ON THE NUMBER OF PRIMITIVE LATTICE POINTS
IN A PARALLELOGRAM

THEODOR ESTERMANN

1. Let a be any irrational real number, and let F(x) denote the number
of those positive integers # < u for which (#, [za]) = 1. Watson proved in the
preceding paper that
1) lim {«™' F(u)} = 677

U300
The object of this paper is to give a different proof of a slight generalization of
this result.

In what follows, a lattice point is a point in the plane whose cartesian coord-
inates are integers. It is said to be primitive if its coordinates are relatively
prime. For any positive numbers # and a, let g(u, a) denote the number of
lattice points, f(%, @) the number of primitive lattice points in the set of points
given by

0 <x<u, ax —a <y<ax

(a parallelogram with two of its sides included). Then F(u) = f(u, 1), and
thus the formula
2) lim {u" f(u,a)} = 67 "a

U->c0

is a generalization of (1).

2. My proof is based on the formula

3) Im {u ' gu,a)} = a.

U0
This is equivalent to a well-known theorem of Bohl, Sierpinski, and Weyl
[2, Satz 2]. The following simple elementary proof of (3) is reconstructed from
what I remember of a lecture given by Hecke about thirty years ago. I cannot
trace it in the literature, but its main idea, at any rate, is due to Hecke.

Since the addition of an integer to a does not alter g(u, ¢), we may assume
that & > 0. Then, by a theorem of Kronecker [1, Theorem 438], the numbers
of the form ma — n, where m and % are positive integers, are everywhere dense.
It is therefore sufficient to consider the case when a is of this form. Then

(4) g(u, a) = g(u, ma — n) = g(u, ma) — nlul,

and g(u, ma) = A + B — C, where 4, B, and C are, respectively, the numbers
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of lattice points in the parallelogram

0<y<au, yvae<x<y/a+m,
in the triangle
0<%, ax —ma<y<O0
and in the triangle
u<x, ox—ma<y< au.

Now A4 = m[au], B is independent of %, and C is a bounded function of u.
Hence
lim {«™" g(u, ma)} = ma,

U0

and, by (4),
lim {u ' g(u,a)} = ma —n = a.
3. Throughout the remainder of this paper, let the letters d, k, and =

denote positive integers, m an integer, ¢ and u positive numbers, and u Mobius’
function. Then

(5) fa)y=3 X1 =2 X 3 u@
nu an—zl<m<om e om—a?m<an alm.m)
(n,m)=1
=22 21 =2ud) X1
¢ Z|<: anﬁ:fmm<an ¢ wsula an’—a /Zln<m’<an’

. Zd n(d) g(u/d, a/d),
so that
6 W f(ua) = 3 u(d) d7Mw/d) Tg(u/d, a/d).
Also, by (3),
) lim {(u/d)™" g(u/d, a/d)} = a/d.

U->00

Thus, if it were permissible to proceed to the limit term by term, it would follow
from (6) that

lim {# ™ f(u,a)} = ad, u(d)d’ = 61 "a;
U0 a
but I do not know any direct method of justifying this process.

4. A slight modification of the preceding argument, however, will lead to

(8) lim {«™ f(u, a)} < 67 .
Let
9) h(u,a,k) = 2, 2 L
nu an—a”ém<an
(n,m,x!)=1
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Then, by the first equation in (5),
(10) flu,a) < h(u,a, k)
and, by the argument that led to (6),

wh(u, a, k) = ;};!p(d) d N u/d) " g(u/d, a/d).

Here it is obviously permissible to proceed to the limit term by term. From this
and (7) it follows that

(11) lim { " h(u, a, )} = aZ w(d) d

U0

By (10) and (11),
lim {u™" f(u, a)) <a) wd)d™

U0

Since this holds for every k, and

lim 3 u(@)d”* = > pd)d”’ = 6",

koo d k!

we deduce (8).

5. To complete the proof of (2), we note that, by (9),

h(u,a, k) = Z > Zl

n<u
(a, k h=1 an-a<m<an

(r,m)=d
= 2 Xl = 2fw/da/d).
(d.llcil) 1n Sura an (—a/d<)m_’<om (dk) =1
Hence
(12) fw,a) = h(w,a, k) = 2, fu/d, a/d).
(dk) =1
LemMma 1. f(u,a) — f(3u,a) < 2au + 1.
Proof.

faa) = fGua) = 2 21

§u<n<‘u an~a<m<an
(n,m)=1

<2 2L

n<u m
a—2a fu<m In<a
(n,m)=1

This is the number of fractions, in their lowest terms, with positive denominators
less than or equal to «, in an interval of length 2a/u. Since any two such fractions
differ by at least #~2, the result follows.

LEMMA 2. Let u > 1. Then f(u, a) < 4au + log (2u)/ log 2.
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Proof. Let b = [log u/log 2]. Then, by Lemma 1,
b

fw,a) = f(w,a) = f@" " u,0) = Z f@"u,a) = @7 u,a)}

m=0

< Z Q" "au + 1) < 4au + b + 1,
m=0
and the result follows.

Lemma 3. Let au < 1. Then f(u, a) <

Proof. Otherwise there would be two distinct fractions m;/n; and me/n,,
such that
m << a—a/n <m/n<a

a—a/m < a—a/n < my/n, < a
which implies that |m/n, — ms/ny| < a/ny; but
Iml/nl - 7’)12/112) > 1/(”1 nz) > 1/(%1 u) > (1/711.

6. Let u# > 1. Then, since the conditions d > 1 and (d, k!) = 1 imply that

d > k, and since f(u/d, a/d) = 0 if d > u, it follows from Lemmas 2 and 3
that

> fw/d,a/d) < Y, (daud™ + 2log u) < dauk '+ 24/ (an) log u

1<a< Vian) 1c<a<fz V(au)
(@, k=1
and
2, f/da/d) < 31
a>V(au)
@,kh=1 ., Ic’) =1
Hence, by (12),
W, a) > uh(u, a0, k) — — — 24/ (a/u) logu — — Z 1,
a<u
(d kh=1
and hence, by (11),
!
lim {2~ Y(u, a)} az p(d)d? — = — LILD]

k k!

U300

where ¢ denotes Euler’s function. Since this holds for every &, and the right-hand
side tends to 6722 as k — o, it follows that

lim {#' f(u,a)} > 67 ’a,
U0
which, together with (8), proves (2).
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