DILATIONS OF POSITIVE CONTRACTIONS ON L_{P} SPACES*

BY
M. A. AKCOGLU AND L. SUCHESTON

1. Introduction. Throughout this article p denotes a fixed number such that $1 \leq p<\infty$. The definition of a real L_{p} space associated with a measure space is well known. These spaces are Banach Spaces and, with the usual partial ordering of (equivalence classes of) functions, also Banach Lattices. A (linear) operator between them is called positive if it preserves the order, or, equivalently, if it maps non-negative functions into non-negative functions. A contraction is an operator whose norm is not more than one. Finally, a projection P is an idempotent contraction. Our purpose in this article is to prove the following theorem.
(1.1) Theorem. Let $T: L \rightarrow L$ be a positive contraction on an L_{p} Space L. Then there exists another L_{p} Space B and a positive invertible isometry $Q: B \rightarrow B$ so that $D T^{n}=P Q^{n} D$ for all $n=0,1,2, \ldots$, where $D: L \rightarrow B$ is a positive isometric imbedding of L into B and $P: B \rightarrow B$ is a positive projection.

In the next section we will prove this theorem in the case where L is a finite dimensional L_{p} space. Then we will show, following an observation of W. B. Johnson [7], that this special case implies the general proof.

The proof of the finite dimensional case follows from the more general results obtained in [5]. We will, however, give here a simpler proof that applies only in the finite dimensional case. This proof is similar to the one given in [1] for a more special case. We will describe the constructions of B, Q, D, P in detail, which is somewhat different from the construction in [1], but we will leave the verification of $D T^{n}=P Q^{n} D$ to the reader, which can be done along the same lines as in [1].

The proof in the general case, as observed by W. B. Johnson, is a direct consequence of some general techniques in Banach Spaces, mainly developed by D. Dacunha-Castelle and J. L. Krivine in [6]. We need, however, only very few definitions and results from this theory and we will give a self-contained account of them. We note that the original definitions in [6] use ultrafilters;

[^0]here we will use the Stone-Cech compactification instead, as discussed e.g. in Royden [9], which may be a more common background for the readers in Analysis.

Finally, the proof of Theorem (1.1) in the general case is a non-constructive proof, as should be obvious from its dependence on the Stone-Cech compactification. A constructive proof is given in [3] for the special case where L is a separable L_{p} Space. Other constructive proofs for more specialized cases were given in [2] and [4].

The authors are very grateful to Professor W. B. Johnson for his remarks on this problem.
2. Finite dimensional case. We start with a few general remarks. Let (X, \mathscr{F}, μ) be a measure space and $L_{p}=L_{p}(X, \mathscr{F}, \mu)$. We let L_{p}^{+}be the class of non negative functions in L_{p} and we identify the adjoint of L_{p} with $L_{q}=L_{q}(X, \mathscr{F}$, μ) in the usual manner, where $q=p(p-1)^{-1}$ if $p>1$ and $q=\infty$ if $p=1$; hence $g \in L_{q}$ represent the functional that maps $f \in L_{p}$ into (f, g) $=\int f g d \mu$. We need the Hölder's Inequality. If $f \in L_{p}^{+}$and $g \in L_{q}^{+}$then $\int f g \leq\|f\|_{p}\|g\|_{q}$ with equality if and only if g is a multiple of f^{p-1}, assuming $\|f\|_{p}>0$ and $p>1$. Also note that if $f \in L_{p}^{+}$then $f^{p-1} \in L_{q}^{+}$and $\left\|f^{p-1}\right\|_{q}=\|f\|_{p}^{p / q}=\|f\|_{p}^{p-1}$.

We now consider a positive contraction $T: L_{p} \rightarrow L_{p}$ and also its adjoint $T^{*}: L_{q} \rightarrow L_{q}$. In terms of these operators we define a non-linear operator $M: L_{p}^{+} \rightarrow L_{q}^{+}$as $M f=T^{*}(T f)^{p-1}, f \in L_{p}^{+}$, which will play a central role in this section. Note that $(f, M f)=\left(T f,(T f)^{p-1}\right)=\|T f\|_{p}^{p}$.
(2.1) Lemma. If $\lambda=\sup \left\{T f \mid f \in L_{p}^{+},\|f\|_{p}=1\right\}$ then $\lambda=\|T\|$.

Proof. It is clear that $\lambda \leq\|T\|$. Also, if $f \in L_{p}^{+}$then $\|T f\|_{p}=\left\|T f^{+}-T f^{-}\right\|_{p} \leq$ $\left\|T f^{+}+T f^{-}\right\|_{p} \leq \lambda\left\|f^{+}+f^{-}\right\|_{p}=\lambda\|f\|_{p}$. Hence $\|T\| \leq \lambda$.
(2.2) Lemma. Let $p>1$ and let $f \in L_{p}^{+}$satisfy $\|T f\|_{p}=\|T\|\|f\|_{p}>0$. Then $M f=$ $\|T\|^{p} f^{p-1}$.

Proof. First note that $\|M f\|_{q} \leq\left\|T^{*}\right\|\left\|(T f)^{p-1}\right\|_{q}=\|T\|\|T f\|_{p}^{p-1}=\|T\|^{p}\|f\|_{p}^{p-1}$. Also, $\|T\|^{p}\|f\|_{p}^{p}=\|T f\|_{p}^{p}=\left(T f,(T f)^{p-1}\right)=(f, M f)$ which shows that

$$
\begin{equation*}
\|M f\|_{q}=\|T\|^{p}\|f\|_{p}^{p-1} \tag{*}
\end{equation*}
$$

and also that we have the equality case in Hölder's inequality. Therefore $M f=k f^{p-1}$ and $\left({ }^{*}\right)$ implies that $k=\|T\|^{p}$. This completes the proof.

If $E \in \mathscr{F}$ is a measurable set, let $L_{p}(E)$ be the class of L_{p} functions with support in E.
(2.3) Lemma. Let $p>1$ and let $\lambda_{E}=\sup \left\{\|T f\| \mid f \in L_{p}^{+}(E),\|f\|_{p}=1\right\}$. If $u \in$ $L_{p}^{+}(E)$ with $\|T u\|_{p}=\lambda_{E}\|u\|_{p}>0$ then $\chi_{E} M u=\lambda_{E}^{p} u^{p-1}$, where χ_{E} is the characteristic function of E.

Proof. Let $T_{E}: L_{p} \rightarrow L_{p}$ be defined as $T_{E} f=T \chi_{E} f, f \in L_{p}$. Then $\left(T_{E}\right)^{*} g=$ $\chi_{E} T^{*} g, g \in L_{q}$, from the definitions. Also, $\left\|T_{E}\right\|=\lambda_{E}$ by Lemma (2.1). Hence the proof follows from Lemma (2.2) applied to T_{E}, by noticing that $T u=T_{E} u$.
(2.4) Lemma. Let $f, g \in L_{p}^{+}, f \cdot g=0$ and $M f \leq f^{p-1}$. Then $f M g=0$ and $M(f+g)=M f+M g$.

Proof. To see that $f M g=0$, we note that $(f, M g)=\left(T f,(T g)^{p-1}\right)=0$. In fact, this is equivalent to the fact that $T f$ and $(T g)^{p-1}$ have disjoint supports, or that $(T f)^{p-1}$ and $T g$ have disjoint supports. But this is true, since $0 \leq\left(T g,(T f)^{p-1}\right)=$ $(g, M f) \leq\left(g, f^{p-1}\right)=0$. Therefore $f M g=0$. Now $[T(f+g)]^{p-1}=(T f+T g)^{p-1}=$ $(T f)^{p-1}+(T g)^{p-1}$, since $T f$ and $T g$ have disjoint supports. Hence $M(f+g)=$ $M f+M g$.

We now restrict ourselves to the finite dimensional case. Hence we assume that $X=\{1, \ldots, n\}$ consists of n points with masses $m_{i}>0$. We denote functions on X as n-dimensional vectors $r=\left(r_{i}\right)$ and represent $T: L_{p} \rightarrow L_{p}$ by an $n \times n$ matrix $T=\left(t_{i j}\right)$ so that $(T r)_{j}=\Sigma_{i} T_{i j} r_{i}$. Note that $\left(T^{*} s\right)_{i}=\Sigma_{j} m_{j} m_{i}^{-1} T_{i j} s_{j}$.
(2.5) Theorem. There exists a vector $u=\left(u_{i}\right) \in L_{p}^{+}$with strictly positive coordinates so that $M u \leq u^{p-1}$.

Proof. If $p=1$ then we may let $u_{i}=1$ for all $i=1, \ldots, n$. If $p>1$ then the theorem follows from a finite number of applications of the following lemma, starting, for example, with the vector $\alpha=0$.
(2.6) Lemma. Let $\alpha \in L_{p}^{+}$satisfy $M \alpha \leq \alpha^{p-1}$ and assume that some coordinates of α are zero. Then there exists an $\tilde{\alpha} \in L_{p}^{+}$, whose support is strictly larger than the support of α, so that $M \tilde{\alpha} \leq \tilde{\alpha}^{p-1}$.
Proof. Let $E=\left\{i \mid i \in X, \alpha_{i}=0\right\}$ and $B=\left\{r \mid r \in L_{p}^{+}(E),\|r\|_{p}=1\right\}$. Since we are in a finite dimensional space, B is a compact set. Hence if $\lambda_{E}=$ $\sup \left\{\|T r\|_{p} \mid r \in B\right\}$, as also defined in the statement of Lemma (2.3), then there exists a $\beta \in B$ so that $\|T \beta\|_{p}=\lambda_{E}\|\beta\|_{p}=\lambda_{E}$. Therefore, by Lemma (2.3), $\chi_{E} M \beta=\lambda_{E}^{p} \beta^{p-1} \leq \beta^{p-1}$. But, applying Lemma (2.4) with $f=\alpha$ and $g=\beta$, we first see that $\alpha M \beta=0$, i.e. that $\chi_{E} M \beta=M \beta$, and then also that

$$
M(\alpha+\beta)=M \alpha+M \beta \leq \alpha^{p-1}+\beta^{p-1}=(\alpha+\beta)^{p-1},
$$

where the last equality follows from the fact that $\alpha \beta=0$. Hence $\tilde{\alpha}=\alpha+\beta$ gives the required vector.

We will now prove Theorem (1.1) in the finite dimensional case. Hence we assume that $L=L_{p}(X, \mathscr{F}, \mu)$, where, as we have already defined, $X=$ $\{1, \ldots, n\}$ consists of n points. We will construct B, Q, D and P explicitiy and then show that they have the properties stated in Theorem (1.1). We fix a
vector $u \in L^{+}$as obtained in Theorem (2.5) and let $v=T u$. the construction we are about to give is similar to the one given in [1] and reduces exactly to that construction if v has also strictly positive coordinates and if $M u=u^{p-1}$.

We first construct a measure space (Z, \mathscr{G}, ν) and then define B as $B=L_{p}(Z$, $\mathscr{G}, \nu)$. The set Z will be a subset of the two dimensional cartesian plane $O x y$, the σ-algebra \mathscr{G} and the measure ν will be the restriction of the ordinary two dimensional Lebesgue measure to Z. We denote the one and two dimensional Lebesgue measures as ℓ and $\boldsymbol{\ell}^{2}$, with the corresponding differentials $d x$ and $d x d y$, respectively.

Let I_{i} 's be n disjoint intervals on the x-axis with $\ell\left(I_{i}\right)=m_{i}$ and J_{i} 's n disjoint intervals on the y-axis with $\ell\left(J_{i}\right)=1$. We let $E_{i}=I_{i} \times J_{i}, Z_{0}=\bigcup_{i=1}^{n} E_{i}$ and complete this set Z_{0} to a doubly infinite disjoint sequence of sets $Z_{k}, k=0, \pm 1$, $\pm 2, \ldots$, by choosing the other Z_{k} 's arbitrarily with $\ell^{2}\left(Z_{k}\right)>0$. We then let $Z=\left(J_{-\infty<k<\infty} Z_{k}\right.$.

This defines (Z, \mathscr{G}, ν) and also B. To define $Q: B \rightarrow B$ we will first define a transformation $\tau: Z \rightarrow Z$ as follows.

Let $X_{0}=\left\{j \mid j \in X, v_{j}>0\right\}$, where $v=T u$, and let $P=X \times X_{0}$. For each (i, $j) \in P$ we let $\xi_{i j}=T_{i j} u_{i} / v_{j}, n_{i j}=T_{i j}\left(v_{j}^{p-1} / u_{i}^{p-1}\right) m_{j} / m_{i}$ and note that for each $j \in X_{0}$ we have $\sum_{i} \xi_{i j}=1$, since $v=T u$, and also that for each $i \in X$ we have $\sum_{j \in X_{0}} \eta_{i j} \leq$ 1 , because of $M u \leq u^{p-1}$. Hence we can divide each $I_{i}, j \in X_{0}$, into n disjoint subintervals $I_{i j}$ with $\ell\left(I_{i j}\right)=\xi_{i j} m_{j}$ and for each $i \in X$ we can find subintervals $J_{i j}$, $j \in X_{o}$, in J_{i} so that $\ell\left(j_{i j}\right)=\eta_{i j}$. We then let $S_{i j}=I_{i j} \times J_{i}, R_{i j}=I_{i} \times J_{i j},(i, j) \in P$, and $S=\cup S_{i j}, R=U R_{i j}$, where both unions are taken over $(i, j) \in P$.

For each $(i, j) \in P, R_{i j}$ and $S_{i j}$ are two rectangles with non-zero ℓ^{2}-measures. Hence one can find an affine transformation $\tau_{i j}: R_{i j} \rightarrow S_{i j}$ of the form

$$
\tau_{i j}(x, y)=\left(a_{i j} x+b_{i j}, c_{i j} y+d_{i j}\right)
$$

with constants $a_{i j}, b_{i j}, c_{i j}, d_{i j}$, so that $\tau_{i j} R_{i j}=S_{i j}$, up to ℓ^{2}-null sets. We then define τ on R as $\tau_{i j}$ on each $R_{i j}$. Hence τ transforms R onto S. If $\ell^{2}\left(Z_{0}-R\right)=0$ then we define τ as the identify transformation on $\bigcup_{k=1}^{\infty} Z_{k}$. If $\ell^{2}\left(Z_{0}-R\right)>0$ we define τ to map $Z_{0}-R$ onto Z_{1} and to map Z_{k} onto $Z_{k+1}, k \geq 1$. Similarly, if $\ell^{2}\left(Z_{0}-S\right)=0$ then we define τ as the identity on $\bigcup_{k=1}^{\infty} Z_{-k}$. If $\ell^{2}\left(Z_{0}-S\right)>0$ we then define τ to map Z_{-k} onto $Z_{-k+1}, k \geq 2$, and to map Z_{-1} onto $Z_{0}-S$. Hence $\tau: Z \rightarrow Z$ is defined and it is clear that we can make τ invertible and measurable and non-singular in both directions.

Let τ transport the measure ν to σ, defined as $\sigma(G)=\nu\left(\tau^{-1} G\right), G \in \mathscr{G}$. Let $\rho=d \sigma / d \nu$ and define $Q: B \rightarrow B$ as $(Q f)(x, y)=(\rho(x, y))^{1 / p} f\left(\tau^{-1}(x, y)\right),(x, y) \in$ $Z, f \in B$. It is then well known (and very easy to verify) that Q is a positive invertible isometry of B.

The definition of $D: L \rightarrow B$ is simple. If $\chi_{E_{i}}$ is the characteristic function of $E_{i}=I_{i} \times J_{i}$ and $r=\left(r_{i}\right) \in L$ then $D r=\sum_{i=1}^{n} r_{i} \chi_{E_{i}}$. Finally, $P: B \rightarrow B$ is defined as $P f=E\left(\chi_{z_{0}} f\right)$ where E is the conditional expectation operator with respect to
the partition $\left\{E_{1}, \ldots, E_{n}\right\}$ of Z_{0}. More explicitly, $P f=\sum_{i=1}^{n} \chi_{E_{i}} 1 / m_{i} \int_{E_{i}} f d \nu$. A routine generalization of the arguments given in (2.10), (2.12), (2.13) of [1] shows that $D T^{n}=P Q^{n} D$ for all $n=0,1, \ldots$ As already mentioned, this will be left to the reader.
3. Ultraproducts of Banach Spaces. Let A be a directed set and let ζ be the class of all bounded real valued functions $z: A \rightarrow$. These functions are called bounded nets and also identified by the collection of their values as $z=\left\{z_{\alpha}\right\}$ or as $\left\{z_{\alpha}\right\}_{\alpha \in A}$. Note that ζ is an algebra of functions with the usual pointwise definitions of linear operations and multiplication. We also let lim $\inf _{\alpha} z_{\alpha}=$ $\sup _{\alpha_{1} \in A}\left[\inf _{\alpha_{2} \geq \alpha_{1}} z_{\alpha_{2}}\right]$ and $\lim \sup _{\alpha} z_{\alpha}=-\lim \inf _{\alpha}\left(-z_{\alpha}\right)$. Finally note that if $u: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and if $z \in \zeta$ then $(u \circ z)_{\alpha}=u\left(z_{\alpha}\right)$ defines a bounded net.
(3.1) Lemma. There exists a homomorphism (i.e. a linear and multiplicative function) LIM: $\zeta \rightarrow \mathbb{R}$ so that if $z \in \zeta$ then $\lim \inf _{\alpha} Z_{\alpha} \leq \operatorname{LIM} z \leq \lim \sup _{\alpha} z_{\alpha}$ and if $u: \mathbb{R} \rightarrow \mathbb{R}$ is continuous then $\operatorname{LIM}\left(u^{\circ} z\right)=u(\operatorname{LIM} z)$.

Proof. Consider A as a topological space with its discrete topology (i.e. each subset of A is open). Then A is a locally compact Hausdorff space. Let A^{*} be the Stone-Cech compactification of A. Then, by definition, A^{*} is a compact Hausdorff space and \boldsymbol{A} is imbedded homeomorphically as a dense open subset of A^{*} so that any bounded (automatically continuous) function $z: A \rightarrow \mathbb{R}$ has a (necessarily unique) extension to a continuous function $z^{*}: A^{*} \rightarrow \mathbb{R}$. For each $\alpha \in A$, let C_{α} be the closure of $\{\beta \mid \beta \in A, \beta \geq \alpha\}$ in A^{*}. Since A is a directed set, the family $\left\{C_{\alpha}\right\}_{\alpha \in A}$ has the finite intersection property. Therefore $\bigcap_{\alpha \in A} C_{\alpha}$ contains a point α^{*}. We then let LIM $z=z^{*}\left(\alpha^{*}\right)$. It is easy to see that this satisfies the requirements of the lemma.

A function as obtained in this lemma will be called a limit functional. For the rest of this paper we are going to choose and fix a limit functional. We denote its value also as $\operatorname{LIM}_{\alpha} z_{\alpha}$. If $\left\{z_{\alpha}\right\}$ is a convergent net then $\operatorname{LIM}_{\alpha} z_{\alpha}=\lim _{\alpha} z_{\alpha}$. Note that if $z, z^{\prime} \in \zeta$ for which there is an α_{0} so that $z_{\alpha}=z_{\alpha}^{\prime}$ for all $\alpha \geq \alpha_{0}$, then $\operatorname{LIM}_{\alpha} z_{\alpha}=\operatorname{LIM}_{\alpha} z_{\alpha}^{\prime}$.

After these preliminaries we define the ultraproducts of Banach Spaces as follows. Let A be a directed set and let W_{α} be a Banach space for each $\alpha \in A$. From this collection $\left\{W_{\alpha}\right\}$ of Banach Spaces we will define a new Banach Space W which will be called the ultraproduct of W_{α} 's. Points in W are collections of the form $w=\left\{w_{\alpha}\right\}$, indexed by $\alpha \in A$, so that $w_{\alpha} \in W_{\alpha}$ for each $\alpha \in A$ and so that $\left\{\left\|w_{\alpha}\right\|\right\}$ is a bounded net. Linear combinations in W are defined as $a v+b w=\left\{a v_{\alpha}+b w_{\alpha}\right\}$ and the norm as $\|w\|=\operatorname{LIM}_{\alpha}\left\|w_{\alpha}\right\|$. Here, $v, w \in W$ and $a, b \in \mathbb{R}$. It is clear that this is only a pseudonorm, since $\|w\|=0$ does not imply that $w=0$, i.e. that $w_{\alpha}=0$ for all $\alpha \in A$. We define an equivalence relation in W as $w \sim w^{\prime}$ if and only if $\left\|w-w^{\prime}\right\|=0$. To obtain a norm, W must be replaced,
as usual, by the set of equivalence classes. It will be more convenient, however, to work directly with the elements of W and distinguish between the equalities and equivalences in B.

(3.2) Theorem. W is a Banach Space.

Proof. It is clear that W is a (pseudo) normed vector space. As it is well known, the completeness is equivalent to Lemma 3.4 below. Before then we note a technical fact.
(3.3) Lemma. For each $w \in W$ there exists $a v \in V$ so that $v \sim w$ and so that $\left\|v_{\alpha}\right\| \leq\|w\|(=\|v\|)$ for all $\alpha \in A$.

Proof. If $\|w\|=0$ then let $v_{\alpha}=0$. If $\|w\|>0$, then define $\lambda_{\alpha}=\left(\|w\| /\|w\| \vee\left\|w_{\alpha}\right\|\right)$ and let $v_{\alpha}=\lambda_{\alpha} w_{\alpha}$ Then $\left\|v_{\alpha}\right\| \leq\|w\|$ and also $v \sim w$, since $\operatorname{LIM}_{\alpha} \lambda_{\alpha}=1$ and, consequently $\|v-w\|=\operatorname{LIM}_{\alpha}\left|1-\lambda_{\alpha}\right|\left\|w_{\alpha}\right\|=0$.
(3.4) Lemma. Let $\left\{w^{n}\right\}_{n=1}^{\infty}$ be a sequence in W so that $\sum_{n=1}^{\infty}\left\|w^{n}\right\|<\infty$. Then there is a $w \in W$ so that $\sum_{n=1}^{\infty} w^{n}=w$ in W, i.e. that $\lim _{n}\left\|\sum_{i=1}^{n} w^{i}-w\right\|=0$.

Proof. For each n find a $v^{n} \sim w^{n}$ so that $\left\|v_{\alpha}^{n}\right\| \leq\left\|w^{n}\right\|$, by the previous lemma. Hence $\sum_{n=1}^{\infty}\left\|v_{\alpha}^{n}\right\|<\infty$ for each $\alpha \in A$ and since W_{α} is a Banach space and there is a w_{α} so that $\sum_{n=1}^{\infty} v_{\alpha}^{n}=w_{\alpha}$ in W_{α}. Then $\left\{w_{\alpha}\right\} \in W$, since $\left\|w_{\alpha}\right\| \leq$ $\sum_{n=1}^{\infty}\left\|v_{\alpha}^{n}\right\| \leq \sum_{n=1}^{\infty}\left\|w^{n}\right\|$ for all $\alpha \in A$. Also, $\left\|\sum_{i=1}^{n} w^{i}-w\right\|=\left\|\sum_{i=1}^{n} v^{i}-w\right\|=$ $\operatorname{LIM}_{\alpha}\left\|\sum_{i=1}^{n} v_{\alpha}^{i}-w_{\alpha}\right\| \leq \operatorname{LIM}_{\alpha} \sum_{i=n+1}^{\infty}\left\|v_{\alpha}^{i}\right\| \leq \operatorname{LIM}_{\alpha} \sum_{i=n+1}^{\infty}\left\|w^{i}\right\|=\sum_{i=n+1}^{\infty}\left\|w^{i}\right\|$ converges to zero as $n \rightarrow \infty$.

Now we will observe that if each W_{α} is an L_{p} space then W is isomorphic to an L_{p} Space. In fact, introduce a partial order into W as $v \leq w$ being equivalent to $v_{\alpha} \leq w_{\alpha}$ for each $\alpha \in A$. The corresponding maximum and minimum operations are $v \vee w=\left\{v_{\alpha} \vee w_{\alpha}\right\}, v \wedge w=\left\{v_{\alpha} \wedge w_{\alpha}\right\}$, respectively, and the positive cone of W is $w^{+}=\{w \mid w \in W, w \geq 0\}$. The following lemma shows that these operations can be defined on the equivalence classes of W and that they are continuous with respect to the norm topology. Hence it is easily seen that W becomes a Banach Lattice with these definitions.
(3.5) Lemma. If $v \sim v^{\prime}$ and $w \sim w^{\prime}$ then $v \vee w \sim v^{\prime} \vee w^{\prime}$ and $v \wedge w \sim v^{\prime} \wedge w^{\prime}$. If v^{n} and w^{n} converge respectively to v and w in W then $v^{n} \vee w^{n}$ and $v^{n} \wedge w^{n}$ converge, respectively, to $v \vee w$ and $v \wedge w$ in W.

Proof. We prove only the statements for the maximum operation. They will obviously follow from

$$
\left\|v \vee w-v^{\prime} v w^{\prime}\right\| \leq\left\|v-v^{\prime}\right\|+\left\|w-w^{\prime}\right\|
$$

which is obtained from

$$
\left|v_{\alpha} \vee w_{\alpha}-v_{\alpha}^{\prime} \vee w_{\alpha}^{\prime}\right| \leq\left|v_{\alpha}-v_{\alpha}^{\prime}\right|+\left|w_{\alpha}-w_{\alpha}^{\prime}\right|,
$$

first using the Minkowski's inequality and then applying the limit functional.
(3.6) Lemma: If $v, w \in W^{+}$and if $v \wedge w=0$ then $\|v+w\|^{p}=\|v\|^{p}+\|w\|^{p}$.

Proof. Integrate

$$
\left|v_{\alpha}\right|^{p}+\left|w_{\alpha}\right|^{p} \leq\left|v_{\alpha}+w_{\alpha}\right|^{p} \leq\left|v_{\alpha}+\left(v_{\alpha} \wedge w_{\alpha}\right)\right|^{p}+\left|w_{\alpha}+\left(v_{\alpha} \wedge w_{\alpha}\right)\right|^{p}
$$

to get the corresponding inequalities in the norm of W_{α} and apply the limit functional to get

$$
\|v\|^{p}+\|w\|^{p} \leq\|v+w\|^{p} \leq\|v+v \wedge w\|^{p}+\|w+v \wedge w\|^{p}=\|v\|^{p}+\|w\|^{p} .
$$

A generalization of a Theorem of Kakutani (see, e.g. p. 112 of [8]) shows that a Banach Lattice with the property stated in Lemma 3.6 is order isomorphic to an L_{p} Space. Hence if each W_{α} is an L_{p} Space then there exists another L_{p} Space B so that W can be identified with B by means of a positive isometric isomorphism $\Psi: W \rightarrow B$.
4. The main proof in the general case. Let L be the L_{p} Space associated with an arbitrary measure space (X, \mathscr{F}, μ). By a semi-partition of X we mean a finite disjoint collection of measurable sets with finite measures. Let A be the set of all semi-partitions of X. Introduce a partial order into A as $\alpha \leq \alpha^{\prime}$ meaning that each set in α is a union of some sets in α^{\prime}. Then it is clear that A becomes a directed set. For each $\alpha \in A$ let $E_{\alpha}: L \rightarrow L$ be the conditional expectation operator with respect to the semi-partition α, mapping functions to their average values on the sets of α and to zero outside of these sets. Note that for each fixed $f \in L$ the net $\left\{E_{\alpha} f\right\}$ converges to f in the sense that $\lim _{\alpha}\left\|f-E_{\alpha} f\right\|=0$. Finally let $L_{\alpha}=E_{\alpha} L$ be the range of E_{α}, which is a finite dimensional L_{p} Space.

Now let $T: L \rightarrow L$ be a positive contraction. We define $T_{\alpha}: L \rightarrow L_{\alpha}$ as $T_{\alpha}=E_{\alpha} T E_{\alpha}$. A simple argument shows that $\lim _{\alpha}\left\|T_{\alpha}^{n} f-T^{n} f\right\|=0$ for each $f \in L$, and for integer $n=1,2, \ldots$ The operator T_{α} can also be considered as acting on L_{α}. Hence we have a positive contraction $T_{\alpha}: L_{\alpha} \rightarrow L_{\alpha}$ of a finite dimensional L_{p} Space. Therefore the dilation theorem for finite dimensional spaces shows that for each $\alpha \in A$ there exists an L_{p} Space W_{α}, a positive invertible isometry $Q_{\alpha}: W_{\alpha} \rightarrow W_{\alpha}$ a positive projection $P_{\alpha}: W_{\alpha} \rightarrow W_{\alpha}$ and a positive isometry $D_{\alpha}: L_{\alpha} \rightarrow W_{\alpha}$ so that $D_{\alpha} T_{\alpha}^{n}=P_{\alpha} Q_{\alpha}^{n} D_{\alpha}$ for each $n=0,1,2, \ldots$ We then construct the ultraproduct W of $W_{\alpha} \mathrm{s}$ and define $Q: W \rightarrow W, P: W \rightarrow W$ and $D: L \rightarrow W$ as $Q\left\{w_{\alpha}\right\}=\left\{Q_{\alpha} w_{\alpha}\right\}, P\left\{w_{\alpha}\right\}=\left\{P_{\alpha} w_{\alpha}\right\}$ and $D f=\left\{D_{\alpha} E_{\alpha} f\right\}$, where $w=\left\{w_{\alpha}\right\} \in W$ and $f \in L$. Now to see that $P Q^{n} D=D T^{n}$, we apply both sides to a function $f \in L$:

$$
P Q^{n} D f=\left\{P_{\alpha} Q_{\alpha}^{n} D_{\alpha} E_{\alpha} f\right\}, \quad D T^{n} f=\left\{D_{\alpha} E_{\alpha} T^{n} f\right\}
$$

and note that $P_{\alpha} Q_{\alpha}^{n} D_{\alpha} E_{\alpha} f=D_{\alpha} T_{\alpha}^{n} E_{\alpha} f=D_{\alpha} T_{\alpha}^{n} f \quad$ and also that $\left\|D_{\alpha} T_{\alpha}^{n} f-D_{\alpha} E_{\alpha} T^{n} f\right\|=\left\|T_{\alpha}^{n} f-E T^{n} f\right\|$ since D_{α} is an isometry. But $\lim _{\alpha} \| T_{\alpha}^{n} f-$ $E_{\alpha} T^{n} f \|=0$, which shows that $\left\{D_{\alpha} T_{\alpha}^{n} f\right\} \sim\left\{D_{\alpha} E_{\alpha} T^{n} f\right\}$ or that $P Q^{n} D f \sim D T^{n} f$. Hence $P Q^{n} D=D T^{n}$.

It is now clear that, in the partial ordering of W given in the previous section, $Q: W \rightarrow W$ is a positive invertible isometry, $D: L \rightarrow W$ is a positive isometry, and $P: W \rightarrow W$ is a positive projection. Although W is obtained as a general Banach Lattice, the theorem of Kakutani mentioned at the end of the previous section shows that there is an L_{p} Space B and a positive isometric isomorphism $\Psi: W \rightarrow B$. This Ψ can be used to transport Q, D, P to similar operators $Q^{\prime}, D^{\prime}, P^{\prime}$ related to B as $Q^{\prime}=\Psi Q \Psi^{-1}: B \rightarrow B, D^{\prime}=\Psi D: L \rightarrow B$, $P^{\prime}=\Psi P \Psi^{-1}: B \rightarrow B$. Then it is clear that all the requirements of Theorem (1.1) are satisfied.

Finally, we will mention the following point. If L and B are two L_{p} spaces and if $D: L \rightarrow B$ is a positive isometry then $D L$ can be characterized as follows. If $B=L_{p}(Z, \mathscr{G}, \nu)$, then there exists a sub σ-algebra $\mathscr{G}_{0} \subset \mathscr{G}$ and a set $Z_{0} \in \mathscr{G}_{0}$ so that $D L=L_{p}\left(Z_{0}, Z_{0} \cap \mathscr{G}_{0}, \nu_{0}\right)$, where ν_{0} is the restriction of ν to $Z_{0} \cap \mathscr{G}_{0}$. Hence there is a natural positive projection $\Pi: B \rightarrow B$ so that $\Pi B=$ $D L$. This is defined as $\Pi f=E\left(\chi_{z_{0}} f\right), f \in B$, where E is the conditional expectation with respect to \mathscr{G}_{0}. Although in Theorem (1.1) we have this positive isometry $D: L \rightarrow B$, the positive projection $P: B \rightarrow B$ (we omit the primes from D and P to simplify the notation) obtained in the above proof is not the natural projection Π. A more careful analysis of the representation of W as an L_{p} Space shows that $\Pi Q^{n} D=P Q^{n} D$, i.e. that Π can also be used as the positive projection required in Theorem (1.1). We will, however, omit this.

References

1. M. A. Akcoglu: A pointwise ergodic theorem for L_{ρ} Spaces, Can. J. Math. 27, 1075-1082, (1975).
2. M. A. Akcoglu: Positive contractions of L_{1} Spaces, Math. Z. 143, 5-13, (1975).
3. M. A. Akcoglu and P. E. Kopp: Positive contractions of L_{ρ} Spaces. To appear in 2 Math.
4. M. A. Akcoglu and L. Sucheston: On convergence of iterates of positive contractions in L_{ρ} Spaces, J. Approx. Theory, 13, 348-362, (1975).
5. M. A. Akcoglu and L. Sucheston: On positive dilations to isometries in L_{ρ} Spaces. Lecture Notes in Math. Vol 541, 389-401, Springer Verlag 1976.
6. D. Dacunha-Castelle and J. L. Krivine: Applications des ultraproduits a l'ètude des espaces et des algèbres de Banach, Studia Math. 41, 313-334, (1972).
7. W. B. Johnson: Private communication, January, 1976.
8. J. Lindenstrauss and L. Tzafriri. Classical Banach Spaces. Lecture Notes in Mathematics, 338, Springer-Verlag, 1973.
9. H. L. Royden: Real Analysis. Macmillan, New York, 1968.
10. G. C. Rota: "An Alternierende Verfahren" for general positive operators. Bull. A.M.S. 68, 95-102, 1962.

Dept of Math
University of Toronto

[^0]: Received by the editors June 3, 1977.

 * Research supported by NRC Grant A3974.

