−rj|≤a

ρQ(r)vE,point(r − ri) dr ≈ QvE,point(rj − ri). (A1)

Here, ρQ(r) is the charge density of the bead centred at r = rj, Q is the total charge of
the bead and vE,point(r) is the electrohydrodynamic flow field at point r generated by a
point charge of unit magnitude located at the origin and its surrounding counterion cloud
(Allison & Stigter 2000; Long & Ajdari 2001):

vE,point(r) = λ2
D

4πηr3 A(r̂)E. (A2)

Here, λD is the Debye length, r̂ = r/r and tensor A(r̂) is defined by (2.10). In writing
(A2), we neglected the exponentially decaying terms proportional to exp(−r/λD) because
the distance r between beads typically exceeds multiple Kuhn lengths lK = O(100 nm)

and, hence, is significantly larger than the Debye length λD ≤ O(10 nm). Furthermore,
electrohydrodynamic interactions between overlapping beads are neglected. Therefore, the
electrohydrodynamic velocity of the ith bead can be written as (2.9) with μ̂E

L,ij(r) and EL

given by (2.11) and (2.12), respectively.

A.2. Short-range model
This model (Liao et al. 2010; Pandey & Underhill 2015; Ladd 2018) represents a DNA
molecule as a chain of rigid rods (Kuhn steps) of length lK . Response of each of the rods
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to the electric field is described by the mobility tensor

μE,rod( p) = μ
E,rod
‖ pp + μ

E,rod
⊥ (I − pp), (A3)

where p is the rod director of unit length. This tensor contains contributions of both the
electrophoretic mobility and the electrohydrodynamic interactions.

The entire polymer chain is split into subchains of equal contour length. Each subchain
corresponds to a chain connecting neighbouring beads in the bead–spring model. The
mobility tensor μE,chain describing response of a subchain to an electric field is obtained
by averaging over orientations of rods comprising it. In the current work, we use the
Kirkwood–Riseman averaging (Kirkwood & Riseman 1948), which assumes that the
subchain mobility is the mean of mobilities of individual rods, i.e.

μE,chain = 〈μE,rod〉. (A4)

Assuming, furthermore, that the rods form a freely jointed chain, the mobility of a
subchain connecting beads i and j ( j = i ± 1) is (Ladd 2018)

μE,chain(rij) = μ
E,chain
‖ r̂ijr̂ij + μ

E,chain
⊥ (I − r̂ijr̂ij), (A5)

with

μ
E,chain
‖ (nij) = μ

E,rod
‖

(
1 − 2nij

L−1(nij)

)
+ 2μ

E,rod
⊥

nij

L−1(nij)
, (A6)

μ
E,chain
⊥ (nij) = μ

E,rod
‖

nij

L−1(nij)
+ μ

E,rod
⊥

(
1 − nij

L−1(nij)

)
. (A7)

Here, nij = rij/r0 and L−1(nij) is the inverse Langevin function representing the
normalized tension in the freely jointed chain. Rearranging (A5), (A6) and (A7), we obtain

μE,chain(rij) = μE
0 I + 1

3 (μ
E,rod
‖ − μ

E,rod
⊥ )μ̂E,chain(rij)A(r̂ij), (A8)

where μE
0 = (μ

E,rod
‖ + 2μ

E,rod
⊥ )/3 is the overall rod mobility, the tensor A(r̂ij) is defined

by (2.10) and

μ̂E,chain(rij) = 1 − 3nij

L−1(nij)
=

2n2
ij

3 − n2
ij
. (A9)

The second equality in (A9) is obtained using the Padé approximation (Cohen 1991) to
L−1:

L−1(n) = n
3 − n2

1 − n2 . (A10)

It is convenient to express the magnitude of electrohydrodynamic interactions in terms of
the ratio αμ = μ

E,rod
⊥ /μ

E,rod
‖ of the components of the rod mobility tensor:

1
3

(
μ

E,rod
‖ − μ

E,rod
⊥

)
= 1 − αμ

1 + 2αμ

μE
0 . (A11)

To implement the short-range model in the Brownian dynamics simulations of the
bead–spring model, it is necessary to convert the electrohydrodynamic mobility of a
subchain to that of a bead. Following Liao et al. (2010) and Pandey & Underhill (2015), the
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bead mobility is taken to be the average of mobilities of subchains adjacent to the bead. It
then follows that the electrohydrodynamic velocity of a bead within the short-range model
is given by (2.9) with the strength of electrohydrodynamic interactions characterized by
the function μ̂E

S,i,i±1 and the parameter ES given by (2.13a) and (2.14), respectively.
Equations (A8) and (A9) indicate that stretching a subchain increases its

electrohydrodynamic mobility and the mobility of a fully stretched subchain (nij = 1)
coincides with that of a single rod. The mobility of a partially stretched chain is smaller
than that of a fully stretched chain because of partial cancellation of mobilities of
non-parallel rods (contained within a partially stretched chain) during averaging. This
feature of the short-range model is expected to be independent of specific method of
averaging of μE,rod employed to obtain μE,chain.

In fact, earlier simulations employing the short-range model (Liao et al. 2010; Pandey &
Underhill 2015) utilized an alternative averaging method to obtain μE,chain. Specifically,
Zimm averaging (Zimm 1980) was performed. Within this approach, a subchain is
assumed to be a rigid object so that

μH,chainμE,chain = 〈μH,rodμE,rod〉, (A12)

where μH,chain and μH,rod are hydrodynamic friction tensors of a subchain and a rod,
respectively. It was shown by Ladd (2018) that the Zimm and Kirkwood–Riseman
approximations yield very similar numerical values for the subchain mobilities. Therefore,
it is expected that the specific choice of the averaging approximation does not have a
significant effect on simulation results. Furthermore, the Zimm averaging performed by
Pandey & Underhill (2015) assumed that the rod hydrodynamic friction tensor μH,rod

is isotropic. With this choice, μH,chain = μH,rod and Zimm averaging reduces to the
Kirkwood–Riseman averaging. Therefore, the model employed in the current work is
equivalent to that of Pandey & Underhill (2015).

Appendix B. Analytical solution for the developed concentration profile in a
2-D channel

A developed concentration profile in a 2-D channel satisfies the following one-dimensional
convection–diffusion equation:

d
dy

[
Dyy( y)

dC
dy

− Vc,y( y)C
]

= 0. (B1)

We consider a channel of width H centred at y = 0. The polymer concentration is assumed
to be symmetric with respect to the channel centre, i.e.

dC( y)
dy

= 0 at y = 0. (B2)

In addition, the shear rate at the centre of the channel is zero and, hence, the
electrohydrodynamic drift is also zero:

Vc,y(0) = 0. (B3)

Integrating (B1), we obtain

Dyy( y)
dC
dy

− Vc,y( y)C = A, (B4)
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where A = const. It follows from (B2) and (B3) that the left-hand side of (B4) is zero at
y = 0. Hence, A = 0 and the solution of (B4) is

C( y) = B exp
[∫ y

0

Vc,y( y′)
Dyy( y′)

dy′
]

. (B5)

The constant B is obtained from a normalization condition. In the current work, we
normalize C( y) so that it represents the probability density of the polymers, i.e.∫ H/2
−H/2 C( y) dy = 1.
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