
On representations of irrational numbers and the

computational complexity of converting between

such representations

Amir Ben-Amram∗ Lars Kristiansen†

Jakob Grue Simonsen‡

June 25, 2025

Abstract

We study the computational complexity of converting between dif-

ferent representations of irrational numbers. Typical examples of repre-

sentations are Cauchy sequences, base-10 expansions, Dedekind cuts and

continued fractions.

1 Introduction

1.1 Motivations

Real numbers can be represented by Cauchy sequences, base-10 expansions,
Dedekind cuts, continued fractions and a number of other representations (we
will consider quite a few of them in this paper). Our goal is to analyze the
computational complexity of converting one representation into another. Let us
say that we have access to the Dedekind cut of the real number α. How hard
will it be to compute a Cauchy sequence for α? How hard will it be to compute
the continued fraction of α? Or let us say that we have access to the continued
fraction of α, how hard will it then be to compute the base-10 expansion of
α? Will there be an efficient algorithm? Can it be done in polynomial time?
Exponential time?

These are very natural questions to ask, but they are also naive, and the way
the questions are posed above, does hardly make any sense at all. We will aim at
posing such questions in a mathematically satisfactory manner, and then derive

∗Qiryat Ono, Israel
†Department of Mathematics, University of Oslo, Norway and Department of Informatics,

University of Oslo, Norway
‡IT University of Copenhagen, Denmark

1

This is a ``preproof'' accepted article for The Bulletin of Symbolic Logic.
This version may be subject to change during the production process.
DOI: 10.1017/bsl.2025.10085

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

reasonably tight upper bounds on the computational complexity of a number of
conversions.

At the outset we are mainly interested in classic and historically prominent
representations like Cauchy sequences and Dedekind cuts, which are important
in the foundation of analysis, or base-b expansions, continued fractions and rep-
resentations related to the Stern-Brocot tree which have numerous applications
in both pure and applied mathematics. In general, we cannot uniformly convert
one of these representations into another. This is well known. E.g., we cannot
uniformly convert a Cauchy sequence into a base-b expansion: No algorithm
with oracle access to a Cauchy sequence for a real number α can compute the
base-b expansion of α because it is not possible to determine the digits in such
an expansion by examining a finite part of the Cauchy sequence. The conversion
is not continuous (see e.g. [40]), that is, we cannot determine a finite part of the
output by examining a finite part of the input. For the same reason, we cannot
uniformly convert Dedekind cuts to continued fractions or Cauchy sequences to
Dedekind cuts.

The computational complexity of an operation is determined by imposing
resource bounds on an algorithm (Turing machine) carrying out the operation.
The considerations above show that, in general, it may make no sense to talk
about the computational complexity of converting one representation of (the
set of all) real numbers into another representation. If there does not exists a
uniform conversion from one representation to another, then no algorithm can
carry out the conversion, and then there is nothing to impose resource bounds
on.

The absence of uniform conversions is due to the presence of the rational
numbers. If we exclude the rationals and restrict our attention to the irrational
numbers, then it is indeed possible to uniformly convert back and forth between
any of the classic representations discussed above. We will use this insight to
give a formal definition of what a representation of an irrational number is,
see Definition 1.2 below. Roughly speaking, the definition states that a class
of functions is a representation if it is uniformly computably equivalent to the
class of Dedekind cuts of the irrational numbers. In addition to capture the
classic representations discussed above, this definition is generous enough to
include some representations popular in the practice of numerical computations
with exact real arithmetic (Boehm et al. [10]) and modern computable analysis
(Weihrauch [41], Ko [29]). We will study all sorts of representations captured
by our definition, including some representations due to the authors.

We note that there exists a very general and well-developed theory of Type-
2 computability, continuity, and representation of sets of continuum cardinal-
ity (some references are Weihrauch [42], Kreitz and Weihrauch[30], Brattka et
al. [12] and Weihrauch [41]). This theory may serve as a foundation for modern
computable analysis and allows for a wide range of representations of real and
irrational numbers. In the present paper, our definition of the notion of repre-
sentation (of the irrational numbers) is restrictive in the sense that it excludes
some of the representations allowed in Type-2 computability. We do not regard
this as a problem as our definition is instrumental rather than foundational,

2

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

and its purpose is to provide a neat and transparent development of the degree
structure depicted in Figure 1.

1.2 What is a representation?

Formally, a representation of the irrational numbers will be a class of functions
with countable domain and codomain (typically Q or N)1. Every function in the
class will represent a particular irrational number, and each irrational number
will be represented by some function in the class. The class of Dedekind cuts of
irrational numbers will be a canonical representation to us.

Definition 1.1. The Dedekind cut of an irrational number α is the function

α : Q −→ {0, 1} where

α(q) =

{
0 if q < α

1 if q > α.

Each irrational number has a unique representation in this class, and we can
identify an irrational number α with its Dedekind cut α : Q −→ {0, 1}.

We will take advantage of the uniqueness of the Dedekind cuts to define what
a representation in general is. We refer to the functions in a representation R
as R-representations. When f is an R-representation of α, we will require that
it is possible to compute the Dedekind cut of α in f , that is, we will require
that there exists an oracle Turing machine M such that

α(q) = ΦfM (q)

where ΦfM is the function computed by M with oracle f . We will also require
that at least one R-representation f of α can be computed in the Dedekind cut
of α, that is, we will require that there exists an oracle Turing machine N and
an R-representation f such that

f(x) = ΦαN (x)

where ΦαN is the function computed by N when the oracle is the Dedekind cut
of α. We are now ready to give our formal definition.

Definition 1.2. A class of functions R is a representation (of the irrational

numbers) if

1. There exists a Turing machine M with the following property: For every

f ∈ R there exists an irrational α such that α = ΦfM . When α = ΦfM , we

say that f represents α and that f is an R-representation of α.

1In fact, as we use Turing machines, we assume the domain and codomain to be equipped

with an encoding as words over a finite alphabet. For N and Q we use standard encodings,

described later.

3

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

2. There exists a Turing machine N with the following property: For every

irrational α there exists an R-representation f of α such that f = ΦαN .

We say that an oracle Turing machine M converts an R1-representation

into an R2-representation if for any f ∈ R1 representing α there exists g ∈ R2

representing α such that g = ΦfM .

Let us study a few examples in order to see how this definition works. We
define a Cauchy sequence for α as a function C : N+ −→ Q with the property

|C(n)− α| < n−1 .

Let C be the class of all Cauchy sequences for all irrational numbers. We will
now argue that C is a representation according to the definition above.

First we observe that we can compute the Dedekind cut of an irrational α
in any Cauchy sequence for α. In order to compute α(q), we search for the least
n > 0 such that |C(n) − q| > n−1. This search terminates as q is rational and
α is irrational. If q < C(n), it will be the case that α(q) = 0 (we have q < α),
otherwise, we have q > C(n), and then it will be case that α(q) = 1 (we have

q > α). Thus there will be an oracle Turing machine M such that α = ΦfM
whenever f is a Cauchy sequence for α. Now, M has the following property:
For every f ∈ C there exists irrational α such that α = ΦfM . This shows that
clause (1) of Definition 1.2 is satisfied.

Next we observe that we can compute a Cauchy sequence C for α if we have
access to the Dedekind cut of α. We can use the Dedekind cut to find an integer
a such that a < α < a + 1. Thereafter, we can use the Dedekind cut and the
equations

C(1) = a+
1

2
and C(i+ 1) =

{
C(i)− 2−i−1 if C(i) > α

C(i) + 2−i−1 if C(i) < α

to compute C(n) for arbitrary n. This is one possible way to compute a Cauchy
sequence in a Dedekind cut. There are for sure other ways. Other algorithms
may yield Cauchy sequences that converge faster, or slower, than the ones com-
puted by the algorithm suggested above. Anyway, there will be an oracle Turing
machine N such that we have C = ΦαN where C is some Cauchy sequence for α.

Now, in order to see that clause (2) of Definition 1.2 is satisfied, pick an
arbitrary irrational α. Then we have f = ΦαN for some Cauchy sequence f ,

moreover, we have α = ΦfM , and hence f is a C-representation of α. Hence, N
has the following property: For every irrational α there exists a C-representation
f of α such that f = ΦαN . This shows that also clause (2) is satisfied, and we
conclude that C, that is, the class of all Cauchy sequences for all irrational
numbers, is a representation.

Let a0, a1, a2, . . . be an infinite sequence of integers, where a1, a2, a3, . . . are

4

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

positive. The continued fraction [a0; a1, a2, . . .] is defined by

[a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

It is well known that any irrational number can be uniquely written as an infinite
continued fraction, and moreover, each infinite continued fraction equals an
irrational number (rationals have finite continued fractions). There is a one-to-
one correspondence between the infinite continued fractions and the irrational
numbers.

Let F be the class of all infinite continued fractions where [a0; a1, a2, a3 . . .]
is identified with a function f where f(n) = an. Then F will be a representation
according to Definition 1.2. If we have access to the continued fraction of α,
we can compute the Dedekind cut of α, and if we have access to the Dedekind
cut of α, we can compute the continued fraction of α. Thus there exist Turing
machines M and N such that

α = ΦfM and f = ΦαN

whenever f is the continued fraction of the irrational number α. Each irrational
number will have one, and only one, F-representation, and it is easy to see that
both clause (1) and clause (2) of Definition 1.2 is fulfilled.

We will not give a formal definition of a representation of all real numbers,
and it is essential that Definition 1.2 is restricted to the irrational numbers. If
we involve the rationals, the definition will not serve its purpose as we cannot
always uniformly convert one standard representation into another, even if we
are dealing with representations of a computable nature. E.g., the algorithm
above converting a Cauchy sequence C into a Dedekind cut, searches for a
number n such that |C(n)− q| > n−1. This search will not terminate when C is
a Cauchy sequence for the rational number q. Thus, if α might be rational, the
algorithm does not yield a Turing machine M such that ΦCM is the Dedekind cut
of α whenever C is a Cauchy sequence for α, moreover, it can be proven that
no such Turing machine M exists (see Mostowski [36]). We cannot uniformly
convert Cauchy sequences for real numbers into Dedekind cuts, but we can
uniformly convert Cauchy sequences for irrational numbers into Dedekind cuts.

The purpose of Definition 1.2 is to capture what we intuitively consider as
computable representations of the real numbers, and maybe somewhat para-
doxically, we enable the study of conversions among such representations by
restricting the definition to the irrational numbers.

A sequence of rationals q0, q1, q2, . . . containing all rational numbers less than
α, and nothing but the rationals less than α, will not yield a representation
according to our definitions. Such a sequence defines a unique real number α,
but we cannot use the sequence to compute the Dedekind cut of α (even if
α is irrational). By the same token, Cauchy sequences without a modulus of
convergence will not yield a representation.

5

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

1.3 An ordering relation on representations

We have seen that there is an algorithm for computing the Dedekind cut of an
irrational α in an arbitrary Cauchy sequence for α. The algorithm searches for
the least natural number n that fulfills certain criteria. It is easy to see that such
an unbounded search is necessary. We cannot convert a Cauchy sequence into a
Dedekind cut if we are not allowed to carry out unbounded search. Neither can
we convert a base-10 expansion into a base-3 expansion if we are not allowed
to carry out unbounded search. Suppose an oracle tells us that the base-10
expansion of an irrational starts with 0.66666. That will not be enough for
us to decide if the base-3 expansion starts with 0.1 or 0.2. Thus, in order to
determine which of these two options we should pick, we have to ask the oracle
for the next digit of the decimal expansion, but of course, the next digit might
also be 6, and so might the next after the next. The oracle may continue for
an arbitrarily long time to tell us that the next digit is 6. Since the number is
irrational the oracle will eventually yield a digit that allows to determine if the
base-3 expansion starts with 0.1 or 0.2, but we need to carry out an unbounded
search to get that digit.

Algorithms (conversions, computations, etc.) that do not perform unbounded
search will be referred to as subrecursive algorithms (conversions, computations,
etc.), in general, the word subrecursive signifies absence of unbounded search.
This terminology might not be standard, but it will be very convenient.

We will now define an ordering relation �S over the representations. Intu-
itively, the relation R1 �S R2 will indicate that the representation R2 is more
informative than the representation R1. If R1 �S R2 holds, a Turing machine
with oracle access to an R2-representation of α can subrecursively (yes, that
means without carrying out unbounded search) compute an R1-representation
of α. Thus, if the relation R1 �S R2 does not hold, it will not make much sense
to talk about the computational complexity of converting an R2-representation
into an R1-representation as such a conversion requires unbounded search, and
thus, there will be no upper bound on the running time of a Turing machine
undertaking the conversion. On the other hand, if the relation holds, it should
make sense to analyze the computational complexity of the conversion. So far
we have just indicated our intention with the relation; below we shall give the
formal definition. First, however, we need an auxiliary definition. We are going
to formulate our definition in terms of time-bounded computation, and there
is need to specify what functions we admit as time bounds. We admit time-
constructible functions, as defined next. This is a standard choice in complexity
theory.

Definition 1.3. A function t : N −→ N is a time bound if (i) n ≤ t(n), (ii) t

is nondecreasing and (iii) t is time-constructible: there is a single-tape Turing

machine that, on input 1n, computes the binary expansion of t(n) in Θ(t(n))

steps.

Clause (iii) in the definition is needed because there are functions whose
computational complexity is disproportionate to the size of their values. We

6

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

exclude such functions as time bounds, avoiding certain pitfalls in proofs. The
class of functions we admit as time bounds includes all the functions familiar
from analysis of algorithms such as polynomials (with positive coefficients),
exponentials, the tower-functions, and so on.

Definition 1.4. Let t be a time-bound and let R be a representation. Then,

O(t)R denotes the class of all irrational α in the interval (0, 1) such that at least

one R-representation of α is computable by a Turing machine running in time

O(t(n)) (where n is the length of the input).

Let R1 and R2 be representations. The relation R1 �S R2 holds if for any

time-bound t there exists a time-bound s such that

O(t)R2 ⊆ O(s)R1 .

If the relation R1 �S R2 holds, we will say that the representation R1 is subre-

cursive in the representation R2.

We will now study a few examples and discuss how the definition above
works. Recall that C denotes the representation by Cauchy sequences (see page
4). Let D denote the representation by Dedekind cuts. It turns out that we
have C �S D and D 6�S C. Let us see why.

Intuitively we have C �S D because a Cauchy sequence for an irrational α
in the interval (0, 1) can be subrecursively computed in the Dedekind cut of α.
No unbounded search is required. We simply sets C(1) equal to 1/2, and then
we use the Dedekind cut and, e.g., the equations

C(i+ 1) =

{
C(i)− 2−i−1 if C(i) > α

C(i) + 2−i−1 if C(i) < α

to compute C(n). Then C : N+ −→ Q will be a Cauchy sequence for α. Formally
we have C �S D because for every time-bound t there exists a time-bound s
such that O(t)D ⊆ O(s)C . A Turing machine that uses the equations above to
compute C(n) needs to compute the Dedekind cut n times, hence at most 2‖n‖

times where ‖n‖ is the length of the input. Furthermore, assuming numbers
are represented in binary form, the Turing machine only needs to compute the
Dedekind cut for inputs of size bounded by 2‖n‖. Hence, if the Dedekind cut
of α is computable in time O(t(m)) where m is the length of the input and t
is a time-bound, then a Turing machine can compute a Cauchy sequence for α
in time O(nt(2‖n‖)). Thus, let s be the time-bound s(‖n‖) = nt(2‖n‖), and we
have O(t)D ⊆ O(s)C .

Note that the set O(t)D only contains irrationals from the interval (0, 1).
This is important. When we compute a Cauchy sequence C for an irrational in
this interval, we can simply let C(1) = 1/2. We cannot in general compute a
Cauchy sequence for an irrational β subrecursively in the Dedekind cut of β. In
order to set the value of C(1) we will need a rational a such that a < β < a+ 1,
and we cannot get hold of such an a without resorting to unbounded search.

7

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Thus, if we do not restrict O(t)D to irrationals in the interval (0, 1), the relation
C �S D will not hold. It is therefore important that we are interested in
representations of the fractional part of irrational numbers.

Now, let us discuss why we have D 6�S C. As explained above, we have D 6�S
C because we cannot avoid unbounded search when we compute a Dedekind cut
in a Cauchy sequence, but what does a formal proof look like? In general it is
much harder to prove that the relation �S does not hold than it is to prove that
it holds. In order to prove R1 �S R2, we just have to come up with a subrecur-
sive algorithm for converting an R2-representation into an R1-representation.
In order to prove R1 6�S R2, we have, according to our definitions, to prove that
there is a time-bound t such that we have O(t)R2

6⊆ O(s)R1
for any time-bound

s. This might not be all that easy. This might call for involved diagonaliza-
tion arguments. In some cases we might do with a growth argument, that is,
we might be able to prove, for some time-bound t, that for any time-bound
s there exists αs ∈ O(t)R2

such that any Turing machine computing an R1-
representation of αs will have to give very large outputs, that is, outputs whose
length is not of order O(s) (and thus the Turing machine cannot run in time
O(s)). Growth arguments tend to be easier, or at least less tedious, than diag-
onalization arguments, and we will present a rather detailed proof based on a
growth argument in Section 8. But we cannot prove D 6�S C by a growth argu-
ment as a Turing machine computing a Dedekind cut gives outputs of length 1.
Let us see how we can prove D 6�S C by a diagonalization argument.

Let s be an arbitrary time-bound. We will, by standard diagonalization
techniques, construct a Cauchy sequence for an irrational α in the interval (0, 1)
such that α becomes different from each β ∈ O(s)D, and hence we will have
α 6∈ O(s)D. Our construction can be carried out by a Turing machine, that
is, the Cauchy sequence for α can be computed by a Turing machine. That
Turing machine will run in time O(t) for some time-bound t, and thus we have
α ∈ O(t)C . Moreover, it will turn out that t does not depend on s. Hence,
we have a time-bound t and for every time-bound s there exists α such that
α ∈ O(t)C and α 6∈ O(s)D. Hence, we have t such that O(t)C 6⊆ O(s)D for every
s, and thus, by Definition 1.4, we can conclude that D 6�S C.

We will now give an algorithm for computing a Cauchy sequence C such that
limn C(n) 6∈ O(s)D where s is an arbitrary time-bound. We will need a standard
enumeration {e}e∈N of the Turing machines, and we use {e}(x) to denote the
execution of the e’th Turing machine on input x. Furthermore, we need a
strictly increasing time-bound function S that eventually dominates any time-
bound of order O(s), that is, for any s0 of order O(s) we have s0(m) < S(m)
for all sufficiently large m. Such an S will always exist, and, moreover, it can be
chosen so that S(n) > 2n for all n. Note that by the definition of time-bound
functions, we have a Turing machine that given n, computes S(n) in at most
aS · S(n) steps for some constant aS . We define the sequence d0, d1, d2, . . . by
d0 = 2 and di+1 = S(di). Finally, we will need a standard computable bijection
〈·, ·〉 : N× N −→ N. For any i ∈ N, our algorithm needs to compute the unique
j, e ∈ N such that 〈j, e〉 = i.

The algorithm sets C(1) := 1/2. If n > 1, the algorithm checks if there

8

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

exists i such that n = d3i+2. If such an i does not exist, the algorithm simply
set C(n) := C(n − 1); if such i exists the algorithm finds the unique j, e such
that 〈j, e〉 = i and sets

• C(n) := C(n− 1) if {e}(C(n− 1)) does not terminate within n steps

• C(n) := C(n − 1) − 2−n if {e}(C(n − 1)) terminates within n steps and
outputs 0

• C(n) := C(n − 1) + 2−n if {e}(C(n − 1)) terminates within n steps and
outputs something other than 0.

It is clear that the algorithm indeed computes a Cauchy sequence for a
real number in the interval (0, 1), and it is also pretty easy to see that the
length of the output C(n) will be bounded by a function of order O(n) if we
represent numbers in binary form and code rationals in a reasonable way. We
can w.l.o.g. assume that S eventually dominates any function of order O(n) (we
can just pick an S that increases fast enough). Thus, for all sufficiently large n,
we have

‖C(n)‖ < S(n) . (1.1)

Now, let α = limn C(n) and let β ∈ O(s)D. We will prove that α 6= β.
The Dedekind cut of β can be computed by a Turing machine {e} running

in time O(s). Thus, S(‖x‖) will be an upper bound on the number of steps
in the computation {e}(x) when x is large. Pick a sufficiently large j and let
i = 〈j, e〉 (we can make d3i as big as we want by picking a big j). Our algorithm
is designed so that we have

C(d3i) = C(d3i+2 − 1) . (1.2)

Hence, by (1.2) and (1.1), the number of steps in the computation {e}(C(d3i+2−
1)) will be bounded by

S(‖C(d3i+2 − 1)‖) = S(‖C(d3i)‖) < S(S(d3i)) = d3i+2 .

Assume that the output of the computation {e}(C(d3i+2 − 1)) is 0. Then we
have

C(d3i+2) = C(d3i+2 − 1)− 2−d3i+2

but as {e} computes the Dedekind cut of β, we have β > C(d3i+2−1). It follows
that

α = lim
n
C(n) ≤ C(d3i+2 − 1)− 2−d3i+2 +

∑
n>3i+2

2−dn < C(d3i+2 − 1) < β .

Assume that the output of the computation {e}(C(d3i+2 − 1)) is different from
0. Then we have

C(d3i+2) = C(d3i+2 − 1) + 2−d3i+2

9

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

but as {e} computes the Dedekind cut of β, we have β < C(d3i+2−1). It follows
that

α = lim
n
C(n) ≥ C(d3i+2 − 1) + 2−d3i+2 −

∑
n>3i+2

2dn > C(d3i+2 − 1) > β .

This proves that α 6= β.
The same argument can be used to prove that the limit α is irrational:

Among the Turing machines enumerated there is a machine e that computes
the Dedekind cut of any given rational q; this computation can be done in
linear time under a reasonable encoding of rationals, so we may assume that e
has running time in O(s); and we conclude that α 6= q.

We have proved that our algorithm computes a Cauchy sequence for an
irrational number which cannot be in the class O(s)D. Let us undertake a
complexity analysis of a Turing machine M executing the algorithm:

• The input to M is a natural number n (we will estimate an upper bound
for M ’s running time as a function of n).

• First M will recursively compute C(n− 1).

• Then M will check if there exists i such that n = d3i+2. Recall that d0 = 2
and di+1 = S(di) where S is a time-bound function. It is possible to check
if such an i exists in time O(n). Briefly, M computes d0, d1, d2 . . . until it
either hits j such that n = dj , or j such that n < dj , or j such that the
computation of dj exceeds aSn time (the upper bound that we have on
this computation time is aSS(dj−1)). In all cases, the computation of the
last dj is either completed or stopped after O(n) steps. The computation
of each of the previous elements of the sequence, needed for computing
C(n), also takes O(n) steps, and there are at most log n such elements,
because the sequence di grows at least exponentially. We conclude that
this computation runs in O(n log n) time.

• If M finds i such that n = d3i+2, then M will compute j, e such that
〈j, e〉 = i, check if the computation {e}(C(n − 1)) terminates within n
steps, and finally, compute the output. All this can be done in time O(n2)
on a multi-tape Turing machine.

Since the computation of C(n) takes time O(n2), provided we have C(n−1), we
conclude that M runs in time O(

∑n
i=1 i

2) = O(n3), where n ∈ N is the input,
and thus in time O(23‖n‖) where ‖n‖ is the length of the input (time complexity
is always stated as a function of the input bit-length). This allows us to conclude
that M computes a Cauchy sequence for an irrational in the class O(23‖n‖)C .
We also know that this irrational is not in the class O(s)D, and recall that s
was an arbitrary chosen time-bound. Hence, we have O(23‖n‖)C 6⊆ O(s)D for
any time-bound s (note that the witness for the non-containement depends on
s, and further its computation time depends on the constant aS , but it is always
in O(23‖n‖)). This proves that D 6�S C.

10

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Weihrauch intersections

(Section 3)

Cauchy sequences

(Section 4)

Base-b expansions

(Section 5)

Base-b′ expansions

(Section 5)

Dedekind cuts

(Section 6)

Base-b sum approx.

from below

(Section 5)

Base-b′ sum approx.

from above

(Section 5)

Left best

approximations

(Section 7)

Right best

approximations

(Section 7)

Continued fractions

(Section 9)

Figure 1: Subrecursive degrees (equivalence classes) of representations.

Our proof that D 6�S C is meant to illustrate how our definitions work. In the
current paper we will in general not formally prove results of the form R1 6�S R2,
but for the benefit of the reader we will to a certain extent provide informal
explanations and intuitive arguments of why it is impossible to subrecursively
convert an R2-representation into an R1-representation (full proofs may be long
and involved, and they are available elsewhere, see Section 1.4).

Definition 1.5. Let R1 and R2 be representations. The relation R1 ≡S R2

holds when R1 �S R2 and R2 �S R1. If the relation R1 ≡S R2 holds, we will

say that the representation R1 is subrecursively equivalent to the representation

R2.

The relation R1 ≺S R2 holds when R1 �S R2 and R2 6�S R1.

The equivalence relation ≡S induces a degree structure on the representa-
tions. The directed graph in Figure 1 gives an overview of the relationship
between some natural degrees (equivalence classes). The nodes depict degrees

11

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

of representations, and each degree is labeled with one of the most well-known
representations in the degree. For two representations R1 and R2, there is a di-
rected path from a node labeled R1 to a node labeled R2 if and only if R2 ≺S R1.
Thus, if there is a directed path from R1 to R2, we can subrecursively convert
an R1-representation into an R2-representation, and if there is no directed path
from R1 to R2, we cannot subrecursively convert an R1-representation into an
R2-representation. Unfortunately we are not able to accurately depict the com-
plex relationship between the degrees of the base-b expansions and the degrees
of the base-b sum approximations from below and above (for b = 2, 3, 4, . . .),
but our graph gives a rough idea of what this world looks like. See Section 5
for more on how these degrees relate to each other.

1.4 Our goals and some references

We present a (degree) theory of representations (of irrational numbers) which is
based on Turing machines and standard complexity theory. This theory should
be considered as a recast and an improvement of the theory developed in Kris-
tiansen [31] [32] and Georgiev et al. [20] which is based on honest functions and
subrecursive classes. The two approaches studying representations of reals and
conversions between them are essentially the same, even if, e.g., the reducibility
relation �S is never formally defined in any other paper. It follows more or less
straightforwardly from results proved in [31] [32] [20] that the picture drawn in
Figure 1 is correct.

Recently Georgiev [18] has identified some interesting degrees which are not
depicted in Figure 1, moreover, Ben-Amram & Kristiansen [7] have proved that
the structure is a distributive lattice with a minimal and a maximal degree.
Two other recent papers which shed light on the degree structure, are Georgiev
[19] and Hiroshima & Kawamura [22].

In papers like [31] [32] [20], and furthermore Georgiev [18] [19] and Kris-
tiansen [33], the authors are just concerned with the existence or inexistence
of subrecursive conversions. In cases where the relation R1 �S R2 holds, they
never analyze the computational complexity of converting an R2-representation
into an R1-representation, and they do not make any effort to find efficient
conversions. In this paper we will care about such matters. Indeed, from now
on such matters will be our primary concern: We will prove that the relation
R1 �S R2 holds by imposing tight upper bounds on the running time of an oracle
Turing machine which converts an R2-representation into an R1-representation.
We will also give upper bounds on the number of oracle calls required and the
size of those calls.

We will impose resource bounds on oracle Turing machines that convert
irrational numbers in the interval (0, 1). The reader should note that many of our
results can be easily generalized to oracle Turing machines converting arbitrary
real numbers (including rationals). Moreover, many of these generalizations are
trivial. We leave the details to the interested reader.

12

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

1.5 Overview of the paper

In Section 2 we provide the necessary preliminaries on complexity theory, ora-
cle Turing machines and the Stern-Brocot tree. In Section 3, we introduce the
representation by Weihrauch intersections. The equivalence class of this repre-
sentation will be the minimal degree in the degree structure depicted in Figure
1 (a detailed proof can be found in [7]).

In Section 4 we study conversions between representations subrecursively
equivalent to the representation by Cauchy sequences. In Section 5 we study
conversions between representations subrecursively equivalent to representations
by base-b expansions and base-b sum approximations. In Section 6 we treat rep-
resentations subrecursively equivalent to the representation by Dedekind cuts,
and thereafter, in Section 7, representations subrecursively equivalent to the
representation by left/right best approximations.

The degree structure will be discussed further in Section 8. Finally, in Sec-
tion 9, we study conversions between representations subrecursively equivalent
to the representation by continued fractions. It is proved in [7] that equivalence
class of the continued fractions is the maximal degree in our degree structure.

1.6 Acknowledgements

The authors are deeply grateful to two anonymous referees for their tremendous
jobs. The authors also want to thank Dag Normann for helpful comments and
enlightening discussions which gave birth to some of the representations studied
in this paper.

2 Preliminaries

2.1 Oracle Turing machines and complexity theory

We assume basic familiarity with computability and computational complexity
(standard textbooks are Sipser [38], Du & Ko [16] and Arora & Barak [1]).

We will work with Turing machines with oracle access to the representation
being converted from. Unless otherwise stated, elements of N are assumed to
be written on input, query, and output tapes in their binary representation,
least-significant bit first. Pairs (p, q) of integers are assumed to be written using
interleaved notation (i.e., the first bit of the binary representation of p followed
by the first bit of the binary representation of q, and so forth). Observe that the
length of the representation of a pair (p, q) is then O(log max{p, q}). Elements
p/q ∈ Q are assumed to be represented by the representation of (p, q). We
denote the length of the binary representation of x by ‖x‖.

Function-oracle machines are in standard use in complexity theory of func-
tions on the set of real numbers (see, e.g., Ko [27]), and the next definition is a
standard one.

13

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Definition 2.1. A (parameterized) function-oracle Turing machine is a (multi-

tape) Turing machine M = (Q, q0, F,Σ,Γ, δ) with initial state q0 ∈ Q, final

states F ⊆ Q, input and tape alphabets Σ and Γ (with Σ ⊆ Γ and { } ⊆ Γ\Σ),

and partial transition function δ such that M has a special query tape and two

distinct states qq, qa ∈ Q (the query and answer states).

To be executed, M is provided with a total function f : (Γ \ { })∗ −→
(Γ \ { })∗ (the oracle) prior to execution on any input. We write Mf for M

when f has been fixed. We use ΦfM to denote the function computed by Mf .

The transition relation of Mf is defined as usual for Turing machines, except

for the query state qq: If M enters state qq with the word x on its query tape,

then (i) the contents of the query tape are instantaneously changed to f(x), (ii)

the query-tape head is reset to the origin, while other heads do not move, and

(iii) M moves to state qa. The time and space complexity of a function-oracle

machine is counted as for usual Turing machines, with the transition between

qq and qa taking ‖f(x)‖ time steps. The input size of a query is the number of

non-blank symbols on the query tape when M enters state qq.

In other work on real number computation, there is a well-developed notion
of reducibility between representations that, roughly, requires the representation
to be written as an infinite string on one of the input tapes of a type-2 Turing
machine [30, 43, 40]. In that setting, e.g., a function f : Q∩ [0, 1] −→ {0, . . . , b−
1} is most naturally expressed by imposing a computable ordering on its domain
(e.g., rationals appear in non-decreasing order of their denominator), and the
function values f(q) appear encoded as bit strings in this order. We strongly
conjecture that our results carry over to the type-2 setting mutatis mutandis.

2.2 Some notation

We write f(n) = poly(n) if f : N −→ N is bounded above by a polynomial in n
with positive integer coefficients, and f(n) = polylog(n) if f is bounded above
by a polynomial in log n with positive integer coefficients.

We use the notation f (n) for the nth iterate of the function f : N −→ N, that
is, f (0)(x) = x and f (n+1) = f ◦ f (n). Note the parentheses in the superscript
position, that distinguish this notation from ordinary exponentiation. This
notation is often used in conjunction with λ-notation, e.g.

(λx.g(x))(4)(0) = (λx.g(x))(λx.g(x))(3)(0)

= g((λx.g(x))(3)(0)) = · · · = g(g(g(g(0)))) .

2.3 Farey sequences and the Stern-Brocot tree

A Farey sequence is a strictly increasing sequence of fractions between 0 and 1.
The Farey sequence of order k, denoted Fk, contains all fractions which when

14

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

written in their lowest terms, have denominators less than or equal to k. Thus,
e.g., F5 is the sequence

0/1 , 1/5 , 1/4 , 1/3 , 2/5 , 1/2 , 3/5 , 2/3 , 3/4 , 4/5 , 1/1 .

The ordered pair of two consecutive fractions in a Farey sequence is called a
Farey pair. Let (a/b, c/d) be a Farey pair. The fraction (a+ c)/(b+ d) is called
the mediant of a/b and c/d. The next theorem was originally proved by Cauchy
[13] in 1826.

Theorem 2.2. Let (a/b, c/d) be a Farey pair. (i) We have cb − ad = 1 (or,

equivalently c/d−a/b = 1/(bd)); (ii) The mediant (a+ c)/(b+d) is in its lowest

terms and lies strictly between a/b and c/d, moreover, every other fraction lying

strictly between a/b and c/d has denominator strictly greater than b+ d.

E.g., (1/3, 2/5) is a Farey pair as 1/3 and 2/5 are neighbors in the sequence
F5 (see above). The mediant of 1/3 and 2/5 is 3/8. Thus, 3/8 lies in the open
interval (1/3, 2/5), and any fraction in this open interval, with the exception
of 3/8, has denominator strictly greater than 8. For more on Farey pairs and
Farey sequences, see Hardy & Wright [21].

We arrange the fractions strictly between 0 and 1 in a binary search tree TF.

Definition 2.3. The Farey pair tree TF is the complete infinite binary tree

where each node has an associated Farey pair (a/b, c/d) defined by recursion

on the position σ ∈ {0, 1}∗ of a node in TF as follows: TF(ε) = (0/1, 1/1),

and if TF(σ) = (a/b, c/d), then TF(σ0) = (a/b, (a + c)/(b + d)) and TF(σ1) =

((a + c)/(b + d), c/d). The depth of a node in TF is the length of its position

(with the depth of the root node being 0).

Abusing notation slightly, we do not distinguish between the pair TF(σ) =

(a/b, c/d) and the open interval (a/b, c/d).

Thus, we have, for example

TF(0) =

(
0

1
,

1

2

)
, TF(1) =

(
1

2
,

1

1

)
, TF(10) =

(
1

2
,

2

3

)
, TF(0000) =

(
0

1
,

1

5

)
.

The infinite binary tree obtained from the Farey pair tree by replacing each
Farey pair (a/b, c/d) by its mediant (a + c)/(b + d), is known as the (left)
Stern-Brocot tree2 (we will not use the Stern-Brocot tree directly). Efficient
computation of the elements of the Stern-Brocot tree (and hence also the Farey
pair tree) is possible, see Bates et al. [4]; for our purposes, we simply need the
next proposition.

Proposition 2.4. There is a Turing machine M such that for any σ ∈ {0, 1}∗,
ΦM (σ) = TF(σ) and M runs in time poly(1 + |σ|).

2“Left” because the Stern-Brocot tree originally concerns the interval (0,∞) and we are

interested only in (0, 1) which corresponds to the left child of the Stern-Brocot tree.

15

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

We round off this section by stating and proving a few properties of the
Farey pair tree.

Proposition 2.5. If (a/b, c/d) is a Farey pair at depth h in TF, then a + b +

c+ d ≥ h+ 3.

Proof. For h = 0, we have 0 + 1 + 1 + 1 = 3 = h+ 3.

Let h > 0. Assume the proposition for h−1 and let (a/b, c/d) be an arbitrary

pair at depth h−1. Then a pair at level h is of the form (i) (a/b, (a+c)/(b+d))

or of the form (ii) ((a+ c)/(b+ d), c/d). In case (i), we have

a+ (a+ c) + b+ (b+ d) = (a+ b+ c+ d) + (a+ b) ≥ (a+ b+ c+ d) + 1

≥ (h+ 2) + 1 = h+ 3 .

A symmetric argument will show that the proposition also holds in case (ii).

Proposition 2.6. Let p/q ∈ Q ∩ (0, 1] be a fraction in its lowest terms. Then,

p/q is a fraction in a Farey pair at depth at most p+ q − 2 in TF.

Proof. By construction, for any depth n ≥ 0, the set of intervals [a/b, c/d]

occurring in TF at depth n covers the unit interval, and each pair of intervals

has at most one point in common (which must be an end point). Hence, p/q

occurs in some interval [a/b, c/d] at any depth n, and by Theorem 2.2 we have

cb − ad = 1. Assume for the sake of a contradiction that n ≥ p + q − 2 and

p/q /∈ {a/b, c/d}. Since p/q /∈ {a/b, c/d}, we have a/b < p/q < c/d, and thus

also 1 ≤ pb− qa and 1 ≤ qc− pd. Hence

a+ b+ c+ d ≤ (a+ b)(qc− pd) + (c+ d)(pb− qa)

= p(cb− ad) + q(cb− ad) = p+ q .

This contradicts Proposition 2.5 which implies that a + b + c + d ≥ p + q + 1.

Hence, p/q must occur as an endpoint, and the first level at which p/q appears

as an endpoint must be at most p+ q − 2.

Lemma 2.7. Let I = (an/bn, cn/dn) be a Farey interval at depth n in TF, and

for i = 0, . . . , n, let (ai/bi, ci/di), denote the Farey pairs along the path from the

root to I. Then ai, bi, ci, di ≤ (n+ 3)(an + bn).

Proof. We claim that for all i ≤ n, ai + bi + ci + di ≤ (i + 3)(an + bn). For

i = 0, we have a0 + b0 + c0 + d0 = 3(a0 + b0) ≤ 3(an + bn). Assume this holds

for arbitrary i < n. If the next node is a left child, then

ai+1 + bi+1 + ci+1 + di+1 = ai + bi + (ai + ci) + (bi + di)

≤ ai + bi + (i+ 3)(an + bn) ≤ (i+ 4)(an + bn) .

16

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

If the next node is a right child, then

ai+1 + bi+1 + ci+1 + di+1 = (ai + ci) + (bi + di) + ci + di

≤ (i+ 3)(an + bn) + ci + di ≤ (i+ 3)(an + bn) + ai+1 + bi+1

≤ (i+ 4)(an + bn) .

3 Weihrauch intersections

Definition 3.1. A function I : N −→ Q × Q is a Weihrauch intersection for

the real number α if the left component of the pair I(i) is strictly less than the

right component of the pair I(i) (for all i ∈ N) and

{ α } =

∞⋂
i=0

IOi

where IOi denotes the open interval given by the pair I(i).

Theorem 3.2. Any computable real number can be represented by a polynomial-

time computable Weihrauch intersection.

Proof. A computable real number α has a computable Cauchy sequence C :

N −→ Q with the property |C(n) − α| < 2−n. Let M be a Turing machine

computing C. We can w.l.o.g. assume that α ∈ (0, 1).

Compute I(k) by the following algorithm: Find the greatest n such that

n ≤ ‖k‖ and C(n) can be computed by M in at most ‖k‖ steps. Let I(k) =

(C(n)− 2−n, C(n) + 2−n). Let I(k) = (0, 1) if no such n exists (it is possible to

arrange this so that we have IOk+1 ⊆ IOk). This gives a Weihrauch intersection

for α because I(k) assumes values (C(n)− 2−n, C(n) + 2−n) for infinitely many

n.

The representation by Weihrauch intersections is one of the main represen-
tations in Weihrauch’s seminal book [41], and it is special among the represen-
tations we consider in this paper: There exists a time-bound t such that every
computable real has a Weihrauch intersection computable by a Turing machine
running in time O(t) (by Theorem 3.2, this will for sure be true for any t that
dominates all polynomials). For every other representation R considered in this
paper, there will for any time-bound t exist a time bound s such that O(t)R
is strictly included in O(s)R. The degree of the representation by Weihrauch
intersections will be the zero degree of the degree structure described in Section
1.

Representation of reals by Weihrauch intersections is also known as repre-
sentation by nested intervals. In order to simplify our definition, we have not

17

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

required the intervals to be nested, but any Weihrauch intersection can be easily
converted to a nested one. A number of subrecursively equivalent representa-
tions can be found in [41], but they are all pretty similar from our point of view,
and we will not discuss any of them.

4 Representations subrecursively equivalent to

Cauchy sequences

4.1 Cauchy sequences.

Definition 4.1. Let α ∈ (0, 1) be an irrational number. Then C : N+ −→ Q is

a Cauchy sequence for α if for all n > 0, |α− C(n)| < n−1.

Lemma 4.2. There is a parameterized function-oracle Turing machine M with

the following properties. Let C : N+ −→ Q be a Cauchy sequence for an irra-

tional number α ∈ (0, 1). Then

• ΦCM : N −→ Q×Q is a Weihrauch intersection for α

• MC on input n runs in time polylog(max{C(n), n}) and uses exactly one

oracle call of input size O(log n).

Proof. Let I(n) = (C(n)−n−1, C(n)+n−1). Then, I is a Weihrauch intersection

for α if C is a Cauchy sequence for α. Hence, only one oracle call to C is

needed, and I(n) can be obtained by basic arithmetic operations on (the binary

representations of) C(n) and n.

Lemma 4.2 shows that a Cauchy sequence can be subrecursively converted
into a Weihrauch intersection. Will it be possible to subrecursively convert a
Weihrauch intersection into a Cauchy sequence? In order to give a negative
answer to that question, we need a presumably rather well-known theorem.

Theorem 4.3. For any time-bound t there exists a computable irrational num-

ber α such that no Cauchy sequence for α can be computed by a Turing machine

running in time O(t).

It is not hard to see that the theorem holds. Let t be an arbitrary time
bound, and let t′(m) = 2t(2m+3). Let A be any set of natural numbers such that
membership in A can be decided by a Turing machine, but not by an O(t′)-
time Turing machine (the existence of such a set can be shown by a standard
diagonalization argument). Consider the irrational number α given by the base-
2 expansion 0.a1a2a3 . . . where the two digits a2i−1a2i are 10 if i ∈ A; and 01
otherwise. Now, α will obviously have a computable Cauchy sequence, but no
O(t)-time Turing machine can compute such a Cauchy sequence. If a Cauchy
sequence for α can be computed in time O(t), then a Turing machine M can
decide if m is in the set A in time O(t′): First M computes C(22m+2). By

18

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

assumption this can be done in time O(t(‖22m+2‖)) = O(t(2m+3)). Thereafter,
M determines the digits 0.D1D2 . . . of the base-2 expansion of C(22m+2). Observe
that C(22m+2) lies sufficiently close to α to ensure that the digit D2m−1 coincides
with digit a2m−1, and thus, m ∈ A iff D2m−1 = 1. Hence, M can decide if m
is a member of A by computing D2m−1, and this can obviously be done in time
polynomial in t(2m + 3), hence in time O(t′). Since no Turing machine can
decide membership in A in time O(t′), we can conclude that the theorem holds.

Theorem 3.2 states that any computable real can be represented by a poly-
nomial-time computable Weihrauch intersection. Thus, any computable real
can be represented by a Weihrauch intersection computable in, let us say, time
O(2n). Now, 2n is a fixed time-bound, and if it were possible to subrecursively
convert a Weihrauch intersection into a Cauchy sequence, the any computable
irrational would be represented by a Cauchy sequence computable in time O(t)
for some fixed time-bound t. By Theorem 4.3, such a t does not exist, and we
can conclude that Weihrauch intersections cannot be subrecursively converted
into Cauchy sequences.

4.2 Definitions

The next definition gives some representations which are subrecursively equiv-
alent to the representation by Cauchy sequences.

Definition 4.4. Let α ∈ (0, 1) be an irrational number.

1. C : N+ −→ Q is a strictly increasing Cauchy sequence for α if (i) C is a

Cauchy sequence for α and (ii) C(n) < C(n+ 1).

2. Let b ≥ 2 be a natural number. Then, A : N+ −→ Z is a converging base-b

sequence for α if A(n)b−n is a Cauchy sequence for α.

3. D : Z× N+ −→ {0, 1} is a fuzzy (Dedekind) cut for α if

D(p, q) = 0 ⇒ α <
p+ 1

q
and D(p, q) = 1 ⇒ p− 1

q
< α .

4. S : N+ −→ {−1, 0, 1} is a signed digit expansion for α if

α =

∞∑
i=1

S(i)2−i .

Converging base-2 sequences are used in Friedman and Ko [28] and also in
the monograph Ko [27]. Signed digit expansions also seem to be well known.
The representation was introduced for the first time by Avizienis [3] and appears
in several rather recent papers, eg. Berger et al. [8] and Bauer et al. [5]. It is also
discussed in Weihrauch’s book [41]. The representations by strictly increasing
Cauchy sequences and fuzzy Dedekind cuts are discussed for the first time in
this paper.

19

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

4.3 Cauchy sequences to fuzzy cuts

Let C be a Cauchy sequence for α. We define the map D : Z × N+ −→ {0, 1}
by

D(p, q) =

{
0 if C(q) ≤ pq−1

1 if C(q) > pq−1.

Lemma 4.5. D is a fuzzy cut for α.

Proof. First we prove

D(p, q) = 0 ⇒ α <
p+ 1

q
. (4.1)

Assume D(p, q) = 0. By the definition of a Cauchy sequence, we have α <

C(q) + q−1. By the definition of D, we have

α < C(q) +
1

q
≤ p

q
+

1

q
=

p+ 1

q
.

This proves (4.1). We also need to prove

D(p, q) = 1 ⇒ p− 1

q
< α . (4.2)

The proof of (4.2) is symmetric to the proof of (4.1). The lemma follows from

(4.1) and (4.2).

Lemma 4.6. There is a parameterized function-oracle Turing machine M with

the following properties. Let C : N+ −→ Q be a Cauchy sequence for an irra-

tional number α ∈ (0, 1). Then

• ΦCM : Z× N+ −→ {0, 1} is a fuzzy Dedekind cut for α

• MC on input (p, q) runs in time poly(max(‖p‖, ‖q‖, ‖C(q)‖)) and uses a

single oracle call of input size at most O(log q).

Proof. A single call to C on input (the binary representation of) q yields (the

binary representation of) C(q), and by Lemma 4.5, a single comparison of C(q)

to pq−1 yields D(p, q). A binary representation of the rational number pq−1

can be computed in polynomial time in the size of the representations of p and

q (that is, in time polylog(max{p, q})), and the final comparison of C(q) and

pq−1 can be performed in time polynomial in max{‖C(q)‖, ‖pq−1‖}.

4.4 Fuzzy cuts to signed digit expansions

Let α ∈ (0, 1), and let D be a fuzzy cut for α. We will use D to define a signed
digit expansion S.

20

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

For any map S : N+ −→ {−1, 0, 1}, let sn =
∑n
i=1 S(i)2−i. Furthermore, let

an be the unique integer such that an2−n = sn, and let M(r1, r2) denote the
midpoint between the two rationals r1 and r2, that is, M(r1, r2) = (r1 + r2)/2.
Observe that

M

(
sn −

1

2n+1
, sn

)
=

4an − 1

2n+2
and M

(
sn , sn +

1

2n+1

)
=

4an + 1

2n+2

Moreover, observe that sn = 2an/2
n+1.

We define the signed digit expansion S by S(1) = 1 and

S(n+ 1) =

−1 if D(2an, 2

n+1) = 0 and D(4an − 1, 2n+2) = 0 (Case 1)

0 if D(2an, 2
n+1) = 0 and D(4an − 1, 2n+2) = 1 (Case 2)

1 if D(2an, 2
n+1) = 1 and D(4an + 1, 2n+2) = 1 (Case 3)

0 if D(2an, 2
n+1) = 1 and D(4an + 1, 2n+2) = 0 (Case 4)

Lemma 4.7.

α =

∞∑
i=1

S(i)2−i .

Proof. We will prove

sn − 2−n < α < sn + 2−n (4.3)

by induction on n. The lemma follows straightforwardly from (4.3). It is obvious

that (4.3) holds when n = 1 (as we have assumed α ∈ (0, 1)).

Assume by induction hypothesis that (4.3) holds. We need to prove that

α ∈ (sn+1 − 2−(n+1) , sn+1 + 2−(n+1)) (4.4)

(Case 1.) In this case we have sn+1 = sn− 2−(n+1). Thus, in order to prove

(4.4), we need to prove α ∈ (sn − 2−n, sn). We have sn − 2−n < α by the

induction hypothesis (4.3). Moreover, since D(4an − 1, 2n+2) = 0, we have

α <
4an − 1 + 1

2n+2
=

an
2n

= sn .

This proves that (4.4) holds in (Case 1).

(Case 2.) In this case we have sn+1 = sn. Thus, in order to prove (4.4),

we need to prove α ∈ (sn − 2−(n+1), sn + 2−(n+1)). Since D(2an, 2
n+1) = 0, we

have

α <
2an + 1

2n+1
=

an
2n

+
1

2n+1
= sn + 2−(n+1) .

Since D(4an − 1, 2n+2) = 1, we have

α >
4an − 1− 1

2n+2
=

an
2n
− 1

2n+1
= sn − 2−(n+1) .

This proves that (4.4) holds in (Case 2).

(Case 3) is symmetric to (Case 1), and (Case 4) is symmetric to (Case 2).

21

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Lemma 4.8. There is a parameterized function-oracle Turing machine M with

the following properties. Let D : Z × N+ −→ {0, 1} be a fuzzy cut for an

irrational number α ∈ (0, 1). Then

• ΦDM : N+ −→ {−1, 0, 1} is a signed digit expansion of α

• MD on input n runs in time poly(n) and uses 2(n − 1) oracle calls of

input size at most O(n).

Proof. By Lemma 4.7, S(1) = 1, and computing S(n) for n > 1 can be done

by computing the integer an−1 satisfying an−12−(n−1) = sn−1 =
∑n−1
i=1 S(i)2−i,

and subsequently performing oracle calls returning the values of

D(2an−1, 2
n) and either D(4an−1 − 1, 2n+1) or D(4an−1 + 1, 2n+1) . (4.5)

Observe that the binary representations of the rational numbers 2−1, . . . , 2−(n−1)

have lengthO(n), and that each representation can be computed in time poly(n).

Hence, if S(1), . . . , S(n − 1) are known, then sn−1 can be computed in time

poly(n) using standard arithmetical operations. Furthermore, observe that the

binary representation of sn−1 (and thus an−1) has length O(n). This implies

that (i) the size of the oracle calls in (4.5) is at most O(n), and that (ii) an−1,

2an−1 and 4an−1 can be computed in time poly(n).

Using the obvious recursive algorithm for S(n) requires computing S(1), . . .,

S(n−1), hence time O(npoly(n)) = poly(n), and a total of 2(n−1) oracle calls,

each of size O(n).

4.5 Signed digit expansions to Cauchy sequences

Let S be a signed digit expansion of an irrational number α ∈ (0, 1). Then we
have

∣∣α−∑n
i=1 S(i)2−i

∣∣ < 2−n. Let

C(n) =

dlog2 ne∑
i=1

S(i)2−i

then we have

|α− C(n)| =

∣∣∣∣∣∣α−
dlog2 ne∑
i=1

S(i)2−i

∣∣∣∣∣∣ < 2−dlog2 ne ≤ n−1 .

Hence, C is a Cauchy sequence for α.

Lemma 4.9. There is a parameterized function-oracle Turing machine M with

the following properties. Let S : N+ −→ {−1, 0, 1} be a signed digit expansion

for an irrational number α ∈ (0, 1). Then

22

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

• ΦSM : N+ −→ Q is a Cauchy sequence for α

• MS on input n runs in time polylog(n) and uses dlog2 ne oracle calls of

input size at most 1 + log log n.

Proof. The result follows almost immediately from the text just prior to the

lemma. Observe that the computation of C(n) =
∑dlog2 ne
i=1 S(i)2−i can be

performed using poly(log n) = polylog(n) operations on rationals whose repre-

sentation has length at most O(log n), hence in total time polylog(n).

4.6 From Cauchy sequences to strictly increasing Cauchy

sequences

Let C be a Cauchy sequence for some real number α. Thus, for all n, we have

α ∈ (C(2n)− 2−n , C(2n) + 2−n) (4.6)

We will use C(n)` to denote the left endpoint of the interval in (4.6), that is,

C(n)` = C(2n)− 2−n, and we define Ĉ by

Ĉ(n) = C(n+ 2)` − 2−(n+1) = C(2n+2)− 2−(n+2) − 2−(n+1) .

Lemma 4.10. If C is a Cauchy sequence for α, then Ĉ is a strictly increasing

Cauchy sequence for α.

Proof. Let C be a Cauchy sequence for α. We will prove∣∣∣α− Ĉ(n)
∣∣∣ < 2−n (4.7)

and

Ĉ(n) < Ĉ(n+ 1) . (4.8)

and thus the lemma holds.

First we observe that |α− C(n+ 2)`| < 2−(n+1), and thus, we have∣∣∣α− Ĉ(n)
∣∣∣ =

∣∣∣α− (C(n+ 2)` − 2−(n+1))
∣∣∣ =

|α− C(n+ 2)` |+ 2−(n+1) < 2−(n+1) + 2−(n+1) = 2−n .

The first equality holds by the definition of Ĉ, and the second equality holds

since C(n+ 2)` lies below α. This proves that (4.7) holds.

Next we observe that∣∣C(2n)− C(2n+1)
∣∣ < 2−n + 2−(n+1) (4.9)

23

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

holds for all n. Now, assume for the sake of a contradiction that (4.8) does not

hold, that is, assume there exists m such that Ĉ(m) ≥ Ĉ(m+ 1). Then we have

Ĉ(m)− Ĉ(m+ 1) ≥ 0 .

By the definition of Ĉ, we have

C(m+ 2)` − 2−(m+1) − (C(m+ 3)` − 2−(m+2)) ≥ 0 .

Hence

C(m+ 2)` − C(m+ 3)` ≥ 2−(m+2) .

By the definition of C(·)`, we have

C(2m+2)− 2−(m+2) − (C(2m+3)− 2−(m+3)) ≥ 2−(m+2) .

Hence, we have

C(2m+2)− C(2m+3) ≥ 2−(m+2) + 2−(m+2) − 2−(m+3) = 2−(m+2) + 2−(m+3) .

This contradicts (4.9), and we have proved that (4.8) holds.

Lemma 4.11. There is a parameterized function-oracle Turing machine M

with the following properties. Let C : N+ −→ Q be a Cauchy sequence for an

irrational α ∈ (0, 1). Then

• ΦCM : N+ −→ Q is a strictly increasing Cauchy sequence for α

• MC on input n runs in time poly(max{‖C(2n+2)‖, n}) and uses a single

oracle call of input size n+ 3.

Proof. On input n, M constructs the number 2n+2 (representable in n + 3

bits) and performs the oracle call C(2n+2), and then calculates and outputs

the rational number C(2n+2) − 2−(n+2) − 2−(n+1) = Ĉ(n). This calculation

involves basic arithmetic on numbers representable in max{‖C(2n+2)‖, O(n)}
bits, hence in total time poly(max{‖C(2n+2)‖, n}). By Lemma 4.10, Ĉ is a

strictly increasing Cauchy sequence for α.

4.7 From converging base-b sequences to Cauchy sequences

Let A be a converging base-b sequence for α, and let C(n) = A(n)b−n. Now,
by our definitions, C is a Cauchy sequence for α. Thus the proof of the next
lemma is straightforward.

Lemma 4.12. Let b ≥ 2. There is a parameterized function-oracle Turing

machine M with the following properties. Let A : N+ −→ Z be a converging

base-b sequence for an irrational α ∈ (0, 1). Then

24

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

• ΦAM : N+ −→ Q is a Cauchy sequence for α

• MA on input n runs in time poly(max{logA(n), n}) and uses a single

oracle call of input size O(‖n‖).

Proof. On input n ∈ N+, M queries the oracle for A(n) and then computes the

rational numberA(n)b−n. All the numbers involved occupyO(max{logA(n), n})
bits. Hence, M runs in time at most poly(max{logA(n), n}).

4.8 From Cauchy sequences to converging base-b sequences

Let C be a Cauchy sequence for α. We show how to compute A(n) where A is
a converging base-b sequence for α.

First we define the sequences X0, X1, X2, . . . and Y0, Y1, Y2, Let p ∈ Z
and q ∈ N+ be arbitrary. Let X0 = p div q, let Y0 = pmod q, and let

Xn+1 = Xn × b+ ((Yn × b) div q) and Yn+1 = (Yn × b) mod q

where the operators

• xdiv y (integer division)

• xmod y (the remainder of integer division, in {0, . . . , y − 1})

have the property

(x div y)× y + (xmod y) = x . (4.10)

Lemma 4.13. For any n, we have (i) Yn < q, (ii) pq−1 = Xnb
−n + Ynb

−nq−1

and (iii) Xnb
−n ≤ pq−1 < (Xn + 1)b−n.

Proof. It is obvious that (i) holds, and (iii) follows straightforwardly from (i)

and (ii). We prove (ii) by induction on n. It is obvious that (ii) holds if n = 0.

Furthermore, we have

Xn+1b
−(n+1) + Yn+1b

−(n+1)q−1 =

(Xnb+ ((Ynb) div q))b−(n+1) + ((Ynb) mod q)b−(n+1)q−1 =

[Xnbq + ((Ynb) div q)q + ((Ynb) mod q)]b−(n+1)q−1 =

[Xnbq + Ynb]b
−(n+1)q−1 = Xnb

−n + Ynb
−nq−1 = pq−1

where the first equality holds by the definition of Xn+1 and Yn+1, the third

equality holds by (4.10) and the last equality holds by the induction hypothesis.

We may now compute A(n) by the following procedure:

• let p/q = C(2n) where p ∈ Z and q ∈ N+

25

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

• compute Xn

• output A(n) := Xn.

By Lemma 4.13 (iii), we have

A(n)b−n ≤ C(2n) < (A(n) + 1)b−n

and thus ∣∣A(n)b−n − C(2n)
∣∣ < b−n ≤ (2n)−1 .

Moreover, as C is a Cauchy sequence for α, we have |α− C(2n)| < (2n)−1, and
thus, we also have |A(n)b−n − α| < n−1. This proves that A is a converging
base-b sequence for α.

Lemma 4.14. Let b ≥ 2. There is a parameterized function-oracle Turing

Machine M with the following properties. Let C : N+ −→ Q be a Cauchy

sequence for an irrational α ∈ (0, 1). Then

• ΦCM : N+ −→ Z is a converging base-b sequence for α

• MC on input n runs in time poly(n + ‖C(2n)‖) and uses a single oracle

call of input size O(log n).

Proof. The algorithm given above uses C(2n), and hence an oracle call of input

size O(log n). Moreover the algorithm uses n iterations involving 5 arithmetical

operations in each iteration; it is a straightforward induction to see that each

of these operations is applied to integer arguments of size at most

‖C(2n)‖+ n(‖b‖+ 1) = O(n+ ‖C(2n)‖)

bits. As each arithmetical operation is computable in polynomial time in the

size of the representation, the total time used is

O(npoly(n+ ‖C(2n)‖)) = poly(n+ ‖C(2n)‖) .

4.9 Summary

Recall that O(t)R denotes the class of all irrational α in the interval (0, 1) such
that at least one R-representation of α is computable by a Turing machine
running in time O(t(n)) (n is the length of the input, see Definition 1.4 on
page 7). When we combine the results on the complexity of conversions among
representations in this section, we get the following theorem.

Theorem 4.15. Consider the representations by (1) Cauchy sequences, (2)

increasing Cauchy sequences, (3) fuzzy cuts, (4) signed digit expansions and

(5) converging base-b sequences, and let R1 and R2 be any two of these five

representations. For an arbitrary time-bound t, we have

O(t)R2
⊆ O(poly(22

n

· t(2n + 3)))R1
.

26

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Base-b sequences

Cauchy

sequences

Increasing

Cauchy sequences

Fuzzy

Dedekind cuts

Signed digit

expansions

poly(2‖n‖,t(2‖n‖+3))
1×(2‖n‖+3)

trivial

poly(‖x‖,t(‖x‖))
1×‖x‖

poly(2‖n‖)
2‖n‖+1×‖n‖

poly(‖n‖)
‖n‖×log ‖n‖

poly(2‖n‖,t(‖n‖))
1×‖n‖

poly(2‖n‖+t(‖n‖+1))
1×(‖n‖+1)

Figure 2: Reductions among representations in the cluster of Cauchy sequences.

Next to each arrow representing a reduction is the cost of the reduction (above

the line) and the number and size of oracle calls (below).

27

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Proof. The result is obtained by combining the complexities of the reductions

shown in this section; see Figure 2. The complexity figures in this diagram are

drawn from the corresponding lemmata, where in case the formula in the lemma

uses the size of the result of the oracle call, we substitute it with t(x) where x is

the size of the oracle argument. We have also rounded the figures a little (e.g.,

2n instead of 2n− 2). For example, to compute an increasing Cauchy sequence

from an arbitrary Cauchy sequence, according to Lemma 4.11, we need time

poly(max{‖C(2n+2)‖, n}). We bound ‖C(2n+2)‖ by t(‖2n+2‖) = t(n + 3) ≤
t(2‖n‖ + 3). We bound n by 2‖n‖. The oracle call has argument 2n+2 whose

bit-size is bounded by t(2‖n‖ + 3).

Note that to get from certain representations to some others, it is necessary

to compose reductions; the costliest path leads from base-b sequences to increas-

ing Cauchy sequences via ordinary Cauchy sequences. The calculation proceeds

as follows. Assume that the Cauchy sequence is computed in time tCS . Then

the computation of the increasing Cauchy sequence takes poly(2n, tCS(2n + 3))

(here n denotes the input size!). We also know that tCS(x) = poly(2x, t(x))

where t is the time to compute the base-b sequence and x is the size of the

input. In fact, we use this computation as an oracle and the size of the oracle

call is 2n+ 3; so it runs in poly(22
n+3, t(2n+ 3)). This stage of the computation

dominates, so we conclude that the time to compute the composed reduction is

given by the latter formula.

A similar calculation for other paths gives smaller bounds, hence the state-

ment of the theorem.

5 Base-b expansions and sum approximations

5.1 The base-b expansions

The representation of reals by base-b expansions, or perhaps we should say base-
10 expansions, is very well known. We are talking about the standard daily-life
representation of reals. We will restrict our attention to irrational numbers
between 0 and 1.

Definition 5.1. A base is a natural number strictly greater than 1, and a base-b

digit is a natural number in the set {0, 1, . . . , b− 1}.
Let b be a base, and let D1, . . . , Dn be base-b digits. We will use (0.D1D2 . . . Dn)b

to denote the rational number 0 +
∑n
i=1 Dib

−i.

Let D1, D2, . . . be an infinite sequence of base-b digits. We say that (0.D1D2 . . .)b
is the base-b expansion of the irrational number α if we have

(0.D1D2 . . . Dn)b ≤ α < (0.D1D2 . . . Dn)b + b−n

for all n ≥ 1. We identify the base-b expansion with the function Eαb : N+ −→

28

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

{0, . . . , b − 1} that yields the ith digit of the base-b expansion of α, that is,

Eαb (i) = Di when (0.D1D2 . . .)b is the base-b expansion of α.

It is easy to see that a base-b expansion can be subrecursively converted into
a Cauchy sequence: If (0.D1D2 . . .)b is the base-b expansion of α, then

(0.D1)b , (0.D1D2)b , (0.D1D2D3)b , . . .

will be the first elements of a Cauchy sequence for α, and thus, we do not need
unbounded search to compute a Cauchy sequence if we have access to the base-b
expansion.

Lemma 5.2. Let b > 1. There is a parameterized function-oracle Turing ma-

chine M with the following properties. Let Eαb : N −→ {0, . . . , b − 1} be the

base-b expansion of an irrational α ∈ (0, 1). Then

• Φ
Eαb
M : N −→ Q is a Cauchy sequence for α

• MEαb on input n runs in time poly(n) and uses n oracle calls of input size

at most log n.

Proof. On input n, M performs n oracle queries to Eαb , of size at most log n

to obtain the first n digits D1, . . . , Dn of the base-b expansion of α. Each digit

requires log b space, and computing the rational number p/q =
∑n
i=1 Dib

−i can

thus be done in time poly(n).

It turns out that we cannot subrecursively convert a Cauchy sequence into
a base-b expansion. Neither can we, in general, subrecursively convert a base-b
expansion into a base-a expansion. Let us recall a definition from Kristiansen
[32].

Definition 5.3. We will use prim(b) to denote the set of prime factors of the

base b, that is, prim(b) = {p | p is a prime and p|b}.
Let a and b be bases such that prim(a) ⊆ prim(b). We will now define the

base transition factor from a to b. Let b = pk11 p
k2
2 . . . pknn , where pi is a prime

and ki ∈ N+ (for i = 1, . . . , n), be the prime factorization of b. Then, a can be

written in the form a = pj11 p
j2
2 . . . pjnn where ji ∈ N (for i = 1, . . . , n). The base

transition factor from a to b is the natural number k such that

k = max{ dji/kie | 1 ≤ i ≤ n } .

Note that the base transition factor from a to b is defined if and only if
prim(a) ⊆ prim(b) (the definition does not make sense when prim(a) 6⊆ prim(b)).
When we assume that the base transition factor from a to b exists, it is under-
stood that we have prim(a) ⊆ prim(b).

29

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Theorem 5.4 (The Base Transition Theorem). Let k be the base transition

factor from a to b, and let (0.D1D2 . . .)a and (0.Ḋ1Ḋ2 . . .)b be, respectively, the

base-a and base-b expansion of the real number α. Then, for all n ∈ N, we have

(0.D1 . . . Dn)a ≤ (0.Ḋ1 . . . Ḋkn)b ≤ α

< (0.Ḋ1 . . . Ḋkn)b + b−kn ≤ (0.D1 . . . Dn)a + a−n . (I)

Moreover, for all n, ` ∈ N, we have

(0.Ḋ1 . . . Ḋkn)b < (0.Ḋ1 . . . Ḋ`)b ⇒ (0.D1 . . . Dn)a < (0.D1 . . . D`m)a (II)

where m = dloga be.

A proof of the Base Transition Theorem can be found in [32]. Assume that
the base transition factor k from base a to base b exists. Then, by clause (I) of
the theorem, the first n fractional digits 0.D1 . . . Dn of the base-a expansion of
α will be determined by the first kn fractional digits 0.Ḋ1 . . . Ḋkn of the base-b
expansion of α, and thus, we can subrecursively convert a base-b expansion into
a base-a expansion.

Lemma 5.5. Assume that the base transition factor k from base a to base b

exists. There is a parameterized function-oracle Turing machine M with the

following properties. Let Eαb : N+ −→ {0, . . . , b − 1} be the base-b expansion of

an irrational α ∈ (0, 1). Then

• Φ
Eαb
M : N+ −→ {0, . . . , a− 1} is the base-a expansion of α

• MEαb on input n runs in time poly(n) and uses kn oracle calls, each of

input size at most O(log n).

Proof. Note that the first kn digits of the b-ary expansion of α can be computed

using kn oracle calls each of size at most log kn = O(log n). Converting these kn

digits to a number of the form q · b−kn can be done in time poly(kn) = poly(n),

and hence computing p = ban · q/bknc can be done in time poly(kn) = poly(n).

By Clause (I) of the Base Transition Theorem, (0.D1 . . . Dn)a = p/an, and as

each base-a digit D1, . . . , Dn is in {0, . . . , a−1} and p/an =
∑n
i=1 Dia

−i, a simple

greedy algorithm may compute the digits D1, . . . , Dn of (0.D1 . . . Dn)a in increasing

order in time poly(n) when p has been computed.

If the base transition factor from a to b does not exist, then we cannot com-
pute Eαa subrecursively in Eαb even if we assume that α is irrational. This is
proved formally in [32], but intuitively it is not very hard to see why this is
the case: Consider an irrational α which lies very close to the rational num-
ber (0.1)10. We have (0.1)10 = (0.0(0011)∗)2, and let us say that the base-2
expansion of α starts with

α = 0.000110011001100110011001100110011001100110011 . . .

30

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Given the digits of the base-2 expansion displayed above, we cannot tell if the
first fractional digit of the base-10 expansion should be 0 or 1. We need more
digits of the base-2 expansion to the determine the first digit of the base-10 ex-
pansion. Now, α cannot equal (0.1)10 since we have assumed that α is irrational.
Thus, sooner or later we will find a digit in the base-2 expansion which allows
to determine the first digit of the base-10 expansion, but we need unbounded
search to find that digit.

In general, if the base transition factor from a to b does not exist, that is,
if prim(a) 6⊆ prim(b), we cannot subrecursively compute Eαa in Eαb . It follows
that we cannot compute Eαb subrecursively in a Cauchy sequence for α (for any
base b). Assume for the sake of a contradiction that we can, that is, assume
that we can compute Eαb subrecursively in an arbitrary Cauchy sequence for
α. Pick a base b0 such that prim(b) 6⊆ prim(b0). By Lemma 5.2, we can
subrecursively compute a Cauchy sequence C for α in Eαb0 . By our assumption
we can subrecursively compute Eαb in C. Hence, we can subrecursively compute
Eαb in Eαb0 which is impossible as the base transition factor from b to b0 does
not exist.

5.2 Base-b sum approximations

Base-b sum approximations (from below and above) were introduced by Kris-
tiansen in [31] and studied further in [32] and, with Georgiev and Stephan, in
[20].

Definition 5.6. Let (0.D1D2 . . .)b be the base-b expansion of the irrational α ∈
(0, 1) (thus, we have Eαb (n) = Dn).

The base-b sum approximation from below of α is the function Âαb : N −→ Q
defined by Âαb (0) = 0 and Âαb (n+ 1) = Eαb (m)b−m where m is the least m such

that
n∑
i=0

Âαb (i) < (0.D1 . . . Dm)b

that is, Âαb (n) is the value represented by the nth non-zero digit of the base-b

expansion of α.

Let D denote the complement digit of the base-b digit D, that is, let D =

(b − 1) − D (observe that we have (0.D1D2D3 . . .)b + (0.D1D2D3 . . .)b = 1 for any

base b and any base-b expansion (0.D1D2 . . .)b).

The base-b sum approximation from above of α is the function Ǎαb : N −→ Q
defined by Ǎαb (0) = 0 and Ǎαb (n+ 1) = Eαb (m)b−m where m is the least m such

that

1 −
n∑
i=0

Ǎαb (n) > 1 − (0.D1 . . . Dm)b .

31

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

The functions Âαb and Ǎαb are not defined if α is rational. When we use
the notation it is understood that α is irrational. It is fairly straightforward to
prove that

∞∑
i=0

Eαb (i)b−i =

∞∑
i=0

Âαb (i) = 1 −
∞∑
i=0

Ǎαb (i) .

A detailed proof can be found in [32].
We cannot subrecursively compute Âαb in Ǎαb , and neither can we subre-

cursively compute Ǎαb in Âαb (for any base b). The following growth argument

(see page 8) explains why we cannot subrecursively compute Âα2 in Ǎα2 : Let t
be any time bound, and let f : N −→ N be a strictly increasing function that
grows faster than any function computable in time O(t), moreover, let the graph
of f be computable in polynomial time, that is, the relation f(x) = y can be
decided in time polynomial in the size of the natural numbers x and y. It is
straightforward to see that such an f exists, and that we may further assume
that 2x ≤ f(x). Consider the irrational number β given by Âβ2 (n) = 2−f(n). We
have

β = (0.0 . . . 010 . . . 010 . . . 010 . . . 010 . . .)2

where the sequences 0 . . . 0 of zeros are getting longer and longer. Now

β = (0.0 . . . 010 . . . 010 . . . 010 . . .)2 = 1− (0.1 . . . 101 . . . 101 . . . 101 . . .)2

and thus Ǎβ2 (n) = 2−g(n) where g : N −→ N is a slow growing function (we have
g(x) ≤ 2x), indeed, g(x) is computable in polynomial time as the graph of f is
computable in polynomial time. Since we can compute g in polynomial time,
we can also compute Ǎβ2 in polynomial time. Obviously, we cannot compute Âβ2
in time O(t), if we could, then we could also compute f in time O(t), contrary
to our assumption.

Hence we conclude that for any time-bound t there exists an irrational β
such that Ǎβ2 is computable in polynomial time whereas Âβ2 is not computable

in time O(t). This shows that we cannot subrecursively compute Âα2 in Ǎα2 .
The argument generalizes easily to work for any base b, and hence, we cannot
subrecursively compute Âαb in Ǎαb . A symmetric argument will show that we

cannot subrecursively compute Ǎαb in Âαb . Detailed proofs can be found in [32].
It is also proved in [32] that the base transition factor from a to b exists,

if and only if, we can subrecursively compute Âαa in Âαb , if and only if, we can
subrecursively compute Ǎαa in Ǎαb . We have already argued why we cannot
subrecursively compute Eαa in Eαb when the base transition factor from a to
b does not exist (see page 30). The very same argument should also give an
intuitive explanation of why we cannot subrecursively compute Âαa in Âαb , or
Ǎαa in Ǎαb , when the base transition factor from a to b does not exist. In the

next subsection we will analyze the complexity of computing Âαa in Âαb when
the needed base transition factor is available.

32

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

5.3 From base-b sum approximations to base-a sum ap-

proximations

Assume that the base transition factor k from base a to base b exists. We will
now give and explain an algorithm for computing Âαa (α’s base-a sum approxi-
mation from below) using Âαb (α’s base-b sum approximation from below) as an
oracle. Of course, α’s base-a sum approximation from above can be computed
from α’s base-b sum approximation from above by a symmetric algorithm.

Assume the values of Âαa (0), . . . , Âαa (n) are already computed. Then, the
algorithm computes the value of Âαa (n + 1) by carrying out the following in-
structions:

• Step 1: Compute the rational number
∑n
i=0 Â

α
a (i). The number will be

of the form (0.D1 . . . Dp)a for some p. Compute that p.

• Step 2: Ask the oracle Âαb for the value of Âαb (kp+ 1) (where k is the base
transition factor). The oracle will yield a rational number of the form Db−`

where ` ≥ kp+ 1 and D is a nonzero base b digit. Compute `.

• Step 3: Use the oracle Âαb to compute the rational number

R =

k`m∑
i=0

Âαb (i)

where k is the base transition factor, m = dloga be and ` is the value
computed in Step 2.

• Step 4: Compute the least i ≥ 1 such that digit number p + i in the
base-a expansion of R is nonzero (where p is the value computed in Step 1
and R is the value computed in Step 3). Give the output Da−(p+i) where
D is digit number p + i in the base-a expansion of R, that is, we have
Âαa (n+ 1) = Da−(p+i)

We will now argue that the algorithm gives correct output. Let (0.D1D2 . . .)a
and (0.Ḋ1Ḋ2 . . .)b be, respectively, the base-a and base-b expansion of α. In Step
1, the algorithm computes (0.D1 . . . Dp)a. According to the definition of Âαa , the
output should be Dp+ia

−(p+i) where i is the least number such that

(0.D1 . . . Dp)a < (0.D1 . . . Dp+i)a .

In Step 2, the algorithm computes `. By the definition of sum approximations,

(0.Ḋ1 . . . Ḋkp)b < (0.Ḋ1 . . . Ḋ`)b . (5.1)

Hence, by clause (II) of Base Transition Theorem, we have

(0.D1 . . . Dp)a < (0.D1 . . . D`m)a (5.2)

33

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

where m = dloga be. This shows that the denominator of the next term in the
base-a sum approximation is at most a`m. In Step 3, the algorithm computes
R. By (5.2) and clause (I) of the Base Transition Theorem, we have

(0.D1 . . . Dp)a < (0.D1 . . . D`m)a ≤ (0.Ḋ1 . . . Ḋk`m)b ≤ R < α

< (0.Ḋ1 . . . Ḋk`m)b + b−k`m ≤ (0.D1 . . . D`m)a + a−`m . (5.3)

Now, (5.3) implies that the first `m fractional digits of the base-a expansion of
α, that is D1 . . . D`m, coincide with the first `m fractional digits of the base-a
expansion of the rational number R. Thus, the algorithm computes a correct
result in Step 4.

Note that in Definition 1.4, the time bound s may depend on the time bound
t. Therefore, when we convert a representation to another the time bound of
the conversion is allowed to depend on the time it takes to compute the source
representation. We use such a bound in the following lemma. In fact, what
we need is a bound on the size of the oracle result; we use the rule that the
execution time of a Turing machine bounds its output size. Such a bound is
necessary here (in contrast to most previous conversion results) because the
algorithm does a number of steps that depends on the size of the oracle answer
(see Step 3 above).

Lemma 5.7. Assume that the base transition factor k from base a to base b

exists. There is a parameterized function-oracle Turing machine M with the

following properties. Let Âαb : N −→ Q be the base-b sum approximation from

below of an irrational α ∈ (0, 1). Furthermore, assume that Âαb is computable

within a time bound s, and let g(n) = (λx.‖m‖ + s(‖k‖ + x + 1))(n)(0) where

m = dloga be. Then

• Φ
Âαb
M : N −→ Q is the base-a sum approximation from below of α

• M Âαb on input n runs in time poly(2g(n) +s(‖k‖+g(n))) and uses at most

k2g(n) oracle calls, each of input size at most ‖k‖+ g(n).

Proof. By induction on n, we prove the time bound and also a bound on the

exponent of a in the denominator of Âαa (n).

To compute Âαa (1), we call the oracle with input 1 and obtain a position

`; we then compute R to obtain from it the first non-zero digit in base a. By

assumption, Âαb (1) is computable in time s(‖1‖); this implies that s(‖1‖) is also

a bound on the bit-length of the result of this computation, hence on that of

` (the result of the computation is the binary representation of cb−` for some

c). The machine has to access values of Âαb (i) for i = 1, . . . , k`m, so it uses

k`m ≤ km2s(‖1‖) ≤ k2g(1) oracle calls. Since the size of a result is bounded

by its computation time, we have that the size of the largest oracle answer is

bounded by s(‖k‖ + g(1)). It is routine to verify that the execution time is

dominated by the expression k`m, which is the length of the summation in

34

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Step 3, times the size of the largest number returned from an oracle call. We

have bounded k`m by k2g(1), and the size of the last oracle call is bounded by

s(‖k`m‖) ≤ s(‖k‖ + g(1)), justifying the bound on execution time for n = 1.

We note that the exponent in the denominator of Âαa (1) is bounded by `m (5.2),

hence by 2g(1).

We turn to the induction step. Assume n > 1, and assume inductively that

the position p is bounded by 2g(n−1). The value ` will be bounded by 2s(‖kp+1‖)

and the largest input to an oracle call will be

k`m ≤ km2s(‖kp+1‖) ≤ km2s(‖k‖+‖p‖+1) ≤ km2s(‖k‖+g(n−1)+1) ≤ k2g(n) .

This also bounds the number of oracle calls, since we can store results of previous

queries and therefore never query the oracle on the same input twice. A bound

on the bit-length of the result of the oracle call is s(‖k‖+ g(n)). The execution

time is polynomial in the sum of this quantity and the number of calls, yielding

the bound poly(2g(n) + s(‖k‖+ g(n))), and the position of the last base-a digit

is bounded by `m ≤ 2g(n).

We note that the lemma implies that if Âαb is computable by an O(s)-time

Turing machine, then Âαa is computable by an O(s′)-time Turing machine where
the time-bound s′ is primitive recursive in the time bound s.

5.4 From base-b sum approximations to base-a expansions

This is very similar to converting base-b expansions to base-a expansions. As in
Section 5.2, we argue that if the base transition factor from a to b does not exist,
then conversion from base-b sum approximations to base-a expansions cannot
be done subrecursively. In the case that the base transition factor exists, we
have a straightforward conversion algorithm.

Lemma 5.8. Assume that the base transition factor k from base a to base b

exists. There is a parameterized function-oracle Turing machine M with the

following properties. Let Âαb : N −→ Q be the base-b sum approximation from

below of an irrational α ∈ (0, 1). Then

• Φ
Âαb
M : N −→ {0, . . . , a− 1} is the base-a expansion of α

• M Âαb on input n runs in time poly(‖Âαb (kn)‖) and uses at most kn oracle

calls, each of input size O(log n).

Proof. As in the proof of Lemma 5.5, computing the nth digit of (0.D1D2D3 · · ·)a
is possible using the first kn digits of (0.D1D2D3 · · ·)b. By definition of Âαb , if

Âαb (n) = cb−m for some m ∈ N and c ∈ {1, . . . , b − 1}, then the nth non-zero

digit of (0.D1D2D3 · · ·)b is c. Hence, to find the first kn digits of the base-b

expansion, M may simply query Âαb (1), Âαb (2), . . . in order until the first i is

35

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

found for which Âαb (i) = cib
−mi with mi ≥ kn. This is obviously a bounded

search as such an mi will exist for some i ≤ kn. Once we have (0.D1D2 . . . Dkn)b,

we extract (0.D1D2D3 . . . Dn)a by repeated multiplication by a and extraction of

the integer part. Clearly, this procedure uses at most kn oracle calls, each of

size at most log kn. The time complexity of the procedure is dominated by a

polynomial in the size of the result of the last oracle call, i.e., poly(‖Âαb (kn)‖)
(note that the denominator of this number is at least bkn).

Lemma 5.8 does of course also hold for sum approximations from above.

5.5 Gray codes

The Gray code representation of real numbers was introduced by Tsuiki [39]
and studied further in Berger et al. [8]. The representation is subrecursively
equivalent to the representation by base-2 expansions.

Definition 5.9. The function G : N −→ {0, 1} is the Gray code of the irrational

number α if G(i) = 0 if there is an even number m with

m2−i − 2−(i+1) < α < m2−i + 2−(i+1)

and G(i) = 1 if the same holds for an odd number m.

Gray codes are usually defined as maps G : N −→ {0, 1,⊥} where G(i) = ⊥
if α is of the form m2−i − 2−(i+1) for some m and i, and hence is rational. As
we are only considering irrationals, we do not need ⊥.

Lemma 5.10 (Tsuiki [39]). Let Eα2 and Gα, respectively, be the base-2 expan-

sion and the Gray code of the irrational α ∈ (0, 1). Then we have

Eα2 (1) = Gα(0)

Eα2 (n+ 1) = Eα2 (n)⊕Gα(n)

where ⊕ denotes the XOR function.

Lemma 5.11. There is a parameterized function-oracle Turing machine M with

the following properties. Let G : N −→ {0, 1} be the Gray code of an irrational

α ∈ (0, 1). Then

• ΦGM : N+ −→ {0, 1} is the base-2 expansion of α

• MG on input n runs in time O(n log n) and uses n oracle calls, each of

input size O(log n).

Proof. Straightforward from the conversion algorithm expressed by Lemma 5.10.

36

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Lemma 5.12. There is a parameterized function-oracle Turing machine M

with the following properties. Let E : N+ −→ {0, 1} be the base-2 expansion of

an irrational α ∈ (0, 1). Then

• ΦEM : N −→ {0, 1} is the Gray code of α

• ME on input n runs in time O(log n) and uses 2 oracle calls, each of input

size O(log n).

Proof. A simple rewrite of the equations in Lemma 5.10 gives:

Gα(0) = Eα2 (1)

Gα(n+ 1) = Eα2 (n+ 1)⊕ Eα2 (n+ 2)

The implied algorithm has the complexity stated in the lemma.

5.6 Summary

In this section, our main results concerned the representations by base-b ex-
pansions (Gray codes being equivalent to base-2 expansions), and the represen-
tations by base-b sum approximations. These representations form clusters in
which not all representations allow for subrecursive conversion from one to the
other. Base-b expansions are convertible to base-a expansions when the base
transition factor from a to b exists—and then the overhead of the conversion
is exponential in the bit-length of the input. Base-b sum approximations from
below (above) are convertible to base-a sum approximations from below (above)
when the base transition factor from a to b exists—and then the overhead of the
conversion involves iteration, which guaranteed that an O(t)-time computable
base-b sum approximation becomes an O(s)-time computable base-a sum ap-
proximation with s primitive recursive in t.

37

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

6 Representations subrecursively equivalent to

Dedekind cuts

6.1 Dedekind cuts

The representation of irrational numbers by Dedekind cuts is not subrecursively
equivalent to the representation by base-b expansions, neither is it subrecursively
equivalent to the representation by base-b sum approximations from below or
above, for any base b. From now on, we will use Dα to denote the Dedkind cut
of α, see Definition 1.1.

It is fairly easy to see that we can subrecursively compute base-b expansion
Eαb in Dα, see Section 6.3 below, but it is not possible to subrecursively compute
Dα in Eαb for any fixed base b. An intuitive explanation of why this is impossible
is very similar to our explanation of why we cannot subrecursively compute Eα10
in Eα2 at page 30: Let α be an irrational whose base-2 expansion starts with

α = 0.000110011001100110011001100110011001100110011

The period 0011 may be repeated arbitrarily many times, and thus, we will need
unbounded search to determine if α lies above or below 10−1, that is, we need
unbounded search to compute Dα(10−1). This simple example should also serve
as an intuitive explanation of why we cannot subrecursively compute Dα in α’s
base-b sum approximation from above or below, that is, Âαb or Ǎαb . Neither

is it possible to subrecursively compute Âαb , or Ǎαb , in Dα, but an intuitive
explanation of why this is the case is not all that straightforward, and we refer
the interested reader to Section 7 and 8 of Kristiansen [32] for more on the
relationship between Dedekind cuts and base-b sum approximations.

6.2 Definitions

The next definition gives some representations being subrecursively equivalent
to the representation by Dedekind cuts.

Definition 6.1. Let α ∈ (0, 1) be an irrational number.

1. The Beatty sequence of α is the function Bα : N+ −→ N given by

Bα(n)

n
< α <

Bα(n) + 1

n
.

2. The general base expansion of α is the function

Eα : (N \ {0, 1})× N+ −→ N

where Eα(b, n) = Eαb (n) (recall that Eαb is the base-b expansion of α, see

Definition 5.1).

38

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

3. The Hurwitz characteristic of α is the function Hα : N −→ {0, 1}∗ such

that Hα(0), Hα(1), Hα(2), . . . is a path in the Farey pair tree3 TF, and

moreover, for all n ∈ N, we have α ∈ TF(Hα(n)).

Dedekind cuts [9, 15] and Hurwitz characteristics [23] were known in the
19th century or earlier. Use of the Hurwitz characteristic to represent numbers
rather than a stepping stone for other material is a much younger invention, see
Lehman [35]. Beatty sequences appear in a problem by Samuel Beatty published
in American Mathematical Monthly in 1926 [17] , but such sequences were used
earlier by Bernard Bolzano [11]. The representation by general base expansions
might not have been investigated before, but it is very natural.

This section is based on the conference paper Kristiansen & Simonsen [34].

6.3 Conversion between general base expansions and De-

dekind cuts

We will compute Eα(b, n) by computing the digits D1, D2, D3, . . . of α’s base-b
expansion one by one. When we have determined the digits D1, . . . , Dn, we know
that

(0.D1 . . . Dn)b < α < (0.D1 . . . Dn)b + b−n

and then we can split the interval

((0.D1 . . . Dn)b , (0.D1 . . . Dn)b + b−n)

into b subintervals, each of length b−n−1, and use the Dedekind cut of α to
determine the digit Dn+1.

Lemma 6.2. There is a parameterized function-oracle Turing machine M with

the following properties. Let D : Q −→ {0, 1} be the Dedekind cut of an irra-

tional α ∈ (0, 1). Then

• ΦDM : (N \ {0, 1})× N+ −→ N is the general base expansion of α

• MD on input (b, n) runs in time O(poly(n)polylog(b)) and uses at most

n log b oracle calls, each of input size at most O(n log b).

Proof. M constructs the sequence Eαb (1), Eαb (2), . . . , Eαb (n) inductively by main-

taining an open interval Ii = (vi, wi) with rational endpoints vi, wi ∈ Q for each

i ∈ {0, . . . , n − 1} such that (i) α ∈ Ii, (ii) vi is a multiple of b−i, and (iii)

3Strictly speaking, the classic Hurwitz characteristic corresponds to a path through the full

Stern-Brocot tree (not the Farey pair tree as we consider here), and hence the classic Hurwitz

characteristic H′ of α ∈ (0, 1) is the function defined by H′(0) = 0 and H′(q) = 0 ·H(q − 1)

for q > 0. This does not change our results in any material way.

39

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

wi − vi = b−i. Initially, I0 = (0, 1). For each interval Ii, M splits Ii = (vi, wi)

into b equal-sized intervals

(vi, vi + b−(i+1)), . . . , (vi + (b− 1)b−(i+1), vi + b−i) = (vi + (b− 1)b−(i+1), wi) .

The endpoints of all the b intervals do not have to be explicitly computed; in

the course of the following binary search we can compute those that we need.

This saves some computation time.

For any interval (r1, r2), if D(r1) = D(r2) = 0, then α > r2, and if D(r1) =

D(r2) = 1, then α < r1 (and the case D(r1) = 1 ∧D(r2) = 0 is not possible).

Thus, M can use D to perform binary search on (the endpoints of) the above

set of intervals to find the interval

(vi + jb−(i+1) , vi + (j + 1)b−(i+1)) (6.1)

that contains α (observe that, for this interval, D(vi+ jb−(i+1)) = 0 and D(vi+

(j + 1)b−(i+1)) = 1). We then set (vi+1, wi+1) to equal the interval (6.1). By

construction, we have Eα(b, i+ 1) = j.

Clearly, in each step i, there are at most log b oracle calls to D, and the

construction of each of the b intervals and writing on the query tape can be

performed in time polynomial in the binary representation of the numbers in-

volved, hence in time O(polylog(bi)) = O(poly(i)polylog(b)). Hence, the total

time needed to produce E(b, n) is at most O(poly(n)polylog(b)) with at most

n log b queries to D. In each oracle call, the rational numbers involved are all

endpoints of intervals where the endpoints are sums of negative powers of b and

where the exponent of all powers is at most n. Hence, all oracle calls can be

represented by rational numbers using at most O(n log b) bits.

Our algorithm for converting a general base expansion to a Dedekind cut
is based on the following observation: For any n ∈ N and m ∈ N+ such that
0 < n/m < 1, we have Dα(n/m) = 0 iff n/m < α iff n ≤ Eα(m, 1).

Lemma 6.3. There is a parameterized function-oracle Turing machine M with

the following properties. Let E : (N \ {0, 1}) × N+ −→ N be the general base

expansion of an irrational α ∈ (0, 1). Then

• ΦEM : Q −→ {0, 1} is the Dedekind cut of α

• ME on input n/m runs in time O(log(max{n,m})) and uses exactly one

oracle call of input size at most O(logm).

Proof. On input n/m ∈ Q, M first checks if m = 1, and outputs 0 if n ≤ 0 and

1 if n ≥ 1. Otherwise, m > 1, and M computes E(m, 1); by definition, this

is an element of {0, . . . ,m − 1}. Thereafter, M outputs 0 if n ≤ E(m, 1), and

outputs 1 otherwise. M needs to write the (representation of the) pair (m, 1)

40

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

on the oracle tape and perform a single comparison of numbers of magnitude

at most max{n,m}, hence M uses time O(log max{n,m}) for the comparison.

M uses exactly one oracle call to E with the pair (m, 1), the representation of

which uses at most O(logm) bits.

6.4 Conversion between Beatty sequences and Dedekind

cuts

It is easy to see how we can convert a Dedekind cut Dα into a Beatty sequence
Bα as the value of Bα(n) is the natural number m such that m/n < α <
(m+ 1)/n. We may use Dα to search for that unique m.

Lemma 6.4. There is a parameterized function-oracle Turing machine M with

the following properties. Let D : Q −→ {0, 1} be the Dedekind cut of an irra-

tional α ∈ (0, 1). Then

• ΦDM : N+ −→ N is the Beatty sequence of α

• MD on input n runs in time O(polylog(n)) and uses at most dlog ne oracle

calls, each of input size at most O(log n).

Proof. On input n, M finds the least i ∈ {1, . . . , n} such that D(i/n) = 1. As

D(i/n) = 1 and j > i implies D(j/n) = 1, the least i can be found by binary

search, halving the search range in each step. This can be done by maintaining

two integers l and u ranging in {0, . . . , n}, and requires a maximum of log n

halving steps. In each halving step, M finds the midpoint m between l and u,

writes the rational number m/n on the query tape, queries D, and records the

answer. Then, l and u are updated using basic binary arithmetic operations on

integers, represented by at most O(log n) bits; if D(m/n) = 1, then u := m, and

if D(m/n) = 0, then l := m. Eventually we reach a state where D(l/n) = 0 and

D(m/n) = D((l + 1)/n) = 1. Clearly, in each step, the arithmetic and update

operations can be performed in time polynomial in the size of the representation

of the integers, hence in time polylog(n). As l/n < α < m/n, we have B(n) = l,

and MD thus returns l.

In order to see that our algorithm for converting a Beatty sequence Bα into
a Dedekind cut Dα is correct, observe that we have Dα(n/m) = 0 iff n/m < α
iff n ≤ Bα(m), for any n ∈ N and any m ∈ N+.

Lemma 6.5. There is a parameterized function-oracle Turing machine M with

the following properties. Let B : N+ −→ N be the Beatty sequence of an irra-

tional α ∈ (0, 1). Then

• ΦBM : Q −→ {0, 1} is the Dedekind cut of α

41

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

• MB on input n/m runs in time O(log(max{n,m})) and uses exactly one

oracle call of input size O(logm).

Proof. On input n/m, M performs the oracle call B(m), resulting in an inte-

ger B(m) (where B(m) ∈ {0, 1 . . . ,m − 1}). If n ≤ B(m), then M outputs

0, otherwise, M outputs 1. The comparison n ≤ B(m) can be performed bit-

wise using the binary representations of n and B(m) which is clearly linear in

log(max{n,B(m)}) ≤ log max{n,m}. Writing m on the oracle tape clearly also

takes time linear in logm.

6.5 Conversion between Hurwitz characteristics and De-

dekind cuts

Let us first discuss how we can compute a Dedekind cut Dα using a Hurwitz
characteristic Hα as an oracle.

Assume 0 < n/m < 1 where n and m are relatively prime natural numbers.
Let (a/b, c/d) = TF(Hα(n+m)). By Proposition 2.6, n/m occurs as one of the
fractions in a Farey pair in TF at depth at most n+m−2, and thus exactly one
of (i) n/m ≤ a/b and (ii) c/d ≤ n/m must hold. As a/b < α < c/d, we have
Dα(n/m) = 0 iff n/m ≤ a/b.

Lemma 6.6. There is a parameterized function-oracle Turing machine M with

the following properties. Let H : N −→ {0, 1}∗ be the Hurwitz characteristic of

an irrational α ∈ (0, 1). Then

• ΦHM : Q −→ {0, 1} is the Dedekind cut of α

• MH on input n/m runs in time poly(max{n,m}) and uses exactly one

oracle call of input size at most O(log max{n,m}).

Proof. If n/m ≤ 0, then M outputs 0. If n/m ≥ 1, then M outputs 1. Let 0 <

n/m < 1. We assume that n/m is in its lowest terms. Then M computes H(n+

m) using polylog(max{n,m}) operations to compute the binary representation

of n + m, and then performing a single oracle call; note that the result of the

oracle H(n + m) is a bit string of length exactly n + m ≤ poly(max{n,m}).
M then computes TF(H(n + m)) to obtain a Farey pair (a/b, c/d) such that

a/b < α < c/d. If n/m ≤ a/b, then M outputs 0, otherwise, M outputs 1.

By Proposition 2.4, M can find (a/b, c/d) in time

poly(1 + |H(n+m)|) = poly(max{n,m})

and whether n/m ≤ a/b holds can be tested in time O(log max{a, b, n,m}). It

is an easy induction on the depth d to see that a numerator or denominator in

any fraction occurring in a Farey pair at depth d in TF is at most 2d. Hence,

max{a, b, n,m} ≤ 2n+m, and the test can thus be performed in time O(n+m) =

O(max{n,m}). Thus, M needs a total time of poly(max{n,m}).

42

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Our algorithm for converting a Dedekind cut Dα into a Hurwitz character-
istic Hα is not very surprising. The value of Hα(n) is determined by a path of
length n in the Farey pair tree TF where every interval along the path contains
α. We can easily compute such a path when we have access to Dα.

Lemma 6.7. There is a parameterized function-oracle Turing machine M with

the following properties. Let D : Q −→ {0, 1} be the Dedekind cut of an irra-

tional α ∈ (0, 1). Then

• ΦDM : N −→ {0, 1}∗ is the Hurwitz characteristic of α

• MD on input n runs in time poly(n) and uses exactly n oracle calls, each

of input size at most O(n).

Proof. On input n, M constructs a path of length n in TF. M does this by start-

ing at i = 0 and incrementing i, maintaining a current Farey pair (ai/bi, ci/di)

such that α ∈ (ai/bi; ci/di) for i = 0, . . . , n. The mediant of (ai/bi, ci/di) gives

rise to the two children (ai/bi, (ai+ci)/(bi+di)) and ((ai+ci)/(bi+di), ci/di) of

(ai/bi, ci/di) in TF. The irrational number α will be in exactly one of these two

open intervals. Clearly, α ∈ (ai/bi, (ai+ci)/(bi+di)) iff D((ai+ci)/(bi+di)) = 1

iff the ith bit of H(n) is 0. Hence, M starts with (a0/b0, c0/d0) = (0/1, 1/1),

and for i = 1, . . . , n, M constructs the interval (ai/bi, ci/di) by computing the

mediant and querying D. Observe that the query in step i is the (binary repre-

sentation of the) mediant of a Farey pair at depth i− 1, thus its denominator is

bounded above by 2i and its binary representation uses at most O(log 2i) = O(i)

bits.

As the numerators and denominators at depth i in TF are of size at most 2i

(hence representable by i bits), computing the mediant at step i can be done

in time at most O(i) = O(n) by two standard schoolbook additions, and the

step i contains exactly one query to D. Hence, the total time needed for M to

construct H(n) is at most O(npoly(n)) = poly(n), with exactly n oracle calls,

each of size at most O(log 2n) = O(n).

6.6 Summary

We can now give a summary of our results on the complexity of conversions
among representations subrecursively equivalent to representation by Dedekind
cuts.

Theorem 6.8. Consider the representations by (1) Dedekind cuts, (2) general

base expansions, (3) Hurwitz characteristics and (4) Beatty sequences, and let

R1 and R2 be any two of these four representations. Then, for an arbitrary

time-bound t, we have

O(t)R2
⊆ O(poly(22

n

+ t(O(2n))))R1
.

43

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Proof. As in the proof of Theorem 4.15, we have to consider composition of

reductions. In this case all paths go through the representation by Dedekind cuts

(see Figure 3). The formulas next to each arc are justified by the corresponding

lemma. For example, computation of a general base expansion from a Dedekind

cut is described by Lemma 6.2. It states that on input (b, n), the machine

runs in time poly(n)polylog(b). Let x be the size of the input (in Figure 3 it

is denoted by n, but we change here to x to avoid a clash). I.e., x = ‖(b, n)‖.
Then it should be clear that poly(n)polylog(b) = poly(2x). The reduction uses

at most n log b oracle calls, this is bounded by 2x. The input size to the oracle

call is bounded by n log b, this is O(2x).

Now, consider the conversion from Hurwitz characteristic to a general base

expansion via the Dedekind cut—this turns out to be the costliest path. Let

tD be the time to compute the Dedekind cut from the Hurwitz characteristic.

Then computation of the general base expansion takes poly(2n) time using 2n

oracle calls of size O(2n): we get the formula

poly(2n) + 2n · tD(O(2n)).

Now we substitute tD(x) = O(2x) + t(x), to get

poly(2n) + 2n · (2O(2n) + t(O(2n))

which simplifies to

poly(22
n

) + 2n · t(O(2n))

which again simplifies to poly(22
n

+ t(O(2n))).

7 Representations equivalent to best approxi-

mations

7.1 Best approximations

The representation of real numbers by left (or right) best approximations might
not be very well known, but it is a natural representation which is easy to
understand, and the next definition should not require any explanations.

Definition 7.1. Let α be an irrational number in the interval (0, 1), and let

r = a/b where a, b are relatively prime natural numbers.

The rational r is a left best approximant of α if we have c/d ≤ a/b < α or

α < c/d for any natural numbers c, d where d ≤ b. The rational r is a right best

approximant of α if we have α < a/b ≤ c/d or c/d < α for any natural numbers

c, d where d ≤ b.

44

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Hurwitz characteristic

Dedekind cut

Beatty sequence General

base expansion

O(2n)
1×O(n)

poly(2n)
2n×O(2n)

poly(n)
n×O(n)

O(n)
1×O(n)

poly(2n)
2n×O(2n)

O(n)
1×O(n)

Figure 3: Reductions among representations in the cluster of Dedekind Cuts.

Next to each arrow representing a reduction is the cost of the reduction (above

the line) and the number and size of oracle calls (below).

A left best approximation of α is a sequence of rationals {ri}i∈N such that

0 = r0 < r1 < r2 < . . .

and each ri is a left best approximant of α. A right best approximation of α is

a sequence of rationals {ri}i∈N such that

1 = r0 > r1 > r2 > . . .

and each ri is a right best approximant of α.

Note that there is at most one left (right) best approximant of α for any given
denominator, and thus, a left (right) best approximation of α will converge to
α.

In this section we will study a number of representations subrecursively
equivalent to the representation by left best approximations and a number of
representations subrecursively equivalent to the representation by right best
approximations. These two equivalence classes are incomparable to each other,
that is, a representation in one of the classes cannot be subrecursively converted
to a representation in the other class. We will explain why in Section 8.

Definition 7.2. A left best approximation {ri}i∈N of α is complete if every left

best approximant of α occurs in the sequence {ri}i∈N. A right best approxima-

tion {ri}i∈N of α is complete if every right best approximant of α occurs in the

sequence.

45

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

There is a connection between complete best approximations and paths in
the Farey pair tree TF. Let α be an irrational in the interval (0, 1), and let
σ1σ2 · · · ∈ {0, 1}ω be the unique path in TF such that

α ∈ TF(σ1 . . . σn) = (an/bn, cn/dn) (7.1)

holds for any n ∈ N. Then, a fraction p/q is a left best approximant of α if and
only if p/q occurs in the sequence a0/b0, a1/b1, a2/b2,

It is obvious that every ai/bi in the sequence is a left best approximant of
α as any fraction in the interval (ai/bi, ci/di) has denominator strictly greater
than bi (see Theorem 2.2). To see that every left best approximant of α indeed
occurs in the sequence, assume for the sake of contradiction that a left best
approximant p/q is not there. Then we have

ai
bi

<
p

q
<

ai+1

bi+1
=

ai + ci
bi + di

for some i. Since p/q is a left best approximant we must have q < bi+1 = bi+di.
But we also have p/q ∈ (ai/bi, ci/di), and that contradicts Theorem 2.2 which
states that any fraction in the interval (ai/bi, ci/di) has denominator greater
than or equal to bi + di.

By the same token, p/q is a right best approximant of α if and only if p/q
occurs in the sequence c0/d0, c1/d1, c2/d2, Hence, we have the next lemma.

Lemma 7.3. Let α be an irrational number such that (7.1) holds. (i) The

sequence {ai/bi}i∈N contains all the left best approximants of α and nothing but

left best approximants of α. (ii) The sequence {ci/di}i∈N contains all the right

best approximants of α and nothing but right best approximants of α.

We can use TF to subrecursively compute the complete left best approxima-
tion {ai/bi}i∈N of α from an arbitrary left best approximation {âi/b̂i}i∈N of α.

Observe that we have ai/bi ≤ âi/b̂i < α for any i ∈ N. Thus, there will be

at least n left best approximants of α that are smaller than or equal to ân/b̂n.

Hence we can find an/bn by constructing a path σ1 . . . σm in TF such that ân/b̂n
is the left endpoint of TF(σ1 . . . σm). By Lemma 7.3, every left best approximant

of α smaller than or equal to ân/b̂n will occur along the path σ0 . . . σm. We have
argued that there will be at least n of them, and thus we can pick the nth one.
By Proposition 2.6, we have m ≤ ân + b̂n − 2 (except for â0 = 0 where we have
m = 0), and thus, unbounded search is not required. A symmetric algorithm
will compute the complete right best approximation from an arbitrary right best
approximation.

Lemma 7.4. There is a parameterized function-oracle Turing machine M with

the following properties. Let L : N −→ Q be a left best approximation of an

irrational α ∈ (0, 1). Then

• ΦLM : N −→ Q is the complete left best approximation of α

46

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

• ML on input n runs in time poly(2‖L(n)‖) and uses exactly one oracle call

of input size ‖n‖.

Proof. By the algorithm shown above, noting that we trace in the Farey tree a

path of length at most max(0, ân+ b̂n−2). The arithmetic operations performed

by the algorithm take polynomial time in the length of the operands.

Given our discussion above, it is not very hard to see that the representation
by Dedekind cuts is subrecursive in the representation by left best approxima-
tions and also in the representation by right best approximations: If {ai/bi}i∈N
is a left best approximation of α, then we have bn > n, and thus also m/n < α
iff m/n < an/bn. If {ci/di}i∈N is a right best approximation of α, then we have
dn > n, and thus also α < m/n iff cn/dn < m/n.

Lemma 7.5. There is a parameterized function-oracle Turing machine M with

the following properties. Let L : N −→ Q be a left best approximation of an

irrational α ∈ (0, 1). Then

• ΦLM : Q −→ {0, 1} is the Dedekind cut of α

• ML on input m/n runs in time poly(‖L(n)‖) and uses exactly one oracle

call of input size ‖n‖.

Proof. We ask the oracle for the mth left best approximant an/bn. Then we

have m/n < an/bn < α or α < m/n. Thus, using a single oracle call and a

comparison of rationals, we can decide whether m/n < α.

7.2 Definitions

We will now define and explain a few representations subrecursively equivalent
to left, or right, best approximations.

The base-b sum approximation from below (above) of α, denoted Âαb (Ǎαb), is
defined and discussed in Section 5, see Definition 5.6. The general sum approx-
imation from below (above) of α encompasses the base-b sum approximation
from below (above) of α for any base b. The formal definition follows.

Definition 7.6. The general sum approximation from below of α is the function

Ĝα : (N \ {0, 1}) × N −→ Q given by Ĝα(b, n) = Âαb (n). The general sum

approximation from above of α is the function Ǧα : (N \ {0, 1})×N −→ Q given

by Ǧα(b, n) = Ǎαb (n).

What we will call a Baire sequence is an infinite sequence of natural numbers.
Such a sequence a0, a1, a2, . . . represents an irrational number α in the interval
(0, 1). We split the interval (0, 1) into infinitely many open subintervals with
rational endpoints. Specifically, we use the splitting

(0/1 , 1/2) (1/2 , 2/3) (2/3 , 3/4) . . . (n/(n+ 1) , (n+ 1)/(n+ 2))

47

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

The first number of the sequence a0 tells us in which of these intervals we find
α. Thus if a0 = 17, we find α in the interval (17/18, 18/19). Then we split the
interval (17/18, 18/19) in a similar way. The second number of the sequence a1
tells us in which of these intervals we find α, and thus we proceed.

In general, in order to split the interval (q, r), we need a strictly increasing
sequence of rationals s0, s1, s2, . . . such that s0 = q and limi si = r. We will use
the splitting si = (a + ic)/(b + id) where a, b are (the unique) relatively prime
natural numbers such that q = a/b and c, d are (the unique) relatively prime
natural numbers such that r = c/d (let 0 = 0/1 and 1 = 1/1). This particular
splitting ensures that every interval induced by a Baire sequence can be found
in the Farey pair tree TF.

We will say that the Baire sequences explained above are standard. The
standard Baire sequence of the irrational number α will lexicographically pre-
cede the standard Baire sequence of the irrational number β iff α < β. We will
also work with what we call dual Baire sequences. The dual sequence of α will
lexicographically precede the dual sequence of β iff α > β. We get the dual
sequences by using decreasing sequences of rationals to split intervals, e.g., the
interval (0, 1) will be split into the intervals

(1/1 , 1/2) (1/2 , 1/3) (1/3 , 1/4) . . . (1/n , 1/(n+ 1))

Definition 7.7. Let f : N −→ N be any function, and let n ∈ N. We define the

interval Inf by I0f = (0/1, 1/1) and

In+1
f =

(
a+ f(n)c

b+ f(n)d
,
a+ f(n)c+ c

b+ f(n)d+ d

)
if Inf = (a/b, c/d). We define the interval Jnf by J0

f = (0/1, 1/1) and

Jn+1
f =

(
a+ f(n)a+ c

b+ f(n)b+ d
,
f(n)a+ c

f(n)b+ d

)
if Jnf = (a/b, c/d). The function B : N −→ N is the standard Baire represen-

tation of the irrational number α ∈ (0, 1) if we have α ∈ InB for every n. The

function A : N −→ N is the dual Baire representation of the irrational number

α ∈ (0, 1) if we have α ∈ JnA for every n.

Unit fractions, that is, fractions with numerator 1, were studied in ancient
Egypt, see e.g. [2], and are also known as Egyptian fractions. In the literature,
an Egyptian fraction expansion may refer to any representation of a number
as a sum of fractions with numerator 1. The definition we give below ensures
that any irrational number in the interval (0, 1) has a unique Egyptian fraction
expansion, see Cohen [14].

Definition 7.8. The function Eα : N+ −→ N is the Egyptian fraction expansion

for α if

α =

∞∑
i=1

 i∏
j=1

Eα(j)

−1

48

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

and Eα(i) ≤ Eα(i+ 1) (for all i ∈ N+).

We have e.g.

√
2− 1 =

1

3
+

1

3 · 5
+

1

3 · 5 · 5
+

1

3 · 5 · 5 · 16
+

1

3 · 5 · 5 · 16 · 18
+ . . .

and this is the unique Egyptian fraction expansion of
√

2− 1. Another possible
representation of irrationals based on Egyptian fractions is related to left best
approximation, see Beck et al. [6]. In fact, from Theorem 2.2 and the relation
of left best approximations to the Farey pair tree, (Lemma 7.3) it is easy to
deduce that the difference between consecutive fractions in a complete left best
approximation is a unit fraction. Thus a complete left best approximation of α
induces a series of unit fractions that adds up to α.

Definition 7.9. A sequence {qi}i∈N of non-negative unit fractions is the Farey-

Egyptian expansion of α ∈ (0, 1) if the sequence {
∑j
i=0 qi }j∈N is a complete

left best approximation of α (which entails
∑∞
i=1 qi = α).

For example

√
2− 1 =

0

1
+

1

3
+

1

15
+

1

85
+

1

493
+ . . .

is a Farey-Egyptian expansion, associated with the complete left best approxi-
mation 0/1, 1/3, 2/5, 7/17,

The representation by Farey-Egyptian expansions is closely related to the
representation by complete left best approximations, and it is easy to convert
Farey-Egyptian expansion into a complete left best approximation, and vice
versa.

General sum approximations (from above and below) were introduced in
Kristiansen [31] and studied further in Georgiev et al. [20]. Left and right best
approximations are studied in [20], and standard and dual Baire sequences are
studied in Kristiansen [33]. The computational complexity of representations
by Egyptian fraction expansions is studied for the first time in this paper.

7.3 Conversion between general sum approximations and

best approximations

Let {ai/bi}i∈N be a left best approximation of β. We will give an algorithm for
computing the general sum approximation from below of β, that is Ĝβ , using
{ai/bi}i∈N as an oracle. The ith iteration of the algorithm generates Ĝβ(b, i).
Having computed Ĝβ(b, i) for all i < n, the algorithm will also have computed
the sum

c

d
=

n−1∑
i=1

Ĝβ(b, i) .

Then the algorithm computes Ĝβ(b, n) by executing the following instructions.

49

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

• Step 1: Ask the oracle for the value of ad/bd. Let c′/d′ = ad/bd. Note
that d is a power of b; and that we have d′ > d, and c/d < c′/d′ < β.

• Step 2: Compute m := dlogb d
′de. Comment : We have c′/d′ − c/d > 0,

and thus also
c′

d′
− c

d
=
c′d− cd′

d′d
≥ 1

d′d
.

It follows that c/d+ 1/bm ≤ c′/d′ < β.

• Step 3: Ask the oracle for the value of abm/bbm and compute (as further
explained below) the least k ≤ m and base-b digit D > 0 so that

c

d
+

D

bk
< β <

c

d
+

D

bk
+

1

bk
. (7.2)

Give the output D/bk.

Comments on Step 3 : We have i < bi for any left best approximant ai/bi.
Hence, for any fraction p/bk, with k ≤ m, we have p/bk < β iff p/bk ≤ abm/bbm ,
and (7.2) is equivalent, for such k, to

c

d
+

D

bk
≤ abm

bbm
<

c

d
+

D

bk
+

1

bk
. (7.3)

The least k that satisfies (7.3) for some D > 0 is the least k that satisfies

c

d
+

1

bk
≤ abm

bbm
.

In order to find that k, we rewrite the inequality as

1

bk
≤ abm

bbm
− c

d

which again can be rewritten as

bk ≥ dbbm

dabm − cbbm
.

Hence, the desired k is

k =

⌈
logb

dbbm

dabm − cbbm

⌉
.

Having computed k, we look for a value of D such that (7.3) holds, and it should
be clear that

D =

⌊(
abm

bbm
− c

d

)
· bk
⌋
.

The correctness of the algorithm follows straightforwardly from the com-
ments on Steps 1–3 and the definition of a general sum approximation from
below. A right best approximation can be converted into a general sum approx-
imation from above by a symmetric algorithm.

50

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Lemma 7.10. There is a parameterized function-oracle Turing machine M

with the following properties. Let L : N −→ Q be a left best approximation of

an irrational α ∈ (0, 1). Assume L is computable within a time bound s, and let

f(b, n) = (λx.(‖b‖+ 2s(x)))(n)(1). Then

• ΦLM : (N \ {0, 1})×N −→ Q is the general sum approximation from below

of α

• ML on input b, n runs in time poly(s(f(b, n))) and uses at most 2n oracle

calls, each of input size at most f(b, n).

Proof. The proof is, of course, inductive. We claim that the bit-lengths of d, bm

are bounded by f(b, n). Consequently, by assumption and the rule that the

running time of a machine bounds the size of its output, we also have that the

bit-lengths of the denominators bd, bbm are bounded by s(f(b, n)). The induction

step works as follows: The algorithm first sets d′ = bd. We inductively assume

the bound f(b, n− 1) for the bit-length of the denominators of each of Ĝα(b, i),

i < n. The common denominator d is the denominator of the last term, and so

its bit-length is bounded by f(b, n − 1). Applying our assumption of the time

bound s for the computation of bd, we have ‖d′‖ ≤ s(‖d‖) ≤ s(f(b, n− 1)). We

bound the size of the next denominator, dbm as follows. First,

‖bm‖ = ‖bdlogb(dd
′)e‖ ≤ ‖bdd′‖

≤ ‖b‖+ ‖d‖+ ‖d′‖ ≤ ‖b‖+ f(b, n− 1) + s(f(b, n− 1)) ≤
‖b‖+ 2s(f(b, n− 1)) = f(b, n)

and once more, by the assumption of the time bound s, we have

‖dbm‖ ≤ s(‖bm‖) ≤ s(f(b, n)) .

The execution time is polynomial in the size of the numbers manipulated, hence

polynomial in s(f(b, n)).

Next we give an algorithm for computing a complete left best approximation
{ai/bi}i∈N of β which uses Ĝβ (the general sum approximation from below of
β) as an oracle. Observe that the oracle makes it easy to compute the Dedekind
cut Dβ of β: for d > 1, we have Dβ(c/d) = 0 iff Ĝβ(d, 1) ≥ c/d.

To compute a0/b0 is trivial since we have a0/b0 = 0/1 by convention. In
order to compute a1/b1 the algorithm asks the oracle for the value of Ĝβ(2, 1).
We have Ĝβ(2, 1) = 1/M for some M . Then the algorithm uses the Dedekind
cut of β to search for N ≤M such that 1/N < β < 1/(N − 1) and sets a1/b1 to
1/N . (Such an N will exist since 1/M < β. Note that 2/N ≥ 1/(N − 1) > β,
and hence, the algorithm computes a1/b1 correctly.)

When n ≥ 1, the algorithm computes an+1/bn+1 by the following procedure:

51

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

• Let
c′

d′
=

an
bn

+ Ĝβ(bn, 2)

with relatively prime c′ and d′. We have d′ > bn because an/bn is a best
approximant.

• Use the Dedekind cut of β to search for c and the smallest d such that
bn < d ≤ d′ and an/bn < c/d < β < (c+ 1)/d. Let an+1/bn+1 = c/d.

In order to see that the algorithm is correct, observe that an/bn = Ĝβ(bn, 1).
Hence, we have an/bn < c′/d′ < β < (c′+ 1)/d′, which ensures that the denom-
inator bn+1 is at most d′. Therefore we find a complete best approximation.

A general sum approximation from above can be converted into a complete
right best approximation by a symmetric algorithm.

Lemma 7.11. There is a parameterized function-oracle Turing machine M

with the following properties. Let G : (N \ {0, 1}) × N −→ Q be the general

sum approximation from below of an irrational β ∈ (0, 1). Assume that G is

computable within a time bound s, and let f(n) = (λx.s(2x))(n)(1). Then

• ΦGM : N −→ Q is the complete left best approximation of β

• MG on input n runs in time poly(2f(n)) and uses at most O(2f(n)) oracle

calls, each of input size at most f(n).

Proof. First we explain the implementation of the search for c, d in the inductive

step, when computing an/bn. The condition we test is bn−1 < d ≤ d′ and

an−1/bn−1 < c/d < β < (c+ 1)/d. The oracle can be used to replace the second

conjunct by an−1/bn−1 < c/d = G(d, 1). It follows that to perform the search,

we first ask for G(bn−1, 2), then for G(d, 1) for successive values of d, from bn−1
upwards, and at most up to the denominator of G(bn−1, 2). We conclude that

the largest number involved in computing an/bn is G(bn−1, 2).

Now, consider the whole process of computing a0/b0, . . . , an/bn: in the pro-

cess of computing ai+1/bi+1 we make a single oracle call to bound the search,

and then we search from bi+ 1 up to bi+1 using a single oracle call for each test.

It is easy to see that the total number of oracle calls is n+ bn. To get a bound

in terms of the input to the algorithm, we note that d′ in the induction step is

at most the denominator of G(bn−1, 2). By assumption, G(bn−1, 2) occupies at

most s(2‖bn−1‖) bits. Hence

bn < 2s(2‖bn−1‖)

so ‖bn‖ ≤ s(2‖bn−1‖). This gives the bound f(n) on the bit-length of the largest

number involved in the computation. The value of this number, bounded by

2f(n), bounds the number of steps in the computation, and hence the execution

time up to a polynomial.

52

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

7.4 Conversion between Baire sequences and best approx-

imations

Lemma 7.12. We have

In+1
f = TF(1f(0)01f(1)0 . . . 1f(n)0) (i)

and

Jn+1
f = TF(0f(0)10f(1)1 . . . 0f(n)1) . (ii)

Proof. We prove (i). The proof of (ii) is symmetric. Let σ = 1f(0)01f(1)0 . . . 1f(n−1)0.

Observe that we have TF(σ) = (0/1, 1/1) = I0f when σ is the empty sequence.

Assume that TF(σ) = Inf = (a/b, c/d). We need to prove that

TF(σ1f(n)0) = In+1
f . (7.4)

Let k = f(n).

Assume k = 0. By Definition 2.3, we have

TF(σ1f(n)0) = TF(σ100) = TF(σ0) = (a/b , (a+ c)/(b+ d)) .

By Definition 7.7, we have

In+1
f = ((a+kc)/(b+kd) , (a+kc+c)/(b+kd+d)) = (a/b , (a+c)/(b+d)) .

Thus, (7.4) holds when f(n) = 0.

Next, we proveby induction on k that

TF(σ1k0) =

(
a+ kc

b+ kd
,
a+ kc+ c

b+ kd+ d

)
. (7.5)

Observe that the right-hand side of (7.5) is the definition of In+1
f with k for

f(n). Now, by (7.5) and Definition 2.3, we have

TF(σ1k) =

(
a+ kc

b+ kd
,
c

d

)
. (7.6)

Furthermore, by (7.6) and Definition 2.3, we have

TF(σ1k+1) =

(
a+ kc+ c

b+ kd+ d
,
c

d

)
=

(
a+ (k + 1)c

b+ (k + 1)d
,
c

d

)
(7.7)

and by (7.7) and Definition 2.3, we have

TF(σ1k+10) =

(
a+ (k + 1)c

b+ (k + 1)d
,
a+ (k + 1)c+ c

b+ (k + 1)d+ d

)
. (7.8)

Observe that the right-hand side of (7.8) is the definition of In+1
f with k+ 1 for

f(n). This proves that (7.4) holds.

53

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Given the lemma above it is easy to see how we can convert a standard Baire
sequence B into a complete right best approximation. We use B to compute an
interval I in the Farey pair tree such that I = TF(1B(0)01B(1)0 . . . 1B(n)0). By
Lemma 7.12 (i), we have I = In+1

B . It follows that the right endpoint of I is the
n+ 1st approximant in the complete right best approximation of α (see Lemma
7.3).

By Lemma 7.12 (ii), we have a symmetric algorithm for converting a dual
Baire sequence into a complete left best approximation.

Lemma 7.13. There is a parameterized function-oracle Turing machine M

with the following properties. Let B : N −→ N be the standard Baire sequence

of an irrational α ∈ (0, 1). Then

• ΦBM : N −→ Q is the complete right best approximation of α

• MB on input n ∈ N runs in time poly(n+
∑n−1
i=0 B(i)) and uses n oracle

calls, each of input size O(log n).

Proof. We have to compute I = TF(1B(0)01B(1)0 . . . 1B(n−1)0). By Proposi-

tion 2.4 this is polynomial in n+
∑n−1
i=0 B(i).4

Lemma 7.12 (i) also yields an algorithm for converting complete right best
approximations into standard Baire sequences: Given the complete right best
approximation {ai/bi}i∈N of α, we can compute a (unique) string of the form
1k001k10 . . . 1kn0 such that the right endpoint of the interval TF(1k001k10 . . . 1ki0)
equals {ai+1/bi+1} (for all i ≤ n). By Lemma 7.12 (i), we have B(i) = ki where
B is the standard Baire sequence of α. Lemma 7.12 (ii) yields an algorithm for
converting complete left best approximations into dual Baire sequences.

Lemma 7.14. There is a parameterized function-oracle Turing machine M

with the following properties. Let R : N −→ Q be the complete right best ap-

proximation of an irrational α ∈ (0, 1). Then

• ΦRM : N −→ N is the standard Baire sequence of α

• MR on input n runs in time poly(2‖R(n+1)‖) and uses n oracle calls, each

of input size O(log n)

Proof. The machine has to trace a path in TF from the root up to the first

occurrence of R(n + 1) = an+1/bn+1. By Proposition 2.6, this happens at

most at depth max(0, an+1 + bn+1 − 2) < 2‖R(n+1)‖. The branch taken at each

level is dictated by the corresponding best approximant, so the machine has to

compute R(0) through R(n). The work at each level is polynomial in the depth

and the size of the numbers involved (see Lemma 2.7), which are all polynomial

in an+1 + bn+1, hence in 2‖R(n+1)‖.5

4If B is computable within the time bound s, then s(‖n‖) can be used to bound the size

of the function values, and consequently MB runs in time poly(n2s(‖n‖)).
5By the standard argument, this shows that if R is computable within the time bound s,

then MR runs in time poly(2s(‖n‖)).

54

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

7.5 From general sum approximation from below to Egyp-

tian fraction expansions

Let Ĝα : (N \ {0, 1})× N −→ Q be the general sum approximation from below
of α ∈ (0, 1). We show how to convert Ĝα to the Egyptian fraction expansion
Eα.

The algorithm works recursively. For the base case, assume Ĝα(2, 1) = 1/b
(where b is some power of 2). Then we search for the least 2 ≤ d ≤ b such that
the denominator of Ĝα(d, 1) equals d. This means that 1/d < α < 1/(d − 1),
and we set Eα(1) = d. In the general case, first the algorithm computes Eα(i)
for all i ≤ n, then the algorithm computes Eα(n+ 1) as follows:

• Step 1: Compute the sum of the first n terms in the Egyptian fraction
expansion

c

d
=

n∑
i=1

 i∏
j=1

Eα(j)

−1 .
• Step 2: Let c′/d′ = Ĝα(d, 1) + Ĝα(d, 2). Now d′ is some power of d, and
c/d < c′/d′ < α.

• Step 3: Search for the least m such that c/d + (dm)−1 < α. This search
can be performed by the Dedekind cut of α, in turn simulated using Ĝα as
already shown. The search is bounded since Eα(n) ≤ m ≤ d′/d. Return
m.

Except for the effort to bound the searches, our algorithm is the natural greedy
algorithm which is known to compute the Egyptian fraction expansion, see
Cohen [14].

Lemma 7.15. There is a parameterized function-oracle Turing machine M

with the following properties. Let G : (N \ {0, 1})×N −→ Q be the general sum

approximation from below of an irrational number α ∈ (0, 1). Assume that G is

computable within a time bound s, and let f(n) = (λx.s(2x))(n)(2). Then

• ΦGM : N+ −→ N is the Egyptian fraction expansion of α

• MG on input n runs in time poly(2f(n)) and uses at most 2f(n)+1 oracle

calls, each of input size at most 2f(n).

Proof. The crucial quantity that determines the complexity of this algorithm is

the size (bit-length) of the largest denominator encountered, denoted d′ in the

above algorithm. We bound the size of d′ by f(n) as follows. In the general

case, d′ is obtained by calling G(d, 2) where d comes from the previous iteration,

so we assume for induction that ‖d‖ ≤ f(n − 1). The input d, 2 is represented

in twice the bit-length of d (assuming that a pair of integers is represented by

zipping two binary numbers, as suggested in Section 2), so the size of the oracle

55

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

input is bounded by 2f(n − 1) and the output of the oracle has size bounded

by s(2f(n − 1)) = f(n). In the base case, we query the oracle for G(2, 1): the

size of the result is bounded by s(4) = (λx.s(2x))(2).

Thus 2f(n) bounds the size of any oracle input throughout the algorithm.

The number of oracle calls in the last iteration of the general case is bounded

by 1 + (E(n) − E(n − 1) + 1), where the first call is to determine d′, and the

rest are in the search for E(n). It easily follows that the total number of calls

is bounded by 2n + E(n), which we bound by 2 · 2f(n) since E(n) is clearly

bounded by d′ < 2f(n), and 2n ≤ 2f(n) which is easily proved by induction.

7.6 From Egyptian fraction expansions to left best ap-

proximations

The next lemma indicates how we can subrecursively convert the representation
by Egyptian fraction expansion into a Dedekind cut. Here we shall use the
Egyptian fraction expansion of a rational number. A rational number may
have two expansions, one finite and one infinite (e.g., 1/9 is also 1/10 + 1/100 +
1/1000+. . .). The algorithm we give uses the finite one. In the proof of the next
lemma, we write the expansion as an infinite sequence anyway, for uniformity
of notation; assume the missing fractions to be zero, identified with 1/∞ = 0
(e.g., 1/9 + 0 + 0 + . . .).

Lemma 7.16. Let x, y be two different real numbers (possibly rational) in the

interval (0, 1), and let Ex, Ey be their respective Egyptian fraction expansions.

Then, x < y if and only if Ey precedes Ex in lexicographic order.

Proof. Suppose that Ex(i) = Ey(i) for all i < n, and n is the position of the

first difference. Then regarding the nth element we have the following cases:

either one of the sequences terminates, in which case it is clear that the number

expressed by the other sequence is larger; or both continue. In the latter case,

assume w.l.o.g. that Ey(n) < Ex(n). Denote d =
∏n−1
j=1 E

x(j) =
∏n−1
j=1 E

y(j).

56

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Then

y − x =

∞∑
i=n

 i∏
j=1

Ey(j)

−1 − ∞∑
i=n

 i∏
j=1

Ex(j)

−1

≥ 1

dEy(n)
−
∞∑
i=n

 i∏
j=1

Ex(j)

−1

=
1

dEy(n)
− 1

d

∞∑
i=n

 i∏
j=n

Ex(j)

−1

≥ 1

dEy(n)
− 1

d

∞∑
i=n

(Ex(n))n−i−1 =
1

dEy(n)
− 1

d
· 1

Ex(n)− 1
≥ 0 .

We conclude that x ≤ y, but they are known to differ, so x < y.

We obtain the following algorithm for computing Dα(q) in Eα: Compute the
finite Egyptian fraction expansion of q and compare it lexicographically to Eα.
For computing the expansion of q we use the algorithm of [14], which we review
below. Importantly, from the algorithm it is easy to see that the expansion
Ep/q of a rational number p/q includes at most p terms and each term Ep/q(i)
is bounded by q.

Expansion algorithm: We define an auxiliary function Div(q, p) that for posi-
tive integers q, p returns a pair of non-negative integers n ≤ q and r < p such
that np is the smallest multiple of p with np ≥ q, and r = np − q. Given a
fraction p/q, we construct sequences n1, n2, . . . and r0, r1, . . . by setting r0 = p
and (ni+1, ri+1) = Div(q, ri) until we reach rj = 0. The Egyptian fraction
expansion is given by Ep/q(i) = ni for i = 1, . . . , j.

Lemma 7.17. There is a parameterized function-oracle Turing machine M with

the following properties. Let E : N+ −→ N be the Egyptian fraction expansion

of an irrational number α ∈ (0, 1). Then

• ΦEM : Q −→ {0, 1} is the Dedekind cut of α

• ME on input m/n runs in time m · poly(‖n‖, ‖E(m)‖) and uses at most

m oracle calls, each of input size at most 1 + logm.

Proof. The computation of the expansion of m/n, according to [14], makes at

most m iterations, and in each iteration O(1) arithmetic operations are per-

formed on numbers bounded by n. For our purpose, we compare the ith num-

ber in the expansion, Em/n(i), with E(i). Recalling that E is a non-decreasing

function, the complexity bounds stated follow.

57

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Let Eα be the Egyptian fraction expansion of α. We will give an algorithm
for computing a complete left best approximation Lα of α, using Eα as an oracle.
The algorithm works recursively. The base case is the trivial approximation
0/1. In the general case, for n ≥ 1, the algorithm first computes an−1/bn−1 =
Lα(n− 1). Then the algorithm computes Lα(n) as follows:

• Step 1: Compute m terms of the Egyptian Fraction expansion for the least
m such that

m∑
i=1

 i∏
j=1

Eα(j)

−1 >
an−1
bn−1

and let d′ =
∏m
i=1E

α(i).

• Step 2: Using an implementation of the Dedekind cut Dα as described
above, search for the least d > bn−1 such that for some c < d, the fraction
c/d < α is closer to α than an−1/bn−1. Choose the largest such c. Return
c/d as Lα(n). Note that d will be at most d′.

Step 1 may seem like an unbounded search. But in fact, since the Egyptian
fraction expansion of an−1/bn−1 comprises at most an−1 terms, we know, by
Lemma 7.16, that m ≤ an−1 + 1.

Lemma 7.18. There is a parameterized function-oracle Turing machine M with

the following properties. Let E : N+ −→ N be the Egyptian fraction expansion of

an irrational number α ∈ (0, 1). Assume E is computable within a time bound

s, and let f(n) = (λx.2x log x+s(‖x‖))(n)(1). Then

• ΦEM : N −→ Q is the complete left best approximation of α

• ME on input n runs in time poly(f(n)) and uses at most f(n) oracle

calls, each of input size at most ‖f(n)‖.

Proof. We will see that the crucial quantity in the analysis of this algorithm is

bn. We claim that bn ≤ f(n), which follows by induction from

bn ≤ 2bn−1 log bn−1+s(‖bn−1‖) .

To justify this, note that

bn ≤ d′ ≤
m∏
i=1

E(i) . (7.9)

Now m ≤ an−1 + 1 ≤ bn−1, as argued before the lemma. Moreover, the first

m−1 terms E(1), . . . , E(m−1) are a prefix of the Egyptian fraction expansion of

an−1/bn−1, which implies that their value is at most bn−1, hence their product

at most b
bn−1

n−1 . To bound E(m), we recall that E(m) is computable in time

58

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

s(‖m‖), and therefore bounded by 2s(‖m‖) ≤ 2s(‖bn−1‖). We deduce from (7.9)

that

bn ≤ 2bn−1 log bn−1+s(‖bn−1‖) .

This completes the induction.

Now, to bound the oracle input size we claim that bn bounds the largest

value passed to the oracle throughout the algorithm; this is easy enough to

verify. The bound on the number of oracle calls also follows, since the Turing

machine can record answers from the oracle, and hence, we can avoid querying

the same input twice.

To bound the execution time, we bound the time for the last iteration; the

total time is polynomial in this quantity, since the bound on the last iteration

is the largest. In the last iteration we compute terms of the Egyptian fraction

expansion of an−1/bn−1 and compare it lexicographically with the sequence

{E(i)}i∈N+ to determine m; this takes O(m) = O(bn−1) arithmetic operations

on numbers bounded by bn. We have proved that bn ≤ f(n), and the time for

the computation is polynomial in ‖bn‖ times O(bn−1). Thus the time required

by Step 1 will be poly(f(n− 1) log f(n)) = poly(f(n)).

Step 2 is implemented as follows: for d = bn−1 + 1, bn−1 + 2, . . . we compute

c = 1 + b(an−1d)/bn−1c, as this gives the smallest nominator such that c/d >

an−1/bn−1. We test if c/d < α using the Dedekind cut. The whole process is

poly(f(n)) since d ≤ f(n). When we find the first such c, d, we search for the

largest c such that c/d is still below α. This involves less than d applications of

the Dedekind cut; again we remain within poly(f(n)) time.

7.7 Summary

We will now give a summary of this section along the lines we have given sum-
maries of Section 4 (page 26) and Section 6 (page 43).

Theorem 7.19. Consider the representations by (1) right best approximations,

(2) complete right best approximations (3) standard Baire sequences and (4)

general sum approximations from above, and let R1 and R2 be any two of these

four representations. Then, for an arbitrary time-bound t, there exists a time-

bound s primitive recursive in t such that O(t)R2
⊆ O(s)R1

.

A comment meant for the readers familiar with the Grzegorczyk hierarchy:
Our results are a bit stronger than what the theorem above asserts. One can
easily check that the time-bound s, for any i ≥ 3, will be in the Grzegorczyk
class Ei+1 if the time-bound t is in the Grzegorczyk class Ei. The same goes
for the next theorem if we leave out the representation by Egyptian fraction
expansions.

Theorem 7.20. Consider the representations by (1) left best approximations,

(2) complete left best approximations (3) dual Baire sequences, (4) general sum

59

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

approximations from below and (5) Egyptian fraction expansions, and let R1 and

R2 be any two of these five representations. Then, for an arbitrary time-bound t,

there exists a time-bound s primitive recursive in t such that O(t)R2
⊆ O(s)R1

.

8 A Little Bit on the Degrees of Representations

Recall the definition of the relation �S (Definition 1.4), and recall the definition
of the relations ≡S and ≺S (Definition 1.5). Furthermore, recall that the equiv-
alence relation ≡S induces a degree structure on the representations, where a
degree is simply an ≡S-equivalence class, see Page 11. We will use the standard
terminology of degree theory and say that a degree a lies (strictly) below a de-
gree b if we have (R1 ≺S R2) R1 �S R2 whenever R1 ∈ a and R2 ∈ b. We say
that b lies (strictly) above a if a lies (strictly) below b. Beware that Figure 1
shows an upside-down picture of the world, that is, if a degree a lies below a
degree b, then a is depicted above b in the figure.

Figure 1 shows that the degree of the representation by left best approxi-
mations is incomparable to, that is, lies neither above nor below, the degree of
the representation by right best approximations. That this indeed is the case
can be established by a growth argument (see page 8). Let us see how such an
argument works.

In Section 7 we saw that the representation by dual Baire sequences is subre-
cursively equivalent to the representation by left best approximations and that
the representation by standard Baire sequences is subrecursively equivalent to
the representation by right best approximations. In order to make our growth
argument transparent, we will consider dual and standard Baire sequences in
place of left and right best approximations. Let B and dB denote the represen-
tations by standard and dual Baire sequences, respectively. We will argue that
B 6�S dB and dB 6�S B.

Let s be any time bound. We will prove that there exists an irrational α in
the interval (0, 1) such that

the standard Baire sequence of α is not computable in time O(s) (8.1)

but still

the dual Baire sequence of α is computable in time poly(22
n

) (8.2)

where n is the length of the input.
Consider a very fast increasing function B : N −→ N with a simple graph.

Specifically, we assume that the graph of B, that is the relation B(x) = y, is
decidable in time poly(max(x, y)), but still, B increases too fast to be com-
putable in time O(s). Such a B will always exist, and for convenience, we will
also choose B so that 2x ≤ B(x) and B(x) ≤ B(x+ 1). Now, B is the standard
Baire sequence of some irrational number α, and since an irrational number has
exactly one standard Baire sequence, the standard Baire sequence of α is not

60

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

computable in time O(s). Thus, (8.1) holds. It remains to prove that (8.2)
holds.

Let an = B(0) +
∑n
i=1(B(i) + 1). Let A(x) = 1 if x = an for some n;

otherwise, let A(x) = 0. This defines a function A. We will prove that A is
the dual Baire sequence of α, but first we will argue that A(x) is computable in
time poly(2‖x‖): Observe that n will be smaller than x whenever x = an holds.
Thus, we can check if there exists n such that x = an by checking

(∃n, y0, . . . , yn < x)[B(0) = y0 ∧ . . . ∧ B(n) = yn

∧ x = y0 +

n∑
i=1

(yi + 1)] . (8.3)

By assumption we can decide in time poly(max(z1, z2)) if the relation B(z1) = z2
holds. Thus we can check in time poly(x) if the matrix of (8.3) holds for given
y0, . . . , yn and a search over all such sequences can be done with at most 2x

such checks (this bounds the number of ordered partitions of x). This shows

that A(x) is computable in time 2xpoly(x), and thus in time poly(22
‖x‖

), since
A(x) equals 1, if (8.3) holds, and 0 if (8.3) does not hold.

For any natural number n, we define the strings σn and τn by

σn = 0A(0)10A(1)1 . . . 0A(an−1)10A(an) and τn = 1B(0)01B(1)0 . . . 1B(n)0 .

We prove by induction on n that σn = τn. Let n = 0. We have a0 = B(0), and
thus, by the definition of A, we have

σ0 = 0A(0)10A(1)1 . . . 0A(a0−1)10A(a0) = 1a00 = 1B(0)0 = τ0 .

Let n > 0. By the definition of an, we have an = an−1 + B(n) + 1, and thus
B(n) = an − (an−1 + 1). Furthermore, we have

σn
(1)
= σn−110A(an−1+1)10A(an−1+2) . . . 10A(an−1)10A(an) (2)

=

σn−11an−(an−1+1)0
(3)
= σn−11B(n)0

(4)
= τn−11B(n)0

(5)
= τn

where (1) holds by the definition of σn; (2) holds by the definition of A; (3) holds
by the definition of an; (4) holds by the induction hypothesis; and (5) holds by
the definition of τn. This proves that σn = τn for any n, and by Lemma 7.12,
we have

TF(σn) = TF(τn) = InB

and also
JanA ⊇ TF(σn) ⊇ Jan+1

A

for any n. By the definition of standard and dual Baire sequences (Definition
7.7), it follows that A is the dual Baire sequence of α. This completes our proof
of (8.2).

61

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

It follows from (8.1) and (8.2) that we have

poly(22
n

)dB 6⊆ O(s)B

for any time bound s, and thus we have B 6�S dB by our definition of the
ordering relation �S (Definition 1.4). A symmetric proof yields dB 6�S B.

Our growth argument shows that the degree of the representation by left
best approximations (which is also the degree of dB) is incomparable to the
degree of the representation by right best approximations (which is also the
degree of B). We have seen that we can subrecursively compute the Dedekind
cut of α ∈ (0, 1) if we have access to a left, or to a right, best approximation
of α (Lemma 7.5). Thus our two degrees of representations by best approxi-
mations will both lie above the degree of the representation by Dedekind cuts,
and since the two degrees are incomparable, they have to lie strictly above. We
cannot subrecursively convert the representation by Dedekind cuts into the rep-
resentation by left, or the representation by right, best approximations. In the
next section we will see that both degrees lie below the degree of the represen-
tation by continued fractions, and since the two degrees are incomparable, we
can conclude that they lie strictly below. We cannot subrecursively convert the
representation by left, or the representation by right, best approximations into
the representation by continued fractions (but we will see in the next section
that we indeed can subrecursively compute the continued fraction of α if we
have access to both a left and a right best approximation of α). See Figure 1.

9 Representations equivalent to continued frac-

tions

9.1 Continued fractions

We may assume some familiarity with continued fractions, but we will state
and explain some of their properties below. For more on continued fractions
see Khintchine [24] or Richards [37]. The latter is a very readable paper which
carefully explains the relationship between continued fractions and Farey pairs.

Let a0, a1, a2, . . . be an infinite sequence of integers where a1, a2, a3, . . . are
positive. The continued fraction [a0; a1, a2, . . .] is defined by

[a0; a1, a2, a3, . . .] = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

We will work with continued fraction representations of irrational numbers
between 0 and 1. Every irrational number α in the interval (0, 1) can be written
uniquely in the form α = [0; a1, a2, . . .] where a1, a2, a3, . . . are positive integers.
Hence, the next definition makes sense.

62

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Definition 9.1. Let α be an irrational number in the interval (0, 1), and let

α = [0; a1, a2, . . .]. The continued fraction of α is the function C : N+ −→ N
given by C(i) = ai.

We define [a0; a1, . . . , an] by induction on n. If n = 0, let [a0;] = a0. If
n > 0, let

[a0; a1, . . . , an] = a0 +
1

[a1; a2, . . . , an]
.

The rational number [a0; a1, . . . , an] is known as the nth convergent of the infi-
nite continued fraction [a0; a1, a2, . . .].

Let

p0
q0

=
0

1
,

p1
q1

=
1

a1
and

pk+2

qk+2
=
pk + ak+2pk+1

qk + ak+2qk+1
. (9.1)

It is well known that pn/qn equals the nth convergent of [0; a1, a2, a3, . . .], that
is, pn/qn = [0; a1, . . . , an]. It is also well known that

p0
q0

<
p2
q2

<
p4
q4

< . . . < α < . . . <
p5
q5

<
p3
q3

<
p1
q1

where α = [0; a1, a2, . . .], that is, the even convergents approach the number
represented by the continued fraction from below whereas the odd convergents
approach it from above. Every convergent is a (left or right) best approximant,
but the converse it not true, a best approximant will not necessarily be a con-
vergent. The next theorem relates the convergents of a continued fraction and
the Farey pair tree TF.

Theorem 9.2 (Hurwitz [23]). Let [0; a1, a2, . . .] be a continued fraction, and let

the convergent pn/qn be defined by (9.1) above. We have

TF(0a1−11a2 . . . 1an−10an) =

(
pn−1
qn−1

,
pn
qn

)
= ([0; a1, . . . , an−1], [0; a1, . . . , an])

when n is odd, and we have

TF(0a1−11a2 . . . 0an−11an) =

(
pn
qn
,
pn−1
qn−1

)
= ([0; a1, . . . , an], [0; a1, . . . , an−1])

when n is even.

9.2 Definitions

We will now define some representations which turn out to be subrecursively
equivalent to the representation by continued fractions.

Definition 9.3. A function T : [0, 1] ∩ Q −→ Q is a trace function for the

irrational number α ∈ (0, 1) if we have |α− r| > |α− T (r)| for every r ∈
[0, 1] ∩Q.

63

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

We will say that a trace function T moves r to the right (left) if r < T (r)
(T (r) < r). The easiest way to realize that a trace function indeed defines a
unique real number, is probably to observe that a trace function T for α yields
the Dedekind cut of α: if T moves r to the right, then we know that r lies below
α; if T moves r to the left, then we know that r lies above α. Obviously, T
cannot yield the Dedekind cut for any number other than α.

Intuitively, a contractor is a function that moves two (rational) numbers
closer to each other. We will see that contractors can be used to represent
irrational numbers.

Definition 9.4. A function F : [0, 1] ∩ Q −→ (0, 1) ∩ Q is a contractor if we

have F (r) 6= r and |F (r1) − F (r2)| < |r1 − r2| for any rationals r, r1, r2 where

r1 6= r2.

Lemma 9.5. Any contractor is a trace function for some irrational number.

Proof. Let F be a contractor. If F moves r to the right (left), then F also moves

any rational less (greater) than r to the right (left); otherwise F would not be a

contractor. We define two sequences r0, r1, r2, . . . and s0, s1, s2, . . . of rationals.

Let r0 = 0 and s0 = 1. Let ri+1 = (ri + si)/2 if F moves (ri + si)/2 to the

right; otherwise, let ri+1 = ri. Let si+1 = (ri + si)/2 if F moves (ri + si)/2 to

the left; otherwise, let si+1 = si (Definition 9.4 requires that a contractor moves

any rational number). Obviously, we have limi ri = limi si, and obviously, this

limit is an irrational number α. It is easy to see that F is a trace function for

α.

The previous lemma shows that the next definition makes sense.

Definition 9.6. A contractor F is a contractor for the irrational number α if

F is a trace function for α.

The representation by trace functions was introduced in Kristiansen [31], and
the representation by contractors was introduced in Kristiansen [33]. Lehman
[35] has studied the representation by continued fractions. He proved that the
class real numbers with primitive recursive continued fractions is strictly in-
cluded in the class of real numbers with primitive recursive Dedekind cuts. Ko
[25] [26] has studied conversions between continued fractions and other repre-
sentations from a complexity-theoretic point of view.

9.3 From complete best approximation to continued frac-

tions

By Theorem 9.2, the continued fraction [0;x1, x2, . . .] of α ∈ (0, 1) can be
viewed as the infinite path 0x1−11x20x31x4 . . . in the Farey pair tree TF. By
Lemma 7.3, we can construct the path 0x1−11x20x31x4 . . . if we have access to
the complete left and the complete right best approximations of α. This in-
sight yields an algorithm for converting complete best approximations into a

64

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

continued fraction. The algorithm, which is given by pseudocode in Figure 4,
uses the complete left best approximation of α, denoted {ai/bi}i∈N, and the
complete right best approximation of α, denoted {ci/di}i∈N, as oracles. The al-
gorithm outputs the nth element xn of α’s continued fraction [0;x1, x2, . . .] (the
input is n). The comments embraced by (* . . . *) explain how the algorithm
works, and m(a/b, c/d) denotes the mediant of the fractions a/b and c/d, that
is, m(a/b, c/d) = (a+ c)/(b+ d).

The first while-loop in Figure 4 counts consecutive zeros found in the path
0x1−11x20x31x4 . . . given by the best approximations, whereas the second while-
loop counts consecutive ones. It turns out that the actual counting is superfluous
and that these two loops can be eliminated: We can directly compute the num-
ber of times a while-loop will be executed from values available when the loop
starts. Let us consider the first while-loop:

WHILE m

(
a`
b`
,
cr
dr

)
=
cr+1

dr+1
DO BEGIN r := r + 1; xi := xi + 1 END

No variables except r and xi are modified during the execution of this loop. Let

• S be the value of r when the execution of the loop starts

• T be the value of r when the execution of the loop terminates

• X be the value of xi when the execution of the loop terminates (observe
that xi is 1 when the execution starts, and thus X = 1 + T − S).

For r = S, . . . , T − 1, we have

cr+1

dr+1
= m

(
a`
b`
,
cr
dr

)
=

a` + cr
b` + dr

.

Thus, when the loop terminates, we have

cT
dT

=
a`(X − 1) + cS
b`(X − 1) + dS

. (9.2)

When the loop terminates, we also have

cT+1

dT+1
6= m

(
a`
b`
,
cT
dT

)
but then, as the mediantm(a`/b`, cT /dT) is not the next fraction in the complete
list of right best approximants, it will be fraction number `+ 1 in the complete
list of left best approximants. That is, we have:

a`+1

b`+1
= m

(
a`
b`
,
cT
dT

)
=

a` + cT
b` + dT

. (9.3)

By (9.2) and (9.3), we have

a`+1

b`+1
=

a` + a`(X − 1) + cS
b` + b`(X − 1) + dS

. (9.4)

65

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

` := 0; r := 0; i := 1; xi := 1;

(* we have a`/b` = 0/1 and cr/dr = 1/1 *)

more: (* α lies in (a`/b`, cr/dr) *)

WHILE m

(
a`
b`
,
cr
dr

)
=
cr+1

dr+1
DO

BEGIN (* α lies in (a`/b`, cr+1/dr+1) and the path branches left *)

r := r + 1; xi := xi + 1

END (* we have determined xi where i is odd *)

IF i = n THEN 〈give output xi and halt〉

(* α lies in (a`+1/b`+1, cr/dr) since the loop terminated *)

i := i+ 1; xi := 1; ` := `+ 1; (* α lies in (a`/b`, cr/dr) *)

WHILE m

(
a`
b`
,
cr
dr

)
=
a`+1

b`+1
DO

BEGIN (* α lies in (a`+1/b`+1, cr/dr) and the path branches right *)

` := `+ 1; xi := xi + 1

END (* we have determined xi where i is even *)

IF i = n THEN 〈give output xi and halt〉

(* α lies in (a`/b`, cr+1/dr+1) since the loop terminated *)

i := i+ 1; xi := 1; r := r + 1; (* α lies in (a`/b`, cr/dr) *)

GOTO more

Figure 4: ALGORITHM

66

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

1 ` := 0; r := 0; i := 1;

2 more: xi := (b`+1 − dr)/b`; r := r + (xi − 1);

3 IF i = n THEN 〈give output xi and halt〉
4 i := i+ 1; ` := `+ 1;

5 xi := (dr+1 − b`)/dr; ` := `+ (xi − 1);

6 IF i = n THEN 〈give output xi and halt〉
7 i := i+ 1; r := r + 1;

8 GOTO more

Figure 5: ALGORITHM

Now, (9.4) yields the equation

X =
b`+1 − dS

b`

where dS is the value of dr when the execution of the loop starts and X is the
value of xi when the execution of the loop terminates. Hence, the loop above
can be replaced by

xi := (b`+1 − dr)/b`; r := r + (xi − 1)

(recall that xi is 1 when the loop starts and hence r will be incremented exactly
xi−1 times before the loop terminates). A symmetric argument shows that the
loop

WHILE m

(
a`
b`
,
cr
dr

)
=
a`+1

b`+1
DO BEGIN ` := `+ 1; xi := xi + 1 END

can be replaced by the program

xi := (dr+1 − b`)/dr; ` := `+ (xi − 1).

Thus, we have the algorithm in Figure 5.

Lemma 9.7. There is a parameterized function-oracle Turing machine M with

the following properties. Let L : N −→ Q and R : N −→ Q be the complete

left and right, respectively, best approximations of an irrational α ∈ (0, 1).

Assume that both L and R are computable within a time-bound s, and let

f(n) = λx.(s(1 + x))(n)(0). Then

• ΦL,RM : N+ −→ N is the continued fraction of α

• ML,R on input n runs in time poly(f(n)) and uses exactly 2n oracle calls,

each of input size at most f(n− 1) + 1.

67

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Proof. The Turing machine M will iterate the body of the loop implemented

by the goto-statement in Figure 5 no more than dn/2e times. To implement

Line 2, it asks the oracle L for the values of a`/b` and a`+1/b`+1. Then M can

carry out the assignment as the value of dr is already known to M and will be

stored at the work tape (except for the very first time Line 2 is reached, then

we have r = 0 and dr = 1 by convention). Similarly, to implement Line 5, it

asks the oracle R for cr/dr and cr+1/dr+1. The value of b` is already known to

M . Thus, M consults each oracle twice each time the loop’s body is iterated,

and when M outputs xn and halts, exactly 2n oracle calls have been made.

The time required to perform the arithmetic operations is polynomial in

the size of the (representation of) the involved values. We do an induction to

prove bounds on the bit-lengths of `, r throughout the algorithm. Our induction

claim is the conjunction of the following two statements: (1) whenever Line 6

is reached, we have

` ≤ dr+1 and ‖`‖ ≤ s(1 + f(i− 1)) (9.5)

and (2) whenever Line 3 is reached, we have

r ≤ b`+1 and ‖r‖ ≤ s(1 + f(i− 1)) . (9.6)

Note that these bounds, which we prove next, complete the justification of

the lemma regarding the time complexity and oracle input size.

Consider the first tour through the loop body. We reach Line 3 with

r = (b1 − d0)/b0 − 1 = (b1 − 1)/1− 1 = b1 − 2 ≤ b1

and we reach line 6 with ` = (d1 − b1)/d0 = d1 − b1 ≤ d1. It is easy to verify

that both (9.5) and (9.6) hold.

In general, suppose that we have reached Line 6 for the kth time. Now

i = 2k. Moving on towards Line 2, we increment i and r. The value of xi
computed at Line 2 is bounded by

xi = (b`+1 − dr)/b` ≤ b`+1 − b`,

where the last inequality uses the fact that (x−1)/y ≤ x−y holds for all integers

where x > y > 0. We compare the new value of r after Line 2 to the value r′

which it had when we last visited Line 3. We have

r = r′ + xi ≤ b`′+1 + b`+1 − b` ≤ b`+1

where `′ is the value ` had when we last visited Line 3 (clearly `′ ≤ `− 1).

This proves that r ≤ b`+1, and hence the first conjunct of (9.6) holds when

Line 3 is reached. In order to verify that the second conjunct of (9.6) also holds,

observe that b`+1 is obtained by an oracle query, and hence we have ‖b`+1‖ ≤

68

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

s(‖` + 1‖). By our induction hypothesis (9.5), we have ‖`‖ ≤ s(1 + f(i − 2))

when Line 3 is reached. Thus, as r ≤ b`+1, we have

‖r‖ ≤ ‖b`+1‖ ≤ s(‖`+ 1‖) ≤ s(1 + ‖`‖) ≤
s(1 + s(1 + f(i− 2))) = s(1 + f(i− 1))

(the final equality holds by the definition of f). A symmetric argument justifies

(9.5) in the inductive case.

9.4 From continued fractions to complete best approxi-

mations

Our algorithm for converting a continued fraction into a complete left (or right)
best approximation is pretty straightforward: Let [0;x1, x2, · · ·] be the contin-
ued fraction of α. By Theorem 9.2, 0x1−11x20x3 · · · is the unique path of α in
the Farey pair tree TF. By Lemma 7.3, complete left and right best approx-
imations of α can be read off, in order, from the Farey pairs along the path
0x1−11x20x3 · · · . Every time a 1 occurs in the path (branching right), a new left
best approximant will show up; every time a 0 occurs in the path (branching
left), a new right best approximant will show up.

Lemma 9.8. There is a parameterized function-oracle Turing machine M with

the following properties. Let C : N+ −→ N be the continued fraction of the

irrational number α ∈ (0, 1). Then

• ΦCM : N −→ Q is the complete left best approximation of α

• MC on input n runs in time poly(
∑2n
j=1 C(j)) and makes at most 2n

oracle calls, each of input size at most 2 + log n.

Proof. Let σ denote the path 0C(1)−11C(2)0C(3) · · · . The nth element of the

complete best left approximation is obtained by finding the index in such that

the nth occurrence of 1 in σ occurs at index in. Thereafter M computes the

Farey pair at position σ1 · · ·σin and simply returns that pair’s left component.

Observe that as C(2), C(4), . . . ≥ 1, we have in ≤
∑2n
j=1 C(j). Hence, M

needs to perform at most 2n oracle calls of input size at most 1 + blog 2nc ≤
2 + log n (as the input needs to represent numbers of size at most 2n). After

having found in, M determines the Farey pair at the position σ1 · · ·σin . This

can be accomplished in time poly(in) ≤ poly(
∑2n
j=1 C(j)) by Proposition 2.4.

Now it is easy to see that the total time needed for computing the arguments to

the oracle calls, reading off the results, and computing the relevant Farey pair

is bounded above by poly(
∑2n
j=1 C(j)).

69

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

9.5 Conversion between contractors, trace functions and

complete best approximations

Lemma 9.9. (i) Let {r̂i}i∈N be a complete left best approximation of α. For

any i ∈ N, we have

r̂i+1 − r̂i > r̂i+2 − r̂i+1 .

(ii) Let {ři}i∈N be a complete right best approximation of α. For any i ∈ N, we

have

ři − ři+1 > ři+1 − ři+2 .

Proof. We prove (ii); the proof of (i) is symmetric. By Lemma 7.3, ři will be

the right endpoint of some interval in the tree TF. We consider the last interval

of this kind, that is, we let σ be the longest binary string with α ∈ TF(σ) and

such that ři is the right endpoint of the interval TF(σ). Let us write TF(σ) =

(a/b, c/d). Then ři = c/d. Furthermore, α ∈ TF(σ0) = (a/b, (a + c)/(b + d))

and ři+1 = (a+ c)/(b+ d).

By Theorem 2.2 we have

ři − ři+1 =
c

d
− a+ c

b+ d
=

1

d(b+ d)
. (9.7)

By Lemma 7.3 there exists m such that ři+2 is the right endpoint of the

interval TF(σ01m0). We can assume that m = 0 since this case yields the

maximal distance between ři+1 and ři+2. Thus, by the definition of TF, we have

TF(σ00) =

(
a

b
,

2a+ c

2b+ d

)
and ři+2 =

2a+ c

2b+ d
.

Moreover, again by the definition of TF, we have

TF(σ0) =

(
a

b
,
a+ c

b+ d

)
and TF(σ01) =

(
2a+ c

2b+ d
,
a+ c

b+ d

)
.

This shows that ((2a+ c)/(2b+d), (a+ c)/(b+d)) is an interval in TF, and thus,

by Theorem 2.2, we have

a+ c

b+ d
− 2a+ c

2b+ d
=

1

(b+ d)(2b+ d)
. (9.8)

Now we can conclude our proof of (ii) with

ři − ři+1 =
c

d
− a+ c

b+ d

(9.7)
=

1

d(b+ d)
>

1

(b+ d)(2b+ d)

(9.8)
=

a+ c

b+ d
− 2a+ c

2b+ d
= ři+1 − ři+2 .

70

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

It is necessary to assume in Lemma 9.9 that the best approximations are
complete. The lemma does not hold for best approximations in general: E.g.,
let (1000)−1 > α > 0. Then we have 1 > 1/2 > 1/3 > 1/99 > . . . > α where
1/2, 1/3 and 1/99 all are right best approximants of α, but it is false that
1/2−1/3 > 1/3−1/99. A complete right best approximation of α has the form

1 >
1

2
>

1

3
>

1

4
> . . . >

1

i
>

1

i+ 1
> . . . >

1

1000
> . . . > α .

Let {r̂i}i∈N be a complete left best approximation of α, and let {ři}i∈N be
a complete right best approximation of α. Furthermore, let

k̂i = (r̂i+2 − r̂i+1)/(r̂i+1 − r̂i) and ǩi = (ři+1 − ři+2)/(ři − ři+1) .

By the previous lemma we have k̂i < 1 and ǩi < 1 (for all i), and thus we can
define a contractor F for α by

F (x) =

{
r̂i+1 + k̂i(x− r̂i) if r̂i ≤ x < r̂i+1

ři+1 + ǩi(x− ři) if ři+1 < x ≤ ři .
(9.9)

It order to verify that F is indeed a contractor for α, we will prove that we have

|F (x)− F (y)| < |x− y| (9.10)

whenever x 6= y. The proof splits into several cases. We can w.l.o.g. assume
that x < y.

Case (i) There exist i, j such that r̂i ≤ x < r̂i+1 and řj+1 < y ≤ řj . Then F
moves x to the right and y to the left, and hence (9.10) holds.

Case (ii) There exists i such that r̂i ≤ x < y < r̂i+1. Then we have |F (x)−
F (y)| = k̂i|x− y|, and (9.10) holds since k̂i < 1.

Case (iii) There exist i, j (where i < j) such that r̂i ≤ x < r̂i+1 and r̂j ≤ y <
r̂j+1. Now, we form the telescopic sum

F (y)− F (x) = F (y)− F (r̂j) + F (r̂j)− . . .− F (r̂i+1) + F (r̂i+1)− F (x)

Now, since r̂j ≤ y < r̂j+1, we have

F (y)− F (r̂j) = r̂j+1 + k̂j(y − r̂j)− r̂j+1 < y − r̂j

and similarly for the following differences. So we have

F (y)− F (x) < (y − r̂j) + (r̂j − r̂j−1) + . . .+ (r̂i+1 − x)

= y + (−r̂j + r̂j − r̂j−1 + . . .+ r̂i+1)− x
= y − x.

71

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

Case (iv) There exists i such that ři+1 < x < y ≤ ři. This case is symmetric
to (ii). Use that ǩi < 1.

Case (v) There exist i, j (where i < j) such that ři+1 < x ≤ ři and řj+1 <
y ≤ řj . This case is symmetric to (iii).

This completes the proof of (9.10).

Lemma 9.10. There is a parameterized function-oracle Turing machine M

with the following properties. Let L : N −→ Q and R : N −→ Q be the complete

left and right, respectively, best approximations of an irrational α ∈ (0, 1). Let

L(i) = ai/bi and R(i) = ci/di. Then

• ΦL,RM : [0, 1] ∩Q −→ (0, 1) ∩Q is a contractor for α.

• ML,R on input n/m runs in time O(logm log2 max{bm+1, dm+1}) and

uses at most 2 + logm oracle calls, each of input size at most ‖m+ 1‖.

Proof. Define M to be the Turing machine that, when given oracle access to

L,R computes the contractor F given by (9.9). On input n/m ∈ Q, the fact

that L and R yield best approximations implies that there is an i < m such

that

L(i) =
ai
bi
≤ n

m
<

ai+1

bi+1
= L(i+ 1)

or R(i+ 1) =
ci+1

di+1
<

n

m
≤ ci

di
= R(i) .

The machine first queries L(m) which will be above n/m if and only if

n/m < α. Then we know wether to continue the search with L or with R. As L

and R are strictly increasing, resp. decreasing, M can find i as above by binary

search, requiring at most 1+logm steps, and each step requires 4 comparisons of

rational numbers that can be performed in time O(m2
0) where m0 is the length

of the largest binary representation of the integer components of the rational

numbers (because n/m < a/b iff nb < am, and schoolbook multiplication can

be done in quadratic time in the size of the representation). The largest integer

occurring in the comparison above is bounded above by

max{n,m, ai+1, bi+1, ci+1, di+1}mi=1 ≤ max{bm+1, dm+1}

where the inequality follows as all fractions are bounded above by 1 and {ai/bi}i∈N
and {ci/di}i∈N are best approximations. Hence, the total time needed to com-

pute i is O(logm log2 max{bm+1, dm+1}) using 1+logm oracle calls, each of size

at most ‖m+1‖. Once i has been found, M first computes F (n/m) as a fraction

(not necessarily in lowest terms) using one additional oracle query (necessary for

computing the slope k̂i or ǩi), and a constant number of additions, subtractions

72

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

and multiplications of numbers representable by at most log max{bm+1, dm+1}
bits, hence using at most O(log2 max{bm+1, dm+1}) operations and resulting in

a number representable using O(log max{bm+1, dm+1}) bits. Obtaining a re-

duced fraction can be done by first computing the gcd of the numerator and the

denominator, and then performing the 2 requisite integer divisions, for a total

of O(log2 max{bm+1, dm+1}) further operations.

Before we give our algorithm for converting trace functions (and thus also
contractors) into best approximations, we will make a couple of observations.
The first observation is trivial: If a trace function for α moves a rational number
to the right (left), then the rational number lies below (above) α. Hence, if we
have access to a trace function for α, we can easily compute the Dedekind cut
Dα of α. The next observation is slightly more sophisticated: Let T0(r) =
(r + T (r))/2 where T is a trace function for α. Then, T0 will also be a trace
function for α, moreover, we have

T0(r) < α if r < α (9.11)

and

T0(r) > α if r > α. (9.12)

In order to see that (9.11) holds, assume that r < α and T0(r) = (r+T (r))/2 ≥
α. Then, we have T (r) − α ≥ α − r > 0, and thus |T (r) − α| = T (r) − α ≥
α− r = |α− r|, contradicting that T is a trace function. A symmetric argument
shows that (9.12) holds.

Our algorithm for converting a trace function T for α into the complete left
best approximation {ai/bi}i∈N of α uses the Dedekind cut Dα and the trace
function T0. When n = 0, the algorithm simply lets an/bn = 0/1. When n > 0,
the algorithm performs the following steps.

• Step 1: Recursively, compute the value a′/b′ of T0(an−1/bn−1).

• Step 2: Using Dα, search for the least natural number b′′ ≤ b′ such that
for some a′′, an−1/bn−1 < a′′/b′′ < α.

• Step 3: Using Dα, find the greatest a′′ < b′′ such that a′′/b′′ < α.

• Step 4: Set an/bn to a′′/b′′.

Such a′′ and b′′ will for sure exist as, if no b′′ < b′ satisfies the requirement in
Step 2, then b′ itself satisfies it. It is easy to see that a′′/b′′ will be the smallest
left best approximant of α that is strictly greater than an−1/bn−1.

A trace function can of course be converted into a right best approximation
by a symmetric algorithm.

Lemma 9.11. There is a parameterized function-oracle Turing machine M

with the following properties. Let T : [0, 1]∩Q −→ Q be a trace function for an

irrational number α ∈ (0, 1). Assume T (x) is computable in time s(‖x‖), and

let f(n) = λx.(2s(x))(n)(2). Then

73

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

• ΦTM : N −→ Q is the complete left best approximation of α

• MT on input n runs in time O(2f(n)) + poly(s(f(n))) and uses O(2f(n))

oracle calls, each of input size at most f(n).

Proof. Observe that computing T0(r) can be performed with a single oracle

call to T (r) followed by three arithmetical operations, hence in time polyno-

mial in the size of the representations of r and T (r); the latter is bounded by

s(‖r‖). We first bound the size of b′: by assumption, a′/b′ is computable in

time s(‖an−1/bn−1‖), so this is also a bound on its size, and the size of b′′ is by

definition at most that of b′; the same goes for a′′. A straightforward induction

on n will show that ‖an/bn‖ ≤ f(n).

The search for b′′ in Step 2 requires at most b′ calls to T (in order to com-

pute the Dedekind cut of α), each with arguments consisting of a rational with

representation size at most 2‖b′‖. We use a rough bound on b′, namely 2‖a
′/b′‖,

to estimate the number of calls. Step 3 has the same bound.

Regarding execution time: arithmetic operations, tests etc. add an overhead

polynomial in the number of oracle calls, and we should also take into account

that the result of the call may be bigger than its argument and another appli-

cation of s is necessary to cover this cost. Hence we arrive at the expression

O(2s(f(n)) + s(f(n))). This leads to the conclusions stated in the lemma.

The brute-force search in the proof of Lemma 9.11 can also be performed by
using the Stern-Brocot tree, but we have been unable to derive better bounds
for this approach.

9.6 Summary

We can now give a summary of our results on the complexity of the conversions
presented in this section in the same style as we have done in earlier sections.

Theorem 9.12. Consider the representations by (1) continued fractions, (2)

complete left best approximations together with complete right best approxima-

tions, (3) trace functions and (4) contractors, and let R1 and R2 be any two of

these four representations. Then, for an arbitrary time-bound t, there exists a

time-bound s primitive recursive in t such that O(t)R2
⊆ O(s)R1

.

The reader familiar with the Grzegorczyk hierarchy can easily check that
the time-bound s in Theorem 9.12, for any i ≥ 3, will be in the Grzegorczyk
class Ei+2 if the time-bound t is in the Grzegorczyk class Ei.

References

[1] Sanjeev Arora and Boaz Barak, Computational complexity: A modern ap-
proach, Cambridge University Press, 2009.

74

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

[2] Unknown author, Rhind mathematical papyrus, approximately 1500 BC.

[3] A. Avizienis, Signed-digit numbe representations for fast parallel arithmetic,
IRE Transactions on Electronic Computers (1961), no. 10, 389–400.

[4] B. Bates, M. Bunder, and K. Tognetti, Locating terms in the Stern-Brocot
tree, European Journal of Combinatorics 31 (2010), no. 3, 1020 – 1033.

[5] A. Bauer, M. Hötzel, and A. Simpson, Comparing functional paradigms for
exact real-number computation, ICALP 2002: Automata, Languages and
Programming, LNCS, vol. 2380, Springer-Verlag, 2002, pp. 488–500.

[6] Anatole Beck, Michael N Bleicher, and Donald W Crowe, Excursions into
mathematics: The millennium edition, ch. 7. Egyptian Fractions, pp. 421–
434, CRC Press, 2000.

[7] Amir Ben-Amram and Lars Kristiansen, A degree structure on representa-
tions of irrational numbers, Accepted for publication in Journal of Logic
and Analysis (2024).

[8] Ulrich Berger, Kenji Miyamoto, Helmut Schwichtenberg, and Hideki Tsuiki,
Logic for Gray-code computation, Concepts of Proof in Mathematics, Phi-
losophy, and Computer Science, Ontos Mathematical Logic, vol. 6, de-
Gruyter, 2016.

[9] Joseph Bertrand, Traité d’arithmétique, 1849.

[10] Hans-Juergen Boehm, Robert Cartwright, Mark Riggle, and Michael J.
O’Donnell, Exact real arithmetic: A case study in higher order program-
ming, Proceedings of the 1986 ACM Conference on LISP and Functional
Programming (William L. Scherlis, John H. Williams, and Richard P.
Gabriel, eds.), ACM, 1986, pp. 162–173.

[11] B. Bolzano, Pure theory of numbers, Oxford University Press, 2004, In the
Mathematical Works of Bernard Bolzano edited and translated by Steve
Russ, pp. 355-428.

[12] V. Brattka, P. Hertling, and K. Weihrauch, A tutorial on computable anal-
ysis, New computational paradigms: changing conceptions of what is com-
putable (S. B. Cooper, B. Löwe, and A. Sorbi, eds.), Springer New York,
2008, pp. 425–491.

[13] Augustin-Louis Cauchy, Exercises de mathématiques, Bure Frères, 1826.

[14] Robert Cohen, Egyptian fraction expansions, Mathematics Magazine 46
(1973), no. 2, 76–80.

[15] Richard Dedekind, Stetigkeit und irrationale Zahlen, Braunschweig:
Vieweg, 1872.

75

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

[16] Ding-Zhu Du and Ker-I Ko, Theory of computational complexity, Wiley
Interscience, 2000.

[17] B. F. Finkel, O. Dunkel, and H. L. Olson, Problems and solutions: 3173-
3180., The American Mathematical Monthly 33 (1926), no. 3, 159.

[18] I. Georgiev, Subrecursive graphs of representations of irrational numbers,
CiE 2023: Unity of Logic and Computation (G. Della Vedova, B. Dundua,
S. Lempp, and F. Manea, eds.), LNCS, vol. 13967, Springer, Cham., 2023,
pp. 154–165.

[19] , Interplay between insertion of zeros and the complexity of dedekind
cuts, Computability 13 (2024), no. 2, 135–159.

[20] I. Georgiev, L. Kristiansen, and F. Stephan, Computable irrational numbers
with representations of surprising complexity, Annals of Pure and Applied
Logic 172 (2021), no. 2, 102893.

[21] G. H. Hardy and E. M. Wright, Theory of numbers, Oxford at the Claren-
don Press, 1975.

[22] K. Hiroshima and A. Kawamura, Elementarily traceable irrational numbers,
CiE 2023: Unity of Logic and Computation (G. Della Vedova, B. Dundua,
S. Lempp, and F. Manea, eds.), LNCS, vol. 13967, Springer, Cham., 2023,
pp. 135–140.

[23] A. Hurwitz, Ueber die angenäherte Darstellung der Irrationalzahlen durch
rationale Brüche, Mathematische Annalen 39 (1891), 279–284.

[24] A. Ya. Khintchine, Continued fractions., P. Noordhoff, Ltd., 1963, Trans-
lated by P. Wynn.

[25] K. Ko, On the continued fraction representation of computable real num-
bers, Theoretical Computer Science 47 (1986), 299–313.

[26] , Corrigenda: On the continued fraction representation of com-
putable real numbers, Theoretical Computer Science 54 (1987), 341–343.

[27] , Complexity theory of real functions, Birkhäuser, 1991.

[28] K. Ko and H. Friedman, Computational complexity of real functions, The-
oretical Computer Science 20 (1982), no. 3, 323 – 352.

[29] Ker-I Ko, Complexity theory of real functions, Birkhauser Boston Inc.,
Cambridge, MA, USA, 1991.

[30] Christoph Kreitz and Klaus Weihrauch, Theory of representations, Theo-
retical Computer Science 38 (1985), 35–53.

[31] L. Kristiansen, On subrecursive representability of irrational numbers,
Computability 6 (2017), 249–276.

76

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

[32] , On subrecursive representability of irrational numbers, part ii,
Computability 8 (2019), 43–65.

[33] , On subrecursive representation of irrational numbers: Contractors
and baire sequences, CiE 2021: Connecting with Computability, LNCS, vol.
12813, Springer-Verlag, 2021, pp. 308–317.

[34] L. Kristiansen and J. G. Simonsen, On the complexity of conversions be-
tween classic real number representations, CiE 2020: Beyond the Horizon
of Computability, LNCS, vol. 12089, Springer-Verlag, 2020, pp. 75–86.

[35] R. S. Lehman, On primitive recursive real numbers, Fundamenta Mathe-
matica 49 (1961), no. 2, 105–118.

[36] A Mostowski, On computable sequences, Fundamenta Mathematica 44
(1957), 37–51.

[37] I. Richards, Continued fractions without tears, Mathematics Magazine 54
(1981), no. 4, 163–172.

[38] Michael Sipser, Introduction to the theory of computation, PWS Publishing
Company, 1997.

[39] Hideki Tsuiki, Real number computation through Gray code embedding,
Theoretical Computer Science 284 (2002), no. 2, 467–485.

[40] K. Weihrauch, The degrees of discontinuity of some translators between
representations of real numbers, Tech. report, Fernuniversität Hagen, 1992.

[41] , Computable analysis, Springer Verlag, 2000.

[42] Klaus Weihrauch, Type-2 recursion theory, Theoretical Computer Science
38 (1985), 17–33.

[43] Klaus Weihrauch and Christoph Kreitz, Representations of the real numbers
and of the open subsets of the set of real numbers, Annals of Pure and
Applied Logic 35 (1987), 247–260.

77

https://doi.org/10.1017/bsl.2025.10085 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2025.10085

	Introduction
	Motivations
	What is a representation?
	An ordering relation on representations
	Our goals and some references
	Overview of the paper
	Acknowledgements

	Preliminaries
	Oracle Turing machines and complexity theory
	Some notation
	Farey sequences and the Stern-Brocot tree

	Weihrauch intersections
	Representations subrecursively equivalent to Cauchy sequences
	Cauchy sequences.
	Definitions
	Cauchy sequences to fuzzy cuts
	Fuzzy cuts to signed digit expansions
	Signed digit expansions to Cauchy sequences
	From Cauchy sequences to strictly increasing Cauchy sequences
	From converging base-b sequences to Cauchy sequences
	From Cauchy sequences to converging base-b sequences
	Summary

	Base-b expansions and sum approximations
	The base-b expansions
	Base-b sum approximations
	From base-b sum approximations to base-a sum approximations
	From base-b sum approximations to base-a expansions
	Gray codes
	Summary

	Representations subrecursively equivalent to Dedekind cuts
	Dedekind cuts
	Definitions
	Conversion between general base expansions and Dedekind cuts
	Conversion between Beatty sequences and Dedekind cuts
	Conversion between Hurwitz characteristics and Dedekind cuts
	Summary

	Representations equivalent to best approximations
	Best approximations
	Definitions
	Conversion between general sum approximations and best approximations
	Conversion between Baire sequences and best approximations
	From general sum approximation from below to Egyptian fraction expansions
	From Egyptian fraction expansions to left best approximations
	Summary

	A Little Bit on the Degrees of Representations
	Representations equivalent to continued fractions
	Continued fractions
	Definitions
	From complete best approximation to continued fractions
	From continued fractions to complete best approximations
	Conversion between contractors, trace functions and complete best approximations
	Summary

