DILATIONS OF POSITIVE CONTRACTIONS ON L_P SPACES*

M. A. AKCOGLU AND L. SUCHESTON

1. Introduction. Throughout this article p denotes a fixed number such that $1 \le p < \infty$. The definition of a real L_p space associated with a measure space is well known. These spaces are Banach Spaces and, with the usual partial ordering of (equivalence classes of) functions, also Banach Lattices. A (linear) operator between them is called positive if it preserves the order, or, equivalently, if it maps non-negative functions into non-negative functions. A contraction is an operator whose norm is not more than one. Finally, a projection P is an idempotent contraction. Our purpose in this article is to prove the following theorem.

(1.1) THEOREM. Let $T: L \to L$ be a positive contraction on an L_p Space L. Then there exists another L_p Space B and a positive invertible isometry $Q: B \to B$ so that $DT^n = PQ^nD$ for all n = 0, 1, 2, ..., where $D: L \to B$ is a positive isometric imbedding of L into B and $P: B \to B$ is a positive projection.

In the next section we will prove this theorem in the case where L is a finite dimensional L_p space. Then we will show, following an observation of W. B. Johnson [7], that this special case implies the general proof.

The proof of the finite dimensional case follows from the more general results obtained in [5]. We will, however, give here a simpler proof that applies only in the finite dimensional case. This proof is similar to the one given in [1] for a more special case. We will describe the constructions of B, Q, D, P in detail, which is somewhat different from the construction in [1], but we will leave the verification of $DT^n = PQ^nD$ to the reader, which can be done along the same lines as in [1].

The proof in the general case, as observed by W. B. Johnson, is a direct consequence of some general techniques in Banach Spaces, mainly developed by D. Dacunha-Castelle and J. L. Krivine in [6]. We need, however, only very few definitions and results from this theory and we will give a self-contained account of them. We note that the original definitions in [6] use ultrafilters;

Received by the editors June 3, 1977.

^{*} Research supported by NRC Grant A3974.

[September

here we will use the Stone-Cech compactification instead, as discussed e.g. in Royden [9], which may be a more common background for the readers in Analysis.

Finally, the proof of Theorem (1.1) in the general case is a non-constructive proof, as should be obvious from its dependence on the Stone-Cech compactification. A constructive proof is given in [3] for the special case where L is a separable L_p Space. Other constructive proofs for more specialized cases were given in [2] and [4].

The authors are very grateful to Professor W. B. Johnson for his remarks on this problem.

2. Finite dimensional case. We start with a few general remarks. Let (X, \mathcal{F}, μ) be a measure space and $L_p = L_p(X, \mathcal{F}, \mu)$. We let L_p^+ be the class of non negative functions in L_p and we identify the adjoint of L_p with $L_q = L_q(X, \mathcal{F}, \mu)$ in the usual manner, where $q = p(p-1)^{-1}$ if p > 1 and $q = \infty$ if p = 1; hence $g \in L_q$ represent the functional that maps $f \in L_p$ into $(f, g) = \int fg d\mu$. We need the Hölder's Inequality. If $f \in L_p^+$ and $g \in L_q^+$ then $\int fg \leq ||f||_p ||g||_q$ with equality if and only if g is a multiple of f^{p-1} , assuming $||f||_p > 0$ and p > 1. Also note that if $f \in L_p^+$ then $f^{p-1} \in L_q^+$ and $||f^{p-1}||_q = ||f||_p^{p/q} = ||f||_p^{p-1}$.

We now consider a positive contraction $T:L_p \to L_p$ and also its adjoint $T^*:L_q \to L_q$. In terms of these operators we define a non-linear operator $M:L_p^+ \to L_q^+$ as $Mf = T^*$ $(Tf)^{p-1}$, $f \in L_p^+$, which will play a central role in this section. Note that $(f, Mf) = (Tf, (Tf)^{p-1}) = ||Tf||_p^p$.

(2.1) LEMMA. If $\lambda = \sup \{Tf | f \in L_p^+, \|f\|_p = 1\}$ then $\lambda = \|T\|$.

Proof. It is clear that $\lambda \le ||T||$. Also, if $f \in L_p^+$ then $||Tf||_p = ||Tf^+ - Tf^-||_p \le ||Tf^+ + Tf^-||_p \le \lambda ||f^+ + f^-||_p = \lambda ||f||_p$. Hence $||T|| \le \lambda$.

(2.2) LEMMA. Let p > 1 and let $f \in L_p^+$ satisfy $||Tf||_p = ||T|| ||f||_p > 0$. Then $Mf = ||T||^p f^{p-1}$.

Proof. First note that $||Mf||_q \le ||T^*|| ||(Tf)^{p-1}||_q = ||T|| ||Tf||_p^{p-1} = ||T||^p ||f||_p^{p-1}$. Also, $||T||^p ||f||_p^p = ||Tf||_p^p = (Tf, (Tf)^{p-1}) = (f, Mf)$ which shows that

(*)
$$\|Mf\|_q = \|T\|^p \|f\|_p^{p-1}$$

and also that we have the equality case in Hölder's inequality. Therefore $Mf = kf^{p-1}$ and (*) implies that $k = ||T||^p$. This completes the proof.

If $E \in \mathscr{F}$ is a measurable set, let $L_p(E)$ be the class of L_p functions with support in E.

(2.3) LEMMA. Let p > 1 and let $\lambda_E = \sup\{||Tf|| \mid f \in L_p^+(E), ||f||_p = 1\}$. If $u \in L_p^+(E)$ with $||Tu||_p = \lambda_E ||u||_p > 0$ then $\chi_E M u = \lambda_E^p u^{p-1}$, where χ_E is the characteristic function of E.

286

Proof. Let $T_E: L_p \to L_p$ be defined as $T_E f = T \chi_E f$, $f \in L_p$. Then $(T_E)^* g = \chi_E T^* g$, $g \in L_q$, from the definitions. Also, $||T_E|| = \lambda_E$ by Lemma (2.1). Hence the proof follows from Lemma (2.2) applied to T_E , by noticing that $Tu = T_E u$.

(2.4) LEMMA. Let $f, g \in L_p^+, f \cdot g = 0$ and $Mf \leq f^{p-1}$. Then fMg = 0 and M(f+g) = Mf + Mg.

Proof. To see that fMg = 0, we note that $(f, Mg) = (Tf, (Tg)^{p-1}) = 0$. In fact, this is equivalent to the fact that Tf and $(Tg)^{p-1}$ have disjoint supports, or that $(Tf)^{p-1}$ and Tg have disjoint supports. But this is true, since $0 \le (Tg, (Tf)^{p-1}) = (g, Mf) \le (g, f^{p-1}) = 0$. Therefore fMg = 0. Now $[T(f+g)]^{p-1} = (Tf + Tg)^{p-1} = (Tf)^{p-1} + (Tg)^{p-1}$, since Tf and Tg have disjoint supports. Hence M(f+g) = Mf + Mg.

We now restrict ourselves to the finite dimensional case. Hence we assume that $X = \{1, \ldots, n\}$ consists of *n* points with masses $m_i > 0$. We denote functions on X as *n*-dimensional vectors $r = (r_i)$ and represent $T: L_p \to L_p$ by an $n \times n$ matrix $T = (t_{ij})$ so that $(Tr)_j = \sum_i T_{ij}r_i$. Note that $(T^*s)_i = \sum_j m_j m_i^{-1} T_{ij}s_j$.

(2.5) THEOREM. There exists a vector $u = (u_i) \in L_p^+$ with strictly positive coordinates so that $Mu \le u^{p-1}$.

Proof. If p = 1 then we may let $u_i = 1$ for all i = 1, ..., n. If p > 1 then the theorem follows from a finite number of applications of the following lemma, starting, for example, with the vector $\alpha = 0$.

(2.6) LEMMA. Let $\alpha \in L_p^+$ satisfy $M\alpha \leq \alpha^{p-1}$ and assume that some coordinates of α are zero. Then there exists an $\tilde{\alpha} \in L_p^+$, whose support is strictly larger than the support of α , so that $M\tilde{\alpha} \leq \tilde{\alpha}^{p-1}$.

Proof. Let $E = \{i \mid i \in X, \alpha_i = 0\}$ and $B = \{r \mid r \in L_p^+(E), ||r||_p = 1\}$. Since we are in a finite dimensional space, B is a compact set. Hence if $\lambda_E =$ $\sup\{||Tr||_p \mid r \in B\}$, as also defined in the statement of Lemma (2.3), then there exists a $\beta \in B$ so that $||T\beta||_p = \lambda_E ||\beta||_p = \lambda_E$. Therefore, by Lemma (2.3), $\chi_E M\beta = \lambda_E^p \beta^{p-1} \leq \beta^{p-1}$. But, applying Lemma (2.4) with $f = \alpha$ and $g = \beta$, we first see that $\alpha M\beta = 0$, i.e. that $\chi_E M\beta = M\beta$, and then also that

$$M(\alpha + \beta) = M\alpha + M\beta \leq \alpha^{p-1} + \beta^{p-1} = (\alpha + \beta)^{p-1},$$

where the last equality follows from the fact that $\alpha\beta = 0$. Hence $\tilde{\alpha} = \alpha + \beta$ gives the required vector.

We will now prove Theorem (1.1) in the finite dimensional case. Hence we assume that $L = L_p(X, \mathcal{F}, \mu)$, where, as we have already defined, $X = \{1, \ldots, n\}$ consists of *n* points. We will construct *B*, *Q*, *D* and *P* explicitly and then show that they have the properties stated in Theorem (1.1). We fix a

[September

vector $u \in L^+$ as obtained in Theorem (2.5) and let v = Tu. the construction we are about to give is similar to the one given in [1] and reduces exactly to that construction if v has also strictly positive coordinates and if $Mu = u^{p-1}$.

We first construct a measure space (Z, \mathcal{G}, ν) and then define B as $B = L_p(Z, \mathcal{G}, \nu)$. The set Z will be a subset of the two dimensional cartesian plane Oxy, the σ -algebra \mathcal{G} and the measure ν will be the restriction of the ordinary two dimensional Lebesgue measure to Z. We denote the one and two dimensional Lebesgue measures as ℓ and ℓ^2 , with the corresponding differentials dx and dx dy, respectively.

Let I_i 's be *n* disjoint intervals on the x-axis with $\ell(I_i) = m_i$ and J_i 's *n* disjoint intervals on the y-axis with $\ell(J_i) = 1$. We let $E_i = I_i \times J_i$, $Z_0 = \bigcup_{i=1}^n E_i$ and complete this set Z_0 to a doubly infinite disjoint sequence of sets Z_k , $k = 0, \pm 1, \pm 2, \ldots$, by choosing the other Z_k 's arbitrarily with $\ell^2(Z_k) > 0$. We then let $Z = \bigcup_{-\infty < k < \infty} Z_k$.

This defines (Z, \mathcal{G}, ν) and also B. To define $Q: B \to B$ we will first define a transformation $\tau: Z \to Z$ as follows.

Let $X_0 = \{j \mid j \in X, v_j > 0\}$, where v = Tu, and let $P = X \times X_0$. For each $(i, j) \in P$ we let $\xi_{ij} = T_{ij} u_i / v_j$, $n_{ij} = T_{ij} (v_j^{p-1} / u_i^{p-1}) m_j / m_i$ and note that for each $j \in X_0$ we have $\sum_{i \notin ij} = 1$, since v = Tu, and also that for each $i \in X$ we have $\sum_{i \in X_0} \eta_{ij} \leq 1$, because of $Mu \leq u^{p-1}$. Hence we can divide each I_i , $j \in X_0$, into n disjoint subintervals I_{ij} with $\ell(I_{ij}) = \xi_{ij} m_j$ and for each $i \in X$ we can find subintervals J_{ij} , $j \in X_0$, in J_i so that $\ell(j_{ij}) = \eta_{ij}$. We then let $S_{ij} = I_{ij} \times J_i$, $R_{ij} = I_i \times J_{ij}$, $(i, j) \in P$, and $S = \bigcup S_{ij}$, $R = UR_{ij}$, where both unions are taken over $(i, j) \in P$.

For each $(i, j) \in P$, R_{ij} and S_{ij} are two rectangles with non-zero ℓ^2 -measures. Hence one can find an affine transformation $\tau_{ij}: R_{ij} \to S_{ij}$ of the form

$$\tau_{ij}(x, y) = (a_{ij}x + b_{ij}, c_{ij}y + d_{ij}),$$

with constants a_{ij} , b_{ij} , c_{ij} , d_{ij} , so that $\tau_{ij}R_{ij} = S_{ij}$, up to ℓ^2 -null sets. We then define τ on R as τ_{ij} on each R_{ij} . Hence τ transforms R onto S. If $\ell^2(Z_0 - R) = 0$ then we define τ as the identify transformation on $\bigcup_{k=1}^{\infty} Z_k$. If $\ell^2(Z_0 - R) > 0$ we define τ to map $Z_0 - R$ onto Z_1 and to map Z_k onto Z_{k+1} , $k \ge 1$. Similarly, if $\ell^2(Z_0 - S) = 0$ then we define τ as the identity on $\bigcup_{k=1}^{\infty} Z_{-k}$. If $\ell^2(Z_0 - S) > 0$ we then define τ to map Z_{-k} onto Z_{-k+1} , $k \ge 2$, and to map Z_{-1} onto $Z_0 - S$. Hence $\tau: Z \to Z$ is defined and it is clear that we can make τ invertible and measurable and non-singular in both directions.

Let τ transport the measure ν to σ , defined as $\sigma(G) = \nu(\tau^{-1}G)$, $G \in \mathcal{G}$. Let $\rho = d\sigma/d\nu$ and define $Q: B \to B$ as $(Qf)(x, y) = (\rho(x, y))^{1/p} f(\tau^{-1}(x, y))$, $(x, y) \in Z$, $f \in B$. It is then well known (and very easy to verify) that Q is a positive invertible isometry of B.

The definition of $D: L \to B$ is simple. If χ_{E_i} is the characteristic function of $E_i = I_i \times J_i$ and $r = (r_i) \in L$ then $Dr = \sum_{i=1}^{n} r_i \chi_{E_i}$. Finally, $P: B \to B$ is defined as $Pf = E(\chi_{z_0}f)$ where E is the conditional expectation operator with respect to

the partition $\{E_1, \ldots, E_n\}$ of Z_0 . More explicitly, $Pf = \sum_{i=1}^n \chi_{E_i} 1/m_i \int_{E_i} f \, d\nu$. A routine generalization of the arguments given in (2.10), (2.12), (2.13) of [1] shows that $DT^n = PQ^nD$ for all $n = 0, 1, \ldots$. As already mentioned, this will be left to the reader.

3. Ultraproducts of Banach Spaces. Let A be a directed set and let ζ be the class of all bounded real valued functions $z: A \rightarrow \ldots$. These functions are called bounded nets and also identified by the collection of their values as $z = \{z_{\alpha}\}$ or as $\{z_{\alpha}\}_{\alpha \in A}$. Note that ζ is an algebra of functions with the usual pointwise definitions of linear operations and multiplication. We also let $\liminf_{\alpha z_{\alpha}} z_{\alpha} = \sup_{\alpha_{1} \in A} [\inf_{\alpha_{2} \geq \alpha_{1}} z_{\alpha_{2}}]$ and $\limsup_{\alpha z_{\alpha}} z_{\alpha} = -\lim_{\alpha} \inf_{\alpha} (-z_{\alpha})$. Finally note that if $u: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and if $z \in \zeta$ then $(u \circ z)_{\alpha} = u(z_{\alpha})$ defines a bounded net.

(3.1) LEMMA. There exists a homomorphism (i.e. a linear and multiplicative function) LIM: $\zeta \to \mathbb{R}$ so that if $z \in \zeta$ then $\liminf_{\alpha} Z_{\alpha} \leq \text{LIM}$ $z \leq \limsup_{\alpha} z_{\alpha}$ and if $u : \mathbb{R} \to \mathbb{R}$ is continuous then $\text{LIM}(u \circ z) = u(\text{LIM } z)$.

Proof. Consider A as a topological space with its discrete topology (i.e. each subset of A is open). Then A is a locally compact Hausdorff space. Let A^* be the Stone-Cech compactification of A. Then, by definition, A^* is a compact Hausdorff space and A is imbedded homeomorphically as a dense open subset of A^* so that any bounded (automatically continuous) function $z:A \to \mathbb{R}$ has a (necessarily unique) extension to a continuous function $z^*:A^* \to \mathbb{R}$. For each $\alpha \in A$, let C_{α} be the closure of $\{\beta \mid \beta \in A, \beta \geq \alpha\}$ in A^* . Since A is a directed set, the family $\{C_{\alpha}\}_{\alpha \in A}$ has the finite intersection property. Therefore $\bigcap_{\alpha \in A} C_{\alpha}$ contains a point α^* . We then let LIM $z = z^*(\alpha^*)$. It is easy to see that this satisfies the requirements of the lemma.

A function as obtained in this lemma will be called a limit functional. For the rest of this paper we are going to choose and fix a limit functional. We denote its value also as $\text{LIM}_{\alpha}z_{\alpha}$. If $\{z_{\alpha}\}$ is a convergent net then $\text{LIM}_{\alpha}z_{\alpha} = \lim_{\alpha} z_{\alpha}$. Note that if $z, z' \in \zeta$ for which there is an α_0 so that $z_{\alpha} = z'_{\alpha}$ for all $\alpha \ge \alpha_0$, then $\text{LIM}_{\alpha}z_{\alpha} = \text{LIM}_{\alpha}z'_{\alpha}$.

After these preliminaries we define the ultraproducts of Banach Spaces as follows. Let A be a directed set and let W_{α} be a Banach space for each $\alpha \in A$. From this collection $\{W_{\alpha}\}$ of Banach Spaces we will define a new Banach Space W which will be called the ultraproduct of W_{α} 's. Points in W are collections of the form $w = \{w_{\alpha}\}$, indexed by $\alpha \in A$, so that $w_{\alpha} \in W_{\alpha}$ for each $\alpha \in A$ and so that $\{\|w_{\alpha}\|\}$ is a bounded net. Linear combinations in W are defined as $av + bw = \{av_{\alpha} + bw_{\alpha}\}$ and the norm as $\|w\| = \text{LIM}_{\alpha} \|w_{\alpha}\|$. Here, $v, w \in W$ and $a, b \in \mathbb{R}$. It is clear that this is only a pseudonorm, since $\|w\| = 0$ does not imply that w = 0, i.e. that $w_{\alpha} = 0$ for all $\alpha \in A$. We define an equivalence relation in W as $w \sim w'$ if and only if $\|w - w'\| = 0$. To obtain a norm, W must be replaced,

[September

as usual, by the set of equivalence classes. It will be more convenient, however, to work directly with the elements of W and distinguish between the equalities and equivalences in B.

(3.2) THEOREM. W is a Banach Space.

Proof. It is clear that W is a (pseudo) normed vector space. As it is well known, the completeness is equivalent to Lemma 3.4 below. Before then we note a technical fact.

(3.3) LEMMA. For each $w \in W$ there exists a $v \in V$ so that $v \sim w$ and so that $||v_{\alpha}|| \leq ||w|| (= ||v||)$ for all $\alpha \in A$.

Proof. If ||w|| = 0 then let $v_{\alpha} = 0$. If ||w|| > 0, then define $\lambda_{\alpha} = (||w||/||w|| \vee ||w_{\alpha}||)$ and let $v_{\alpha} = \lambda_{\alpha}w_{\alpha}$ Then $||v_{\alpha}|| \le ||w||$ and also $v \sim w$, since $\text{LIM}_{\alpha}\lambda_{\alpha} = 1$ and, consequently $||v - w|| = \text{LIM}_{\alpha}|1 - \lambda_{\alpha}||w_{\alpha}|| = 0$.

(3.4) LEMMA. Let $\{w^n\}_{n=1}^{\infty}$ be a sequence in W so that $\sum_{n=1}^{\infty} ||w^n|| < \infty$. Then there is a $w \in W$ so that $\sum_{n=1}^{\infty} w^n = w$ in W, i.e. that $\lim_{n \to \infty} ||\sum_{i=1}^{n} w^i - w|| = 0$.

Proof. For each *n* find a $v^n \sim w^n$ so that $||v_{\alpha}^n|| \leq ||w^n||$, by the previous lemma. Hence $\sum_{n=1}^{\infty} ||v_{\alpha}^n|| < \infty$ for each $\alpha \in A$ and since W_{α} is a Banach space and there is a w_{α} so that $\sum_{n=1}^{\infty} v_{\alpha}^n = w_{\alpha}$ in W_{α} . Then $\{w_{\alpha}\} \in W$, since $||w_{\alpha}|| \leq \sum_{n=1}^{\infty} ||v_{\alpha}^n|| \leq \sum_{n=1}^{\infty} ||w^n||$ for all $\alpha \in A$. Also, $||\sum_{i=1}^n w^i - w|| = ||\sum_{i=1}^n v^i - w|| = \text{LIM}_{\alpha} ||\sum_{i=1}^n v_{\alpha}^i - w_{\alpha}|| \leq \text{LIM}_{\alpha} \sum_{i=n+1}^{\infty} ||w^i|| = \sum_{i=n+1}^{\infty} ||w^i||$ converges to zero as $n \to \infty$.

Now we will observe that if each W_{α} is an L_p space then W is isomorphic to an L_p Space. In fact, introduce a partial order into W as $v \le w$ being equivalent to $v_{\alpha} \le w_{\alpha}$ for each $\alpha \in A$. The corresponding maximum and minimum operations are $v \lor w = \{v_{\alpha} \lor w_{\alpha}\}, v \land w = \{v_{\alpha} \land w_{\alpha}\}$, respectively, and the positive cone of W is $w^+ = \{w \mid w \in W, w \ge 0\}$. The following lemma shows that these operations can be defined on the equivalence classes of W and that they are continuous with respect to the norm topology. Hence it is easily seen that W becomes a Banach Lattice with these definitions.

(3.5) LEMMA. If $v \sim v'$ and $w \sim w'$ then $v \lor w \sim v' \lor w'$ and $v \land w \sim v' \land w'$. If v^n and w^n converge respectively to v and w in W then $v^n \lor w^n$ and $v^n \land w^n$ converge, respectively, to $v \lor w$ and $v \land w$ in W.

Proof. We prove only the statements for the maximum operation. They will obviously follow from

$$\|v \lor w - v'vw'\| \le \|v - v'\| + \|w - w'\|,$$

which is obtained from

$$|v_{\alpha} \vee w_{\alpha} - v_{\alpha}' \vee w_{\alpha}'| \leq |v_{\alpha} - v_{\alpha}'| + |w_{\alpha} - w_{\alpha}'|,$$

first using the Minkowski's inequality and then applying the limit functional.

(3.6) LEMMA: If $v, w \in W^+$ and if $v \wedge w = 0$ then $||v + w||^p = ||v||^p + ||w||^p$. **Proof.** Integrate

$$|v_{\alpha}|^{p} + |w_{\alpha}|^{p} \leq |v_{\alpha} + w_{\alpha}|^{p} \leq |v_{\alpha} + (v_{\alpha} \wedge w_{\alpha})|^{p} + |w_{\alpha} + (v_{\alpha} \wedge w_{\alpha})|^{p}$$

to get the corresponding inequalities in the norm of W_{α} and apply the limit functional to get

$$||v||^{p} + ||w||^{p} \le ||v+w||^{p} \le ||v+v\wedge w||^{p} + ||w+v\wedge w||^{p} = ||v||^{p} + ||w||^{p}.$$

A generalization of a Theorem of Kakutani (see, e.g. p. 112 of [8]) shows that a Banach Lattice with the property stated in Lemma 3.6 is order isomorphic to an L_p Space. Hence if each W_{α} is an L_p Space then there exists another L_p Space B so that W can be identified with B by means of a positive isometric isomorphism $\Psi: W \to B$.

4. The main proof in the general case. Let L be the L_p Space associated with an arbitrary measure space (X, \mathcal{F}, μ) . By a semi-partition of X we mean a finite disjoint collection of measurable sets with finite measures. Let A be the set of all semi-partitions of X. Introduce a partial order into A as $\alpha \leq \alpha'$ meaning that each set in α is a union of some sets in α' . Then it is clear that A becomes a directed set. For each $\alpha \in A$ let $E_{\alpha}: L \to L$ be the conditional expectation operator with respect to the semi-partition α , mapping functions to their average values on the sets of α and to zero outside of these sets. Note that for each fixed $f \in L$ the net $\{E_{\alpha}f\}$ converges to f in the sense that $\lim_{\alpha} ||f - E_{\alpha}f|| = 0$. Finally let $L_{\alpha} = E_{\alpha}L$ be the range of E_{α} , which is a finite dimensional L_p Space.

Now let $T: L \to L$ be a positive contraction. We define $T_{\alpha}: L \to L_{\alpha}$ as $T_{\alpha} = E_{\alpha}TE_{\alpha}$. A simple argument shows that $\lim_{\alpha} ||T_{\alpha}^{n}f - T^{n}f|| = 0$ for each $f \in L$, and for integer n = 1, 2, ... The operator T_{α} can also be considered as acting on L_{α} . Hence we have a positive contraction $T_{\alpha}: L_{\alpha} \to L_{\alpha}$ of a finite dimensional L_{p} Space. Therefore the dilation theorem for finite dimensional spaces shows that for each $\alpha \in A$ there exists an L_{p} Space W_{α} , a positive invertible isometry $Q_{\alpha}: W_{\alpha} \to W_{\alpha}$ a positive projection $P_{\alpha}: W_{\alpha} \to W_{\alpha}$ and a positive isometry $D_{\alpha}: L_{\alpha} \to W_{\alpha}$ so that $D_{\alpha}T_{\alpha}^{n} = P_{\alpha}Q_{\alpha}^{n}D_{\alpha}$ for each $n = 0, 1, 2, \ldots$. We then construct the ultraproduct W of W_{α} s and define $Q: W \to W, P: W \to W$ and $D: L \to W$ as $Q\{w_{\alpha}\} = \{Q_{\alpha}w_{\alpha}\}, P\{w_{\alpha}\} = \{P_{\alpha}w_{\alpha}\}$ and $Df = \{D_{\alpha}E_{\alpha}f\}$, where $w = \{w_{\alpha}\} \in W$ and $f \in L$. Now to see that $PQ^{n}D = DT^{n}$, we apply both sides to a function $f \in L$:

$$PQ^{n}Df = \{P_{\alpha}Q^{n}_{\alpha}D_{\alpha}E_{\alpha}f\}, \qquad DT^{n}f = \{D_{\alpha}E_{\alpha}T^{n}f\}$$

https://doi.org/10.4153/CMB-1977-044-4 Published online by Cambridge University Press

1977]

and note that $P_{\alpha}Q_{\alpha}^{n}D_{\alpha}E_{\alpha}f = D_{\alpha}T_{\alpha}^{n}E_{\alpha}f = D_{\alpha}T_{\alpha}^{n}f$ and also that $\|D_{\alpha}T_{\alpha}^{n}f - D_{\alpha}E_{\alpha}T^{n}f\| = \|T_{\alpha}^{n}f - ET^{n}f\|$ since D_{α} is an isometry. But $\lim_{\alpha} \|T_{\alpha}^{n}f - E_{\alpha}T^{n}f\| = 0$, which shows that $\{D_{\alpha}T_{\alpha}^{n}f\} \sim \{D_{\alpha}E_{\alpha}T^{n}f\}$ or that $PQ^{n}Df \sim DT^{n}f$. Hence $PQ^{n}D = DT^{n}$.

It is now clear that, in the partial ordering of W given in the previous section, $Q: W \to W$ is a positive invertible isometry, $D: L \to W$ is a positive isometry, and $P: W \to W$ is a positive projection. Although W is obtained as a general Banach Lattice, the theorem of Kakutani mentioned at the end of the previous section shows that there is an L_p Space B and a positive isometric isomorphism $\Psi: W \to B$. This Ψ can be used to transport Q, D, P to similar operators Q', D', P' related to B as $Q' = \Psi Q \Psi^{-1}: B \to B$, $D' = \Psi D: L \to B$, $P' = \Psi P \Psi^{-1}: B \to B$. Then it is clear that all the requirements of Theorem (1.1) are satisfied.

Finally, we will mention the following point. If L and B are two L_p spaces and if $D:L \to B$ is a positive isometry then DL can be characterized as follows. If $B = L_p(Z, \mathcal{G}, \nu)$, then there exists a sub σ -algebra $\mathcal{G}_0 \subset \mathcal{G}$ and a set $Z_0 \in \mathcal{G}_0$ so that $DL = L_p(Z_0, Z_0 \cap \mathcal{G}_0, \nu_0)$, where ν_0 is the restriction of ν to $Z_0 \cap \mathcal{G}_0$. Hence there is a natural positive projection $\Pi: B \to B$ so that $\Pi B =$ DL. This is defined as $\Pi f = E(\chi_{z_0} f), f \in B$, where E is the conditional expectation with respect to \mathcal{G}_0 . Although in Theorem (1.1) we have this positive isometry $D:L \to B$, the positive projection $P:B \to B$ (we omit the primes from D and P to simplify the notation) obtained in the above proof is not the natural projection Π . A more careful analysis of the representation of W as an L_p Space shows that $\Pi Q^n D = PQ^n D$, i.e. that Π can also be used as the positive projection required in Theorem (1.1). We will, however, omit this.

References

1. M. A. Akcoglu: A pointwise ergodic theorem for L_{ρ} Spaces, Can. J. Math. 27, 1075–1082, (1975).

2. M. A. Akcoglu: Positive contractions of L₁ Spaces, Math. Z. 143, 5-13, (1975).

3. M. A. Akcoglu and P. E. Kopp: Positive contractions of L_o Spaces. To appear in 2 Math.

4. M. A. Akcoglu and L. Sucheston: On convergence of iterates of positive contractions in L_{ρ} Spaces, J. Approx. Theory, **13**, 348–362, (1975).

5. M. A. Akcoglu and L. Sucheston: On positive dilations to isometries in L_{ρ} Spaces. Lecture Notes in Math. Vol **541**, 389-401, Springer Verlag 1976.

6. D. Dacunha-Castelle and J. L. Krivine: Applications des ultraproduits a l'ètude des espaces et des algèbres de Banach, Studia Math. 41, 313-334, (1972).

7. W. B. Johnson: Private communication, January, 1976.

8. J. Lindenstrauss and L. Tzafriri. *Classical Banach Spaces*. Lecture Notes in Mathematics, **338**, Springer-Verlag, 1973.

9. H. L. Royden: Real Analysis. Macmillan, New York, 1968.

10. G. C. Rota: "An Alternierende Verfahren" for general positive operators. Bull. A.M.S. 68, 95-102, 1962.

Dept of Math

UNIVERSITY OF TORONTO