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We observe returns of a simple random walk on a finite graph to a fixed node, and

would like to infer properties of the graph, in particular properties of the spectrum of the

transition matrix. This is not possible in general, but at least the set of eigenvalues can

be recovered under fairly general conditions, e.g., when the graph has a node-transitive

automorphism group. The main result is that by observing polynomially many returns, it

is possible to estimate the spectral gap of such a graph up to a constant factor.

1. Introduction

A spelunker has an accident in the cave. His lamp goes out, he cannot move, all he can

hear is a bat flying by every now and then on its random flight around the cave. What

can he learn about the shape of the cave?

In other words: What can we learn about the structure of a finite graph using only

information obtained by observing the returns of a random walk on the graph to this node?

Let G = (V , E) be a connected simple graph with n = |V | > 1 vertices, and let r ∈ V

be a fixed node. Let w0 = r, w1, w2, . . . be the steps of a simple random walk on G starting

from r. Assume that we observe the return time sequence, the infinite sequence of (random)

times 0 < T1 < T2 < · · · when the walk visits r. Alternatively this can be described as a

sequence a1, a2, a3, . . . of bits, where ai = 1 if the walk is at r at time i, 0 otherwise. Note
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that T2 − T1, T3 − T2, . . . are independent samples from the same distribution as T1, which

we call the return distribution of G to r.

We say that a parameter p(G, r) of the graph G and root r can be reconstructed (from

the return time sequence), if, for every two rooted graphs (G, r) and (G′, r′) for which the

return time sequence has the same distribution, we have p(G, r) = p(G′, r′).

Which graph parameters can be reconstructed from the return time sequence? There

is a trivial way to construct different graphs with the same return sequence: take two

isomorphic copies and glue them together at the root. Sometimes it makes sense to assume

that we also know the degree d(r) of the root. In this case, we can reconstruct the number

of edges through

|E| = d(r)E(T1)/2. (1.1)

If the graph is regular, then we can reconstruct the number of nodes:

n = |V | = E(T1). (1.2)

Another trivial example is to observe whether all the numbers Ti are even. This is so if

the graph is bipartite, and it happens with probability 0 otherwise.

A natural candidate for a reconstructible quantity is the spectrum of the transition

matrix M of the random walk on G. Let λ1 = 1, λ2, . . . , λn be the eigenvalues of M,

arranged in decreasing order. Bipartiteness is equivalent to saying that λn = −1.

We are going to show by a simple example that the spectrum is not reconstructible

in general. On the other hand, we show that if λ is an eigenvalue of G which has an

eigenvector v ∈ R
V such that vr �= 0, then λ is reconstructible. We note that the multiplicity

of λ is not necessarily reconstructible.

A special case where the eigenvector condition above is satisfied for all eigenvalues is

when G is node-transitive. We do not know whether in this case the multiplicities are

reconstructible.

Of particular interest is the issue of efficient reconstruction, by which we mean observing

a polynomial (or expected polynomial) number of returns. We consider this question in

the case of the spectral gap τ = 1 − λ2. Assuming the graph is node-transitive, we describe

a procedure to estimate τ up to a constant factor, using just polynomially many (in n) of

the first values of the Ti. We give an example of a graph where the spectral gap cannot

be recovered at all from observations made at one particular node.

This question was first mentioned, together with other related problems, in [3]. Another

related work is that of Feige [4] which presents a randomized space-efficient algorithm

that determines whether a graph is connected. His method uses return times of random

walks to estimate the size of connected components.

2. Examples

Example 1. Consider the two trees in Figure 1. The distribution of the return time to the

root is the same in both trees (see later). The eigenvalues of the tree on the left are

1,
√

3/2,
√

6/4, 0, 0, 0, 0, 0,−
√

6/4,−
√

3/2,−1,
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Figure 1. Two trees with the same return times but different spectra.

while the eigenvalues of the tree on the right are

1,
√

3/2,
√

3/2,
√

6/4, 0, 0, 0,−
√

6/4,−
√

3/2,−
√

3/2,−1.

Note that the eigenvalues are the same, but their multiplicities are different.

Example 2. Let T be a tree in which all internal nodes have degree d + 1 and which has

a ‘root’ r such that all leaves are at distance h from the root. We construct a graph G by

adding a d-regular graph on the leaves.

For a fixed h and d, all graphs obtained this way are (d + 1)-regular graphs, and the

distribution of the return time to the root is the same in all such graphs. On the other

hand, graphs obtained this way can have very different properties. If we add an expander

on the leaves, the graph G will be an expander. (Recall that G is a c-expander if and only

if |∂S | > c|S | for every non-empty set of vertices S with |S | < |G|/2. For background on

expanders and spectral gap see, e.g., [5].) If we connect ‘twin’ leaves to each other, and

also match up ‘cousins’ to get d new edges at each node, then for h > 2 the root will be a

cutpoint. For expanders, the eigenvalue gap λ1 − λ2 is bounded from below by a positive

function of d, while for the graphs with cutpoints in the middle the eigenvalue gap tends

to 0 as h → ∞.

3. Preparation: some algebra and generating functions

3.1. Return probabilities and eigenvalues

Denote by Pk(x, y) the probability that a simple random walk on G starting at x ∈ V will

be at y ∈ V at time k. Clearly

Pk(x, y) = eT
xM

key. (3.1)

Here M, the transition matrix of the random walk on G, is not symmetric, but we can

consider the symmetrized matrix N = DMD−1, where D is a diagonal matrix with the

positive numbers
√
d(i) in the diagonal. The matrix N has the same eigenvalues as M,
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and so we have

Pk(r, r) =

n∑
i=1

fi(r)
2λki , (3.2)

where f1, f2, . . . , fn is an orthonormal basis of eigenfunctions of N corresponding to the

eigenvalues λ1, λ2, . . . , λn.

We note that if the graph is node-transitive, then the value Pk(r, r) is the same for all r,

and hence by averaging (3.2) we get the simpler formula

Pk(r, r) =
1

n
trace(Mk) =

1

n

n∑
i=1

λki . (3.3)

At some point, it will be convenient to consider the lazy version of our chain, i.e., the

Markov chain with transition matrix M ′ = (1/2)(I + M) (before doing a step, we flip a

coin to decide if we want to move at all). The observer can easily pretend that he or

she is watching the lazy version of the chain: after each step, he flips a coin in quick

succession until he tosses a head, and advances his watch by the number of coinflips. The

distribution after k lazy steps is easy to compute from (3.1):

P ′
k(x, y) = 2−keT

x(I + M)key = 2−k

k∑
j=0

(
k

j

)
eT
xM

jey = 2−k

k∑
j=0

(
k

j

)
Pj(x, y). (3.4)

The main advantage of the lazy chain is that its eigenvalues are nonnegative. Further-

more, for a lazy chain we have

λ2 + · · · + λn = trace(M) − 1 =
n

2
− 1.

3.2. The generating function of return times

Let us introduce the generating function

F(t) =

∞∑
k=0

Pk(r, r)t
k =

n∑
i=1

fi(r)
2 1

1 − tλi
. (3.5)

There are several other useful expressions for F(t); for example, we get from (3.1) that

F(t) = eT
r (I − tM)−1er,

and expressing this in terms of determinants we get

F(t) =
det(I ′ − tM ′)

det(I − tM)
, (3.6)

where M ′ is the matrix obtained from M by deleting the row and column corresponding

to the root, and I ′ is the (n − 1) × (n − 1) identity matrix.

It will be convenient to do a little algebraic manipulation. The reciprocal of this function

is also an interesting generating function:

1

F(t)
= 1 −

∞∑
k=1

skt
k, (3.7)
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where sk = P(T1 = k) is the probability that the first return to the root occurs at the kth

step. This function has a zero at t = 1, so it makes sense to divide by 1 − t, to get the

analytic function

1

(1 − t)F(t)
=

∞∑
k=0

zkt
k, (3.8)

where

zk = 1 −
∑
j�k

sk =
∑
j>k

sk

is the probability that the random walk does not return to the root during the first k steps.

4. Reconstructing nondegenerate eigenvalues

It is these formulas which form the basis of learning about the spectrum of G from the

visiting times of the random walk at x, since Pk(r, r) is determined by the distribution of

return times, and can be easily estimated from the visiting times (see Section 6). We call

an eigenvalue of M nondegenerate if at least one of the corresponding eigenfunctions fi(x)

satisfies fi(r) �= 0. One can see from (3.2) that the nonzero nondegenerate eigenvalues are

determined by the distribution of return times. Using
∑n

i=1 fi(r)
2 = 1 for the orthonormal

basis fi, we conclude that whether zero is a nondegenerate eigenvalue of M is also

determined. The return time distribution determines F(t) and this can also be used to

find the nondegenerate eigenvalues: the poles of F(t) are exactly the reciprocals of the

nonzero, nondegenerate eigenvalues of M. Zero is a nondegenerate eigenvalue if and only

if limt→∞ F(t) > 0. Then we get the following result.

Proposition 4.1. If two rooted graphs have the same return time distribution, then they have

the same nondegenerate eigenvalues.

Let us remark that if G has a node-transitive automorphism group, then every eigenvalue

of M is nondegenerate. Indeed, every eigenvalue has an eigenvector, which does not vanish

at some node; by node-transitivity, it also has an eigenvector that does not vanish at the

root.

Let us also remark that the multiplicity of a nondegenerate eigenvalue is not uniquely

determined: 0 is a nondegenerate eigenvalue of both trees in Example 1, but it has different

multiplicities in the two. Furthermore, degenerate eigenvalues are not determined by the

return times: the second-largest eigenvalues of the transition matrices of the two (d + 1)-

regular graphs constructed in Example 2 are different. It follows from Proposition 4.1

that, at least for the second graph, the second-largest eigenvalue is degenerate.

5. Trees

We want to put Example 1 in broader context. For trees, we can simplify the generating

function slightly. Since trees are bipartite, we have z2k = z2k+1, and hence it makes sense

https://doi.org/10.1017/S0963548306007590 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007590


678 I. Benjamini, G. Kozma, L. Lovász, D. Romik and G. Tardos

to divide by t + 1 and then substitute x = t2. It will be convenient to scale by the degree

of the root, and to work with the function

hG(x) = d(r)

∞∑
k=0

z2kx
k =

d(r)

(1 − x)F(
√
x)

. (5.1)

It is easy to see that we did not lose any information here: we have hG1
(x) = hG2

(x) for

two trees G1 and G2 if and only if they have the same return time distribution and their

roots have the same degree.

For a rooted tree with a single edge, hG(x) = 1. If a rooted tree G is obtained by gluing

together the roots of two rooted trees G1 and G2, then

hG(x) = hG1
(x) + hG2

(x). (5.2)

This is easily seen by conditioning on which tree the random walk starts in. Furthermore,

if we attach a new leaf r′ to the root r of a tree G and make this the root to get a new

rooted tree G′, then

hG′ (x) =
1 + hG(x)

1 + (1 − x)hG(x)
. (5.3)

To see this, consider a walk on G′ starting at r′, and the probability z′
2k that it does

not return to r′ in the first 2k steps. Let z2k denote the corresponding probability in the

random walk in G starting from r. Let d be the degree of r in G. The first step of the

random walk in G′ leads to r. If the walk does not return to r′ for 2k steps for some k � 1,

then the second step has to use a different edge; this happens with probability d/(d + 1).

We can view the walk now as a random walk on G until it returns to r. The probability

that this happens after 2j steps is z2j−2 − z2j . If j � k then the walk will certainly not

return to r′ in the first 2k steps. If j < k, then we can think of the situation as just

having made a step from r′, and so the probability that we do not return to r′ in the next

2k − 2j − 1 steps is z′
2k−2j . Hence we get the equation

z′
2k =

d(r)

d(r) + 1

⎛
⎝z2k−2 +

k−1∑
j=1

(z2j−2 − z2j)z
′
2k−2j

⎞
⎠.

Multiplying by xk and summing over all k � 0, we get (5.3).

Formulas (5.2) and (5.3) imply that hG is a rational function with integral coefficients.

They also provide us with a fast way to compute hG, and through this, to verify that the

two trees in Example 1 have the same return distribution. But we can get more: a way to

generate many such pairs.

Suppose that we find a linear dependence between functions hG for various trees G.

This can be written as

a1hG1
+ · · · + akhGk

= b1hG′
1
+ · · · + bmhG′

m

with some positive integers a1, . . . , ak, b1, . . . , bm. Now if we glue together the roots of a1

copies of G1, . . . , ak copies of Gk to get G, and the roots of b1 copies of G′
1, . . . , bm copies
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of G′
m to get G′, then by (5.2) we will have

hG(x) = hG′ (x).

We can add a new root to both if we prefer to have an example rooted at a leaf.

Obviously, we only need to look for trees rooted at leaves. To find such linear

dependencies, it is natural to find trees for which hG(x) is ‘simple’, namely the ratio

of two linear functions, and then find three with a common denominator. A general

example is a tree G = Ga,b of height 3, where the neighbour of the root has degree a and

has a − 1 neighbours of degree b. We can allow the degenerate cases b = 1 (when G is a

star rooted at a leaf) and a = 1 (when G is a single edge). It is easy to compute that

hG(x) =
ab − (b − 1)x

ab − (ab − 1)x
.

So if we fix a k which is not a prime, and consider trees G = Ga,b with ab = k, they

all have the same denominator k − (k − 1)x, and so for any three of them their functions

hG will be linearly dependent. The simplest choice is k = 4, when we get the trees G1,4 (a

single edge), G2,2 (a path of length 3) and G4,1 (a 4-star). Simple computation shows that

hG1,4
− 3hG2,2

+ 2hG4,1
= 0.

Gluing these together as described above, and adding a new root for good measure, gives

the two trees in Example 1.

Using (3.6) and (5.1), it is not hard to see that the roots of the numerator of hG(x)

are the squared reciprocals of the nondegenerate nonzero eigenvalues of G, except for

the trivial nondegenerate eigenvalues ±1. The multiplicities, as we have seen, are not

necessarily determined by hG.

Remark. In the special trees constructed above, the square roots of the root of the

denominator are exactly the degenerate eigenvalues of G. We do not know if this is

always so. An interesting open question seems to be whether the degenerate eigenvalues

are reconstructible for trees. Several other questions concerning the functions hG(x) arise:

Are the trees above the only trees for which hG has linear numerator and denominator?

Are there interesting trees for which hG(x) is the ratio of quadratic polynomials? What

can be said about hG(x) for trees of depth 4?

6. Effective reconstruction

In the previous section, we assumed that the exact distribution of the return time is

known, which is the same as saying that we can observe the random walk forever. In

this section we are concerned with determining quantities after observing a polynomial

number of returns.

6.1. Estimating return probabilities

We show that we can estimate Pk(r, r), the probability that the random walk starting

from r is at r at time k, from the observation of polynomially many return times. Fix
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k and observe the returns T1, T2, . . . until the first Ti1 with Ti1 � k; call this period an

experiment. Call the experiment successful if Ti1 = k. The probability that an experiment

is successful is Pk(r, r). Note that observing the next k steps and then until the first

return (i.e., Ti1+1, . . . , Ti2 with the smallest i2 such that Ti2 � Ti1 + k) is an independent

experiment.

Continuing in this way, we obtain a sequence of independent events A1, A2, . . . with the

same probability p = Pk(r, r), and we want to estimate p. Let ε, δ be given positive numbers,

and set m = ε−2δ−1. By Chebyshev’s inequality, after observing m of these events, the rela-

tive frequency of their occurrence is closer than ε to its mean, p, with probability at least

1 − p(1 − p)

mε2
> 1 − δ.

The amount of time a particular experiment takes is a random variable, whose

expectation is k plus the time it takes to get back to r after k steps. This can be

bounded by the maximum hitting time between nodes, which is O(n3).

Proposition 6.1. In an expected time of O((k + n3)ε−2δ−1) we can compute an estimate of

Pk(r, r) which is within an additive error of ε with probability at least 1 − δ.

6.2. Reconstructing the eigenvalue gap

We restrict our attention to node-transitive graphs, in which case we can use the trace

formula (3.3). We can use (1.2) to reconstruct the number of nodes n. Furthermore, we

assume that the chain is lazy, so that its eigenvalues are nonnegative, and their sum is n/2.

For a lazy chain, Pk(r, r) tends to 1/n monotone decreasing. Furthermore, (3.3) implies

that setting

qk = Pk(r, r) − 1

n
,

we have

nqk+1 =

n∑
i=2

λk+1
i � 1

n − 1

(
n∑

i=2

λi

)(
n∑

i=2

λki

)
=

1

n − 1
(trace(M) − 1)nqk,

and hence

qk+1 � 1

3
qk (6.1)

for n � 4 (which we assume without loss of generality).

We can try to compute recursively λ1 = 1 and

λi = lim
k→∞

⎡
⎣Pk(r, r) −

i−1∑
j=1

λkj

n

⎤
⎦1/k.

This, however, does not seem to give an effective means of estimating λi in polynomial

time. But to estimate at least the eigenvalue gap τ = 1 − λ2 we can use the following fact.

Lemma 6.2. We have (
1 +

ln n

ln qk

)
(1 − q

1/k
k ) � τ � 1 − q

1/k
k . (6.2)
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Proof. From (3.3),

Pk(r, r) =
1

n
+

n∑
i=2

λki
n
,

and hence

λk2
n

�
n∑

i=2

λki
n

= qk � λk2.

Thus

1 − (nqk)
1/k � τ � 1 − q

1/k
k .

Using the elementary inequality

1 − x

1 − y
� ln x

ln y
,

valid for 0 < x < y < 1, (6.2) follows. Simply take x = q
1/k
k , y = (nqk)

1/k . Note that nqk > 1

makes the lower bound in (6.2) trivially true.

Let c > 1. It follows that if we find an integer k > 0 such that qk < 1/nc, then 1 − q
1/k
k

is an estimate for the eigenvalue gap τ which is within a factor of 1/(1 − 1/c) to the

true value. So, if we want to estimate τ to within a factor of 1 ± ε, for some 0 < ε < 1,

then picking c = 5/ε we get that 1 − q
1/k
k estimates τ to within a factor of 1 ± ε/4. But

of course we do not know qk exactly, only with an additive error: by Proposition 6.1, we

can estimate qk in polynomial time with an additive error less than (say) ε/nc, with high

probability.

It is known (see, e.g., [2, Chapter 4]) that the eigenvalue gap of a connected node-

transitive graph with n nodes is at least 1/n2. So we get that for k � K0 = (c + 1)n2 ln n,

qk � n

(
1 − 1

n2

)k

< ne−k/n2 � 1

nc
.

Applying Proposition 6.1, we can compute an approximation Qk of qk that is within an

additive error of ε/(8nc) with probability � 1 − δ/(log2 K0). By binary search, we can find

a k in the interval [0, K0] for which

Qk � 1/nc but Qk−1 > 1/nc. (6.3)

Proposition 6.3. Let 0 < ε < 1, and let 0 < δ < 1. Let Qk be as above and let k be defined

by (6.3). Then 1 − Q
1/k
k is an estimate of the spectral gap τ that is within a factor of 1 ± ε

of τ with probability at least 1 − δ.

Proof. With large probability, we have

|qm − Qm| < ε

8nc
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for all m for which we compute Qm, in particular for m = k − 1 and m = k. Using (6.1),

qk � 1

3
qk−1 � 1

3

(
Qk−1 − ε

8nc

)
� 1

4nc
,

and also

Qk � qk − ε

8nc
�

(
1 − ε

2

)
qk. (6.4)

Similarly,

Qk �
(

1 +
ε

2

)
qk. (6.5)

We claim that

1 − ε

2
� 1 − Q

1/k
k

1 − q
1/k
k

� 1 +
ε

2
. (6.6)

To show the upper bound, we may assume that Qk � qk . Then, using (6.5),

1 − Q
1/k
k

1 − q
1/k
k

� lnQk

ln qk
�

ln((1 − ε
2
)qk)

ln qk
= 1 +

ln(1 − ε
2
)

ln qk
< 1 − ln

(
1 − ε

2

)
� 1 +

ε

2
.

The lower bound in (6.6) follows similarly. Hence, by Lemma 6.2,

τ � 1 − q
1/k
k � (1 − ε)

(
1 − Q

1/k
k

)
,

and

τ � 1 −
(
qk

n

)1/k

�
(

1 +
ln n

ln(1/qk)

)(
1 − q

1/k
k

)
�

(
1 +

1

c

)(
1 +

ε

2

)(
1 − Q

1/k
k

)
� (1 + ε)

(
1 − Q

1/k
k

)
.

7. Concluding remarks

(1) We can estimate for every node-transitive graph, by similar means, the value 1 −
max(λ2, |λn|), which governs the mixing time of the chain. The trick is to consider the

matrix M2 instead of M, i.e., observe the chain only every other step. A little care is

in order, since this new chain is not connected if G is bipartite. We have to start by

observing if the graph is bipartite and if so return 0 as λn = −1. As mentioned in the

Introduction, whether G is bipartite can be decided by checking if all return times are even.

Clearly, considering only a polynomial number of return times introduces a negligible

error probability.

(2) The second moment of the first return time also has some more direct meaning.

Let H(π, r) denote the expected number of steps before a random walk starting from the

stationary distribution π hits the root r. Then it is not hard to show using that the walk

is close to stationary at a far away time that

H(π, r) =
E
(
T 2

1

)
2E(T1)

− 1

2
.
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To see this consider a random walk from r with return times T1, T2, etc. Let t be large

enough and fixed and let s be distributed uniformly among the integers in t < s � 2t.

The walk after s steps gets us very close to the stationary distribution. So H(π, r) is

close to the expected time it takes to return to r after the first s steps. The contribution

to this expectation from the return Ti with t � Ti−1 < Ti � 2t is exactly
(
Ti−Ti−1

2

)
/t. The

contribution of the first returns after step t and after step 2t can be neglected (t is large).

Here Ti − Ti−1 is distributed independently as T1 so each return contributes approximately

E(
(
T1

2

)
)/t to the expectation and we have an expected number of approximately t/E(T1)

such returns in the interval. This yields an estimate of H(π, r) ≈ E(
(
T1

2

)
)/E(T1). The error

of this approximation goes to 0 as t grows, so it has to be exact, yielding the claimed

formula.

It is not clear whether any of the higher moments have any direct combinatorial

significance.

(3) Here are a couple of related problems. ¡

Problem 1. Let G be a connected graph of size n. We label the vertices randomly by

m(n) colours and observe the colours as they are visited by a simple random walk: after

each step, the walker tells you ‘now I’m at red’, ‘now I’m at blue’, and so on. How many

colours are needed in order to recover the shape of G almost surely from this sequence

of colours?

Problem 2. Consider an n-node connected graph. Take n particles labelled 1, . . . , n. In a

configuration, there is one particle at each node. The interchange process introduced in

[1] is the following continuous time Markov chain on configurations. For each edge (i, j)

at rate 1 the particles at i and j interchanged. Assume you observed the restriction of the

interchange process to a fixed node. What graph properties can be recovered? Obviously

you get more information than in the case discussed in the paper, which corresponds

to noticing only one of the particles. But is it really possible to use this information to

discover more about the graph?
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