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Abstract

A trie is a search tree scheme that employs the structure of search keys to organize information.

Tries were originally devised as a means to represent a collection of records indexed by strings

over a fixed alphabet. Based on work by C. P. Wadsworth and others, R. H. Connelly and

F. L. Morris generalized the concept to permit indexing by elements built according to an

arbitrary signature. Here we go one step further, and define tries and operations on tries

generically for arbitrary datatypes of first-order kind, including parameterized and nested

datatypes. The derivation employs techniques recently developed in the context of polytypic

programming and can be regarded as a comprehensive case study in this new programming

paradigm. It is well known that for the implementation of generalized tries, nested datatypes

and polymorphic recursion are needed. Implementing tries for first-order kinded datatypes

places even greater demands on the type system: it requires rank-2 type signatures and second-

order nested datatypes. Despite these requirements, the definition of tries is surprisingly simple,

which is mostly due to the framework of polytypic programming.

Capsule Review

Implementing tries whose search keys are values of a complicated datatype is far from trivial

– or is it?

Using a new approach to polytypic programming, this paper shows how to implement

tries for arbitrary datatypes, including even nested datatypes. This problem is solved by the

systematic, largely mechanical, application of simple rules.

If you are willing to be convinced of the advantages of the emerging paradigm of polytypic

programming, in particular its conceptual simplicity, read this paper!

All generalizations are dangerous, even this one.

Alexandre Dumas

1 Introduction

The concept of a trie was introduced by A. Thue in 1912 as a means to represent a

set of strings (see Knuth, 1998). In its simplest form, a trie is a multiway branching

tree where each edge is labelled with a character. For example, the set of strings

{ear , earl , east , easy , eye} is represented by the trie depicted in figure 1. Searching in

a trie starts at the root and proceeds by traversing the edge that matches the first
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Fig. 1. A simple trie.

character, then traversing the edge that matches the second character, and so forth.

The search key is a member of the represented set if the search stops in a node

that is marked – marked nodes are drawn as filled circles in figure 1. Tries can also

be used to represent finite maps. In this case marked nodes additionally contain

values associated with the strings. Interestingly, the move from sets to finite maps

is not a mere variation of the scheme. As we shall see it is essential for the further

development.

On a more abstract level, a trie itself can be seen as a composition of finite

maps. Each collection of edges descending from the same node constitutes a finite

map sending a character to a trie. With this interpretation in mind, it is relatively

straightforward to devise an implementation of string-indexed tries. For concreteness,

programs will be given in the functional programming language Haskell 98 (Peyton

Jones and Hughes, 1999). If strings are defined by the datatype

data Str = Nil | Cons Char Str ,

we can represent string-indexed tries with associated values of type v as follows:

data MapStr v = TrieStr (Maybe v ) (MapChar (MapStr v ))

data Maybe v = Nothing | Just v .

The first component of the constructor TrieStr contains the value associated with Nil .

Its type is Maybe v instead of v , since Nil may not be in the domain of the finite map

represented by the trie. In this case, the first component equals Nothing . The second

component corresponds to the edge map. To keep the example manageable, we

implement MapChar using association lists (note that in Haskell List t is written [t ]).

type MapChar v = List (Char , v )

lookupChar :: Char → MapChar v → v

lookupChar c [ ] = error "not found"

lookupChar c ((c′, v ) : x ) = if c == c′ then v else lookupChar c x

Building upon lookupChar , we can define a look-up function for strings. To lookup

the empty string we access the first component of the trie. To lookup a non-empty

string, say, Cons c s we lookup c in the edge map obtaining a trie, which is then

recursively searched for s:
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lookupStr :: Str → MapStr v → v

lookupStr Nil (TrieStr tn tc) = value tn

lookupStr (Cons c s) (TrieStr tn tc) = (lookupStr s ◦ lookupChar c) tc

value :: Maybe v → v

value Nothing = error "not found"

value (Just v ) = v .

If the key is not in the domain of the finite map, a run-time error is raised. This will

be remedied later.

Based on work by C. P. Wadsworth and others, R. H. Connelly and F. L. Morris

(1995) have generalized the concept of a trie to permit indexing by elements built ac-

cording to an arbitrary signature, i.e. by elements of an arbitrary non-parameterized

datatype. The definition of lookupStr already gives a clue what a suitable generaliza-

tion might look like: the trie TrieStr tn tc contains a finite map for each constructor

of the datatype Str; to lookup Cons c s the look-up functions for the components,

c and s , are simply composed. Generally, if we have a datatype with k constructors,

the corresponding trie has k components. To look up a constructor with n fields, we

must select the corresponding finite map and compose n look-up functions of the

appropriate types. If a constructor has no fields such as Nil , we extract the associated

value using value. Note that a nullary constructor of type T can be viewed as a

function of type () → T . Consequently, the type constructor Maybe can be seen as

implementing finite maps over the unit datatype ‘()’ with value as its look-up function.

As a second example, consider the datatype of external search trees.

data Bin = Leaf Str | Node Bin Char Bin

A trie for external search trees represents a finite map from Bin to some value

type v . It is an element of MapBin v given by

data MapBin v = TrieBin (MapStr v )

(MapBin (MapChar (MapBin v ))).

The type MapBin is an instance of a so-called nested datatype (nest for short).

The term ‘nested datatype’ has been coined by Bird and Meertens (1998), and

characterizes parameterized datatypes whose definition involves ‘recursive calls’ –

MapBin (MapChar (MapBin v )) in the example above – that are substitution in-

stances of the defined type. Functions operating on nested datatypes are known to

require a non-schematic form of recursion, called polymorphic recursion (Mycroft,

1984). The look-up function on external search trees may serve as an example:

lookupBin :: Bin → MapBin v → v

lookupBin (Leaf s) (TrieBin tl tn) = lookupStr s tl

lookupBin (Node l c r) (TrieBin tl tn)

= (lookupBin r ◦ lookupChar c ◦ lookupBin l ) tn

Looking up a node involves two recursive calls. The second, lookupBin l , is of

type Bin → MapBin (MapChar (MapBin v )) → MapChar (MapBin v ), which is a

substitution instance of the declared type. Haskell 98 allows polymorphic recursion
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only if an explicit type signature is provided for the function(s). The rationale behind

this restriction is that type inference in the presence of polymorphic recursion is

undecidable (Henglein, 1993).

It is absolutely necessary that MapBin and lookupBin are parametric with respect

to the codomain of the finite maps. Had we restricted the type of lookupBin to

Bin → MapBin V → V for some fixed type V , the definition would have no longer

type-checked. This also explains why the construction does not work for the finite

set abstraction.

Remark 1

Looking up a constructed value boils down to composing look-up functions. In-

terestingly, the order of composition is completely arbitrary: we are free to use

either textual order or reverse textual order. For instance, MapStr and lookupStr

can alternatively be defined by

data MapStr v = TrieStr (Maybe v ) (MapStr (MapChar v ))

lookupStr :: Str → MapStr v → v

lookupStr Nil (TrieStr tn tc) = value tn

lookupStr (Cons c s) (TrieStr tn tc) = (lookupChar c ◦ lookupStr s) tc.

These definitions employ reverse textual order – s is looked up first and then c –

and correspond to the textual order implementation of tries for ‘snoc’ strings given

by data Rts = Lin | Snoc Rts Char . That said, it becomes clear that both orders

must work equally well. As an aside, note that MapStr is now a nested datatype and

lookupStr requires polymorphic recursion. q

From the discussion above it should be clear how to define tries for arbitrary

non-parameterized datatypes. In this paper we go one step further, and show

how to generalize the concept to arbitrary datatypes of first-order kind, including

parameterized and nested datatypes. Note that a datatype of first-order kind may

be parameterized by types, but not by type constructors. In the sequel, the qualifier

‘of first-order kind’ will usually be omitted. Now, we are particularly interested in

giving a compositional definition of tries. Let us briefly discuss what we mean by

‘compositional’. In Haskell, strings are represented as lists of characters: String =

List Char . This suggests that tries for strings should be compositionally defined in

terms of tries for lists and tries for characters: MapString = MapList MapChar .

Since List is a function on types (a so-called functor), MapList is consequently a

function on tries – or rather, on trie types (a so-called higher-order functor). A note

on terminology: though MapList is a function, we often refer to MapList simply as

a trie just like List is often referred to as a type.

In generalizing tries to type constructors, we will answer in particular the intriguing

question what the generalized trie of a nested datatype looks like. This question is not

only of theoretical but also of practical interest, since a number of data structures,

such as 2-3 trees or red-black trees, have recently been shown to be expressible by

nested declarations. Bird and Paterson (1999) use a nested datatype for expressing

de Bruijn notation. Now, if a look-up structure for de Bruijn terms is required,

say, to implement common subexpression elimination, we are confronted with the
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problem of constructing generalized tries for a nested datatype (the solution to this

problem will be presented in section 5).

To develop generalized tries we will employ the framework of polytypic program-

ming. In fact, the following can be regarded as a comprehensive case study in this

new programming paradigm. Briefly, a polytypic or generic function is one that is

defined by induction on the structure of types. A simple example for a polytypic

function is encode :: T → [Bit ], which encodes an element of type T as a bit string.

The function encode can sensibly be defined for each type, and it is usually a tire-

some, routine matter to do so. A polytypic programming language enables the user

to program encode once and for all times. The specialization of encode to concrete

instances of T is then handled automatically by the system. Polytypic programming

can be surprisingly simple. In a companion paper (Hinze, 1999b), we show that it

suffices to define a polytypic function on predefined types, sums and products. This

information is sufficient to specialize a polytypic function to arbitrary datatypes,

including mutually recursive, parameterized and nested datatypes.

Generalized tries make a particularly interesting application of polytypic pro-

gramming. The central insight is that a trie can be considered as a type-indexed

datatype. This makes it possible to define tries and operations on tries generically

for arbitrary datatypes. We already have the necessary prerequisites at hand: we

know how to define tries for sums and for products. A trie for a sum is a product

of tries and a trie for a product is a composition of tries. The extension to arbitrary

datatypes is then uniquely defined. Mathematically speaking, generalized tries are

based on the following isomorphisms:

(k1 + k2)→fin v ∼= (k1 →fin v )× (k2 →fin v )

(k1 × k2)→fin v ∼= k1 →fin (k2 →fin v ).

Here, k →fin v denotes the set of all finite maps from k to v . Note that k →fin v is

sometimes written v [k ], which explains why these equations are also known as the

‘laws of exponentials’.

We have seen that nested datatypes and polymorphic recursion are necessary

for the implementation of generalized tries. Implementing tries for datatypes of

first-order kind, especially nested datatypes, places even greater demands on the

type system: it requires rank-2 type signatures (McCracken, 1984), datatypes of

second-order kind (Jones, 1995) and second-order nests. Since Haskell 98 does not

offer rank-2 types, we will give the examples in an ideal, Haskell-like language. In

particular, we will write polymorphic types using explicit universal quantifiers. The

simple changes necessary to make the examples run under GHC (GHC Team, 1999)

or Hugs 98 (Jones and Peterson, 1999) are given at the end of section 5.

The rest of this paper is structured as follows. In section 2 we briefly review the

theoretical background of polytypic programming. A more detailed account is given

in the companion paper (Hinze, 1999b). Section 3 applies the technique to implement

a finite map abstraction based on generalized tries. Section 4 discusses variations on

the theme. Generalized tries for de Bruijn terms are presented in section 5. Finally,

section 6 reviews related work, and points out a direction for future work.

https://doi.org/10.1017/S0956796800003713 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003713


332 R. Hinze

2 A polytypic programming primer

2.1 Datatypes

A polytypic function is one that is parameterized by datatype. The polytypic pro-

gramming primer therefore starts with a brief investigation of the structure of types.

The following definitions will serve as running examples throughout the paper:

data List a = Nil | Cons a (List a)

data Bintree a1 a2 = Leaf a1 | Node (Bintree a1 a2) a2 (Bintree a1 a2)

data Fork a = Fork a a

data Perfect a = Null a | Succ (Perfect (Fork a))

data Sequ a = Empty | Zero (Sequ (Fork a)) | One a (Sequ (Fork a))

The meaning of these datatypes in a nutshell: the first equation defines the ubiquitous

datatype of lists; Bintree encompasses external binary search trees. The types Perfect

and Sequ are examples for nested datatypes: Perfect comprises perfectly balanced,

binary leaf trees (Hinze, 1999a); and Sequ implements binary random-access lists

(Okasaki, 1998). Both definitions make use of the auxiliary datatype Fork whose

elements may be interpreted as internal nodes.

Haskell’s data construct combines several features in a single coherent form: sums,

products and recursion. Using more conventional notation (‘+’ for sums and ‘×’

for products) and omitting constructor names, we obtain the following emaciated

recursion equations:

List a = 1 + a × List a

Bintree a1 a2 = a1 + Bintree a1 a2 × a2 × Bintree a1 a2

Fork a = a × a

Perfect a = a + Perfect (Fork a)

Sequ a = 1 + Sequ (Fork a) + a × Sequ (Fork a).

In the following, we treat 1, ‘+’ and ‘×’ as if they were given by the following

datatype declarations (note that in Haskell, 1 and ‘×’ have an extra element, ⊥,

which we simply ignore):

data 1 = ()

data a1 + a2 = Inl a1 | Inr a2

data a1 × a2 = (a1, a2)

Now, the central idea of polytypic programming is that the set of all types –

or rather, the set of all type expressions – itself can be modelled by a datatype.

Assuming a fixed set of primitive type constructors {1, Int ,+,×} type expressions

can be seen as being defined by the following grammar (which is akin to a data

declaration except that the latter does not allow us to use ‘1’, ‘+’, and ‘×’ as

constructor names):

T ::= 1 | Int | (T + T ) | (T × T ).
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List Int +

1 ×

Int

+

Int +

×

Int Int
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×

×

Int Int
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Int Int

Perfect Int

Fig. 2. Types interpreted as infinite type expressions.

In the sequel, we let t range over type expressions, and we agree upon that ‘×’ binds

more tightly than ‘+’.

The question remains how recursive types are modelled. The answer probably

comes as no surprise to the experienced Haskell programmer: recursive types are

modelled by infinite type expressions! Figure 2 displays the infinite type expressions

List Int and Perfect Int in a tree-like form. The expressions are obtained by unrolling

the equations for List and Perfect ad infinitum. The recursion equations above can

be regarded as defining functions over type expressions. Note that List Int is a

rational tree while Perfect Int is an algebraic tree. A rational tree is a possibly

infinite tree that has only a finite number of subtrees. Algebraic trees are obtained

as solutions of so-called algebraic equations (Courcelle, 1983), which are akin to

datatype declarations. In general, we obtain rational trees for regular types such

as List , Bintree and Fork , and algebraic trees for nested types such as Perfect and

Sequ .

2.2 Polytypic definitions

A polytypic value is defined by induction on the structure of type expressions. In

general, the definition takes the following form:

poly〈a〉 :: τ〈a〉
poly〈1〉 = poly1

poly〈Int〉 = polyInt

poly〈a1 + a2〉 = poly+ (poly〈a1〉, poly〈a2〉)
poly〈a1 × a2〉 = poly× (poly〈a1〉, poly〈a2〉).

Here, poly is the name of the polytypic value; a , a1 and a2 are type variables;

τ, poly1, polyInt , poly+ and poly× are the ingredients that have to be supplied by

the polytypic programmer. The type of poly〈a〉 is given by the type scheme τ〈a〉,
which may contain function types and universally quantified types. Note that type

parameters are always written in angle brackets, to distinguish them from ordinary

value parameters.
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Example 1

The function encode〈a〉, which encodes elements of type a as bit strings implementing

a simple form of data compression (Jansson and Jeuring, 1999), can be defined as

follows:

data Bit = 0 | 1
encode〈a〉 :: a → [Bit ]

encode〈1〉 x = [ ]

encode〈Int〉 x = encodeInt x

encode〈a1 + a2〉 (Inl x1) = 0 : encode〈a1〉 x1

encode〈a1 + a2〉 (Inr x2) = 1 : encode〈a2〉 x2

encode〈a1 × a2〉 (x1, x2) = encode〈a1〉 x1 ++ encode〈a2〉 x2.

To encode the single element of the unit type no bits are required. Integers are

encoded using the primitive function encodeInt , whose existence we assume. To

encode an element of a sum, we emit one bit for the constructor followed by the

encoding of its argument. Finally, the encoding of a pair is given by the concatenation

of the component’s encodings. The code above implicitly defines the type scheme

τ〈a〉 = a → [Bit ] and the functions encode1, encodeInt , encode+ and encode×:

encode1 = λx → [ ]

encodeInt = λx → encodeInt x

encode+ (ϕ1, ϕ2) = λx → case x of {Inl x1 → 0 : ϕ1 x1; Inr x2 → 1 : ϕ2 x2 }
encode× (ϕ1, ϕ2) = λx → ϕ1 (fst x ) ++ ϕ2 (snd x ). q

The inductive definition of poly induces a unique function poly〈t〉 for each type

expression t (Courcelle, 1983). Of course, since t may be infinite – and usually is

– we require that types are interpreted by complete partial orders and functions

by continuous functions between them. Both conditions are met, since types and

functions are given by Haskell programs, which are interpreted in these domains.

The use of infinite type expressions as index sets for polytypic values distinguishes

our approach from previous ones that are based on the initial algebra semantics

of datatypes (Jeuring and Jansson, 1996; Jansson and Jeuring, 1997). Briefly, our

approach has two major advantages: it is simpler (the programmer must consider

fewer cases); and it is more general (it covers all datatypes of first-order kind). As

an aside, note that our approach also allows to define polytypic values that are

indexed by type constructors rather than types. The archetypical example for such a

function is size〈f 〉 :: ∀a .f a → Int , which counts the number of values of type a in

a given structure of type f a . Further details can be found in the companion paper

(Hinze, 1999b).

2.3 Specializing polytypic definitions

The main purpose of a polytypic programming system is to specialize a polytypic

value poly〈t〉 for different instances of t. Unfortunately, the specialization cannot

be based on the inductive definition of poly – at least, not directly. Consider the

following attempt to specialize encode〈Perfect Int〉:
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encode〈Perfect Int〉
= encode〈Int + Perfect (Fork Int)〉
= encode+ (encodeInt , encode〈Perfect (Fork Int)〉)
= encode+ (encodeInt , encode〈Fork Int + Perfect (Fork 2 Int)〉)
= encode+ (encodeInt , encode+ (encode〈Fork Int〉, encode〈Perfect (Fork 2 Int)〉))
= . . .

To define encode〈Perfect Int〉 we require encode〈Perfect (Forkn Int )〉 for each n > 1.

It is probably clear that in general we cannot hope to obtain a finite representation

of poly〈t〉 this way. Instead, we must base the specialization on the representation

of types, i.e. on the datatype declarations themselves, which are by necessity finite.

To exhibit the structure of datatype declarations more clearly, we shall rewrite

them as functor equations. Roughly speaking, a functor can be seen as a function on

types. Functor expressions of arity n are given by the following grammar:

Fn ::= Πn
i | Pn | Fk · (Fn1 , . . . , Fnk ).

By Πn
i we denote the n-ary projection functor selecting its ith component. For n = 1

and n = 2 we use the following more familiar names: Id = Π1
1, Fst = Π2

1 and

Snd = Π2
2. Elements of Pn are predefined functors of arity n, i.e. P 0 = {1, Int} – we

identify types and nullary functors – and P 2 = {+,×}. The expression f · (f1, . . . , fk)

denotes the composition of a k-ary functor f with functors fi, all of arity n. We

omit parentheses when k = 1, and we write Kt instead of t · () when k = 0. Note

that, in Kt , the component t is a type viewed as a nullary functor; Kt is then an

n-ary functor. Furthermore, we write f1 + f2 for + · (f1, f2), and similarly, f1 × f2.

We agree upon that ‘·’ binds more tightly than ‘×’, which in turn takes precedence

over ‘+’. For instance, f + g × h · h means f + (g × (h · h)). Finally, we let f , g , and

h range over functor expressions and p over primitive functors.

Here are the datatype definitions of section 2.1 rewritten as functor equations:

List = K1 + Id × List

Bintree = Fst + Bintree × Snd × Bintree

Fork = Id × Id

Perfect = Id + Perfect · Fork

Sequ = K1 + Sequ · Fork + Id × Sequ · Fork .

In essence, functor equations are written in a compositional or ‘point-free’ style,

while data definitions are written in an applicative or ‘pointwise’ style. A system

of functor equations has the general form x1 = f1; . . . ; xm = fm, where the xi are

functor variables (acting as unknowns) and the fi are functor expressions.

Now, the central idea of the specialization is to mimic the structure of datatypes

on the value level. For instance, encode〈Perfect Int〉 will be compositionally defined

in terms of the specializations for the constituent datatypes Perfect and Int . Since

Perfect is a function on types, the ‘encoder’ for Perfect is consequently a function

on encoders: it takes an encoder for values of type t , and yields an encoder for

https://doi.org/10.1017/S0956796800003713 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800003713


336 R. Hinze

values of type Perfect t , i.e. it takes encode〈t〉 to encode〈Perfect t〉. In general, we

define, for each functor f of arity n, an n-ary function polyn〈f〉 satisfying

polyn〈f〉 (poly〈t1〉, . . . , poly〈tn〉) = poly〈f(t1, . . . , tn)〉 , (1)

for all type expressions t1, . . . , tn. It can be shown that the following definition

satisfies this specification:

polyn〈f〉 :: ∀a1 . . . an.τ〈a1〉 × · · · × τ〈an〉 → τ〈f (a1, . . . , an)〉
polyn〈Πn

i 〉 = πni

polyn〈p〉 = polyp

polyn〈g · (h1, . . . , hk)〉 = polyk〈g〉?(polyn〈h1〉, . . . , polyn〈hk〉),

where πni (ϕ1, . . . , ϕn) = ϕi is the ith projection function, and ‘?’ denotes n-ary

composition defined by ϕ?(ϕ1, . . . , ϕn) = λv → ϕ (ϕ1 v, . . . , ϕn v). Note that ϕ?(ϕ1) =

ϕ ◦ϕ1 when n = 1. Furthermore, note that the definition of polyn〈f〉 is inductive on

the structure of functor expressions. On a more abstract level, we can view polyn as

an interpretation of functor expressions: Πn
i is interpreted by πni , p by polyp, and ‘·’

by ‘?’.

Finally, we can define poly in terms of poly0:

poly〈t〉 :: τ〈t〉
poly〈t〉 = poly0〈t〉 ()

In the sequel we will identify poly and poly0 just like we identify types and nullary

functors.

By now we have the necessary prerequisites at hand to define the specialization of

a polytypic value poly〈t〉 for a given instance of t. Assume that the type is defined

by the system of equations x1 = f1; . . . ; xm = fm, with t = xi for some i. For each

equation xi = fi, where fi is a k-ary functor expression, a function definition of

the form polyk〈xi〉 = polyk〈fi〉 is generated. The expression polyk〈fi〉 is given by the

inductive definition above, additionally setting polyk〈xi〉 = poly xi, where poly xi is

a new function symbol.

Example 2

Let us apply the above framework to specialize encode〈t〉 for t = Perfect Int . The

specialization proceeds entirely mechanically. Using the original constructor names

and abbreviating type names to their first letter, we obtain

encodePI :: Perfect Int → [Bit ]

encodePI x = encodeP encodeInt x

encodeF :: ∀a .(a → [Bit ])→ (Fork a → [Bit ])

encodeF enca (Fork x1 x2) = enca x1 ++ enca x2

encodeP :: ∀a .(a → [Bit ])→ (Perfect a → [Bit ])

encodeP enca (Null x ) = 0 : enca x

encodeP enca (Succ x ) = 1 : encodeP (encodeF enca) x .

Encoding a perfect tree operates in two stages: while recursing encodeP constructs
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a tailor-made encoding function encodeF i enca of type Fork i a → [Bit ], which is

eventually applied in the base case. q

3 Tries generically

In this section we apply the framework of polytypic programming to implement

generalized tries generically for all datatypes of first-order kind. We have already

mentioned the basic idea that generalized tries can be considered as a type-indexed

datatype. To put this idea in concrete terms, we define a scheme for constructing

datatypes

Map〈k :: ∗〉 :: ∗ → ∗,
which assigns a type constructor of kind ∗ → ∗ to each key type k of kind ∗. The

kind system of Haskell specifies the ‘type’ of a type constructor (Jones, 1995). The

‘∗’ kind comprises nullary constructors like Int . The kind κ1 → κ2 comprises type

constructors that map type constructors of kind κ1 to those of kind κ2. The order of

a kind is given by order(∗) = 0 and order(κ1 → κ2) = max{1 + order(κ1), order(κ2)}.
The type Map〈k〉 v represents the set k →fin v of finite maps from k to v . It is

worth noting that the two arguments of ‘→fin’ are treated in a different way: the key

type k is used as a type index, i.e. Map will be defined by induction on the structure

of k , whereas v is a type parameter, i.e. Map will be parametric in the value type v ,

and the operations on tries will be polymorphic with respect to v .

We will implement the following operations on tries.

empty〈k〉 :: ∀v .Map〈k〉 v

single〈k〉 :: ∀v .k × v → Map〈k〉 v

lookup〈k〉 :: ∀v .k → Map〈k〉 v → Maybe v

insert〈k〉 :: ∀v .(v → v → v )→ k × v → (Map〈k〉 v → Map〈k〉 v )

merge〈k〉 :: ∀v .(v → v → v )→ (Map〈k〉 v → Map〈k〉 v → Map〈k〉 v )

The signature of lookup〈k〉 deviates slightly from that used in the introduction:

the look-up function returns a value of type Maybe v instead of v to be able to

signal that a key is unbound. The functions insert〈k〉 and merge〈k〉 take as a first

argument a so-called combining function, which is applied whenever two bindings

have the same key. For instance, λnew old → new is used as the combining function

for insert〈k〉 if the new binding is to override an old binding with the same key. For

finite maps of type Map〈k〉 Int , addition may also be a sensible choice. Interestingly,

we will see that the combining function is not only a convenient feature for the user;

it is also necessary for defining insert〈k〉 and merge〈k〉 generically for all types!

3.1 Type-indexed tries

We have already noted in the introduction that generalized tries are based on the

laws of exponentials:

1→fin v ∼= v

(k1 + k2)→fin v ∼= (k1 →fin v )× (k2 →fin v )

(k1 × k2)→fin v ∼= k1 →fin (k2 →fin v )
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To define the notion of finite map, it is customary to assume that each value type

v contains a distinguished element or base point ⊥v – see Connelly and Morris

(1995). A finite map is then a function whose value is ⊥v for all but finitely many

arguments. For the implementation of tries it is, however, inconvenient to make such

a strong assumption (though one could use type classes for this purpose). Instead,

we explicitly add when necessary a base point using Maybe. It appears that this is

only required for the unit type motivating the following definition of Map〈k〉:

Map〈1〉 v = Maybe v

Map〈Int〉 v = Patricia .Dict v

Map〈k1 + k2〉 v = Map〈k1〉 v ×Map〈k2〉 v

Map〈k1 × k2〉 v = Map〈k1〉 (Map〈k2〉 v ).

We take for granted the existence of a suitable library implementing finite maps with

integer keys. Such a library could be based, for instance, on a data structure known

as a Patricia tree (Okasaki and Gill, 1998). This data structure fits particularly well

in the current setting, since Patricia trees are a variety of tries. For clarity, we will

use qualified names when referring to entities defined in the hypothetical module

Patricia .

Note that Map〈k〉 is a unary functor. Using the functorial notation of section 2.3,

we can define Map〈k〉 more succinctly as

Map〈1〉 = Maybe

Map〈Int〉 = Patricia .Dict

Map〈k1 + k2〉 = Map〈k1〉 ×Map〈k2〉
Map〈k1 × k2〉 = Map〈k1〉 ·Map〈k2〉.

Since the trie for the unit type is given by Maybe rather than Id , tries for isomorphic

types are, in general, not isomorphic. We have, for instance, 1 ∼= 1×1, but Map〈1〉 =

Maybe 6∼= Maybe ·Maybe = Map〈1×1〉. The trie type Maybe ·Maybe has two different

representations of the empty trie: Nothing and Just Nothing . However, only the first

one will be used in our implementation.

Building upon the techniques developed in section 2.3 we can now specialize

Map〈k〉 for a given instance of k . That is, for each functor f of arity n we will define

an n-ary higher-order functor Mapn〈f〉. For n = 1 we have, for instance,

Map1〈f :: ∗ → ∗〉 :: (∗ → ∗)→ (∗ → ∗).

The type constructor Map1〈f 〉 is the generalized trie of the unary type constructor f .

It takes as argument the generalized trie of the base type, say, t and yields the

generalized trie of f t . In general, Mapn〈f〉 satisfies

Mapn〈f〉 (Map〈t1〉, . . . ,Map〈tn〉) = Map〈f(t1, . . . , tn)〉, (2)

for all type expressions t1, . . . , tn. It may come as a surprise that the framework

for specializing type-indexed values is also applicable to type-indexed datatypes.

The reason is quite simple: the definition of polyn〈f〉 requires only two operations,

namely projection and composition, both of which are available in the world of
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functors and higher-order functors. Consequently, Mapn〈f〉 is given by

Mapn〈f〉 :: (∗ → ∗)× · · · × (∗ → ∗)→ (∗ → ∗)
Mapn〈Πn

i 〉 = Πn
i

Mapn〈p〉 = Mapp

Mapn〈g · (h1, . . . , hk)〉 = Mapk〈g〉 · (Mapn〈h1〉, . . . ,Mapn〈hk〉).

Let us specialize Mapn〈f〉 to the datatypes listed in section 2.1. As before, we

abbreviate type names to their first letter, i.e. we write MapL instead of MapList:

MapL m = Maybe × m ·MapL m

MapB (m1,m2) = m1 ×MapB (m1,m2) · m2 ·MapB (m1,m2)

MapF m = m · m
MapP m = m ×MapP (MapF m)

MapS m = Maybe ×MapS (MapF m)× m ·MapS (MapF m).

Since Haskell 98 permits the definition of higher-order kinded datatypes, the second-

order functors above can be directly coded as datatypes.1 All we have to do is to

bring the equations into an applicative form:

data MapL m v = TrieL (Maybe v ) (m (MapL m v ))

data MapB m1 m2 v = TrieB (m1 v )

(MapB m1 m2 (m2 (MapB m1 m2 v ))).

These types are the parametric variants of MapStr and MapBin defined in the in-

troduction: we have MapStr ∼= MapL MapChar (corresponding to Str ∼= List Char)

and MapBin ∼= MapB MapStr MapChar (corresponding to Bin ∼= Bintree Str Char ).

Things become interesting if we consider nested datatypes:

data MapF m v = TrieF (m (m v ))

data MapP m v = TrieP (m v )

(MapP (MapF m) v )

data MapS m v = TrieS (Maybe v )

(MapS (MapF m) v )

(m (MapS (MapF m) v )).

The generalized trie of a nested datatype is a second-order nested datatype! A

nest is termed second-order, if a parameter that is instantiated in a recursive

call ranges over type constructors of first-order kind. The tries MapP and MapS

are second-order nests since the parameter m of kind ∗ → ∗ is changed in the

recursive calls. By contrast, MapB is a first-order nest since its instantiated parameter

v has kind ∗. It is quite easy to produce generalized tries that are both first-

and second-order nests. If we swap the components of Sequ ’s third constructor –

1 Note that Miranda (trademark of Research Software Ltd), Standard ML and previous versions of
Haskell (1.2 and before) only have first-order kinded datatypes.
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One a (Sequ (Fork a)) becomes One (Sequ (Fork a)) a – then the third component

of TrieS has type MapS (MapF m) (m v ), and since both m and v are instantiated,

MapS is consequently both a first- and a second-order nest.

3.2 Empty and singleton tries

The empty trie is defined as follows:

empty〈k〉 :: ∀v .Map〈k〉 v

empty〈1〉 = Nothing

empty〈Int〉 = Patricia .empty

empty〈k1 + k2〉 = (empty〈k1〉, empty〈k2〉)
empty〈k1 × k2〉 = empty〈k1〉.

The definition already illustrates several interesting aspects of programming with

generalized tries. To begin with, the polymorphic type of empty〈k〉 is necessary to

make the definition work. Consider the last equation: empty〈k1 × k2〉, which is of

type ∀v .Map〈k1〉 (Map〈k2〉 v ), is defined in terms of empty〈k1〉, which is of type

∀v .Map〈k1〉 v . That means that empty〈k1〉 is used polymorphically. In other words,

empty〈k〉 makes use of polymorphic recursion!

Since empty〈k〉 has a polymorphic type, emptyn〈 f 〉 takes polymorphic values to

polymorphic values. We have, for instance,

empty1〈 f 〉 :: ∀k .(∀v .Map〈k〉 v )→ (∀v .Map〈 f k〉 v ).

The type signature contains two occurrences of Map. Of course, if we want to

specialize empty1〈 f 〉 for a given f we must specialize its type signature, as well. In

a first step, we use the specification of Mapn, equation (2), to replace Map〈 f k〉 by

Map1〈 f 〉 (Map〈k〉).

empty1〈 f 〉 :: ∀k .(∀v .Map〈k〉 v )→ (∀v .Map1〈 f 〉 (Map〈k〉) v )

In a second step, we generalize Map〈k〉 to a fresh type variable, say, m .

empty1〈 f 〉 :: ∀m .(∀v .m v )→ (∀v .Map1〈 f 〉 m v )

Note that empty1〈 f 〉 has a so-called rank-2 type signature (McCracken, 1984).

Let us take a look at some examples:

emptyL :: ∀m .(∀v .m v )→ (∀v .MapL m v )

emptyL e = TrieL Nothing e

emptyF :: ∀m .(∀v .m v )→ (∀v .MapF m v )

emptyF e = TrieF e

emptyP :: ∀m .(∀v .m v )→ (∀v .MapP m v )

emptyP e = TrieP e (emptyP (emptyF e))

The second function, emptyF , illustrates the polymorphic use of the parameter: e

has type ∀v .m v , but is used as an element of m (m w ). The last definition employs

‘higher-order polymorphic’ recursion: the recursive call is of type (∀v .MapF m v )→
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(∀v .MapP (MapF m) v ), which is a substitution instance of the declared type. The

function emptyP illustrates another point: the implementation of generalized tries

relies in an essential way on lazy evaluation. As an example, consider the empty trie

for Perfect Int , which is represented by the infinite tree (abbreviating Patricia .empty

to e)

TrieP e (TrieP (TrieF e) (TrieP (TrieF (TrieF e)) . . .)).

In section 4.1, we shall discuss a slightly modified representation of generalized tries

that avoids this problem.

The singleton trie, which contains only a single binding, is defined as follows:

single〈k〉 :: ∀v .k × v → Map〈k〉 v

single〈1〉 ((), v ) = Just v

single〈Int〉 (i , v ) = Patricia .single (i , v )

single〈k1 + k2〉 (Inl i1, v ) = (single〈k1〉 (i1, v ), empty〈k2〉)
single〈k1 + k2〉 (Inr i2, v ) = (empty〈k1〉, single〈k2〉 (i2, v ))

single〈k1 × k2〉 ((i1, i2), v ) = single〈k1〉 (i1, single〈k2〉 (i2, v )).

The definition of single〈k〉 is interesting because it falls back on empty〈k〉 in the

third and the fourth equations. This requires a small extension of the theory of

section 2: the specialization singlen〈 f 〉 must be parameterized both with single〈k〉
and with empty〈k〉. For n = 1 we obtain the type signature

single1〈 f 〉 :: ∀m .(∀v .m v )→ (∀v .k × v → m v )

→ (∀v .f k × v → Map1〈 f 〉 m v ).

Let us again specialize the polytypic function to lists and perfect trees:

singleL :: ∀m .(∀v .m v )→ (∀v .k × v → m v )

→ (∀v .List k × v → MapL m v )

singleL e s (Nil , v ) = TrieL (Just v ) e

singleL e s (Cons i is , v ) = TrieL Nothing (s (i , singleL e s (is , v )))

singleF :: ∀m .(∀v .m v )→ (∀v .k × v → m v )

→ (∀v .Fork k × v → MapF m v )

singleF e s (Fork i1 i2, v ) = TrieF (s (i1, s (i2, v )))

singleP :: ∀m .(∀v .m v )→ (∀v .k × v → m v )

→ (∀v .Perfect k × v → MapP m v )

singleP e s (Null i , v ) = TrieP (s (i , v )) (emptyP (emptyF e))

singleP e s (Succ i , v ) = TrieP e (singleP (emptyF e) (singleF e s) (i , v )).

The function singleF illustrates that the ‘mechanically’ generated definitions can

sometimes be slightly improved. Since the definition of Fork does not involve sums,

singleF does not require its first argument, which could be safely removed.
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3.3 Look-up

The look-up function implements the scheme discussed in the introduction:

lookup〈k〉 :: ∀v .k → Map〈k〉 v → Maybe v

lookup〈1〉 () t = t

lookup〈Int〉 i t = Patricia .lookup i t

lookup〈k1 + k2〉 (Inl i1) (t1, t2) = lookup〈k1〉 i1 t1

lookup〈k1 + k2〉 (Inr i2) (t1, t2) = lookup〈k2〉 i2 t2

lookup〈k1 × k2〉 (i1, i2) t1 = (lookup〈k1〉 i1 3 lookup〈k2〉 i2) t1.

On sums the look-up function selects the appropriate map; on products it ‘composes’

the look-up functions for the components. Since lookup〈k〉 has the result type

Maybe v , the composition must take care of the error signal Nothing:

(3) :: (a → Maybe b)→ (b → Maybe c)→ (a → Maybe c)

(m1 3 m2) a1 = case m1 a1 of {Nothing → Nothing; Just a2 → m2 a2 }.

The operation (3) amounts to the monad or Kleisli composition (Bird, 1998). As

an aside, note that the arguments are not in the same order as with functional

composition.

Specializing lookup〈k〉 to concrete instances of k is by now probably a matter of

routine. Here is lookup1〈 f 〉’s type signature:

lookup1〈 f 〉 :: ∀m .(∀v .k → m v → Maybe v )

→ (∀v .f k → Map1〈 f 〉 m v → Maybe v ).

For lists and perfect trees we obtain

lookupL :: ∀m .(∀v .k → m v → Maybe v )

→ (∀v .List k → MapL m v → Maybe v )

lookupL l Nil (TrieL tn tc) = tn

lookupL l (Cons i is) (TrieL tn tc) = (l i 3 lookupL l is) tc

lookupF :: ∀m .(∀v .k → m v → Maybe v )

→ (∀v .Fork k → MapF m v → Maybe v )

lookupF l (Fork i1 i2) (TrieF tf ) = (l i1 3 l i2) tf

lookupP :: ∀m .(∀v .k → m v → Maybe v )

→ (∀v .Perfect k → MapP m v → Maybe v )

lookupP l (Null i ) (TrieP tn ts) = l i tn

lookupP l (Succ i ) (TrieP tn ts) = lookupP (lookupF l ) i ts .

The function lookupL generalizes lookupStr defined in the introduction to this paper;

we have lookupStr s ∼= value ◦ lookupL lookupChar s . The definition of lookupP

employs the same recursion scheme as encodeP: while recursing, lookupP constructs a

tailor-made look-up function lookupF i l of type ∀v .Fork i k → MapF i v → Maybe v ,

which is finally applied in the base case.
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3.4 Inserting and merging

Insertion is defined in terms of merge〈k〉 and single〈k〉:

insert〈k〉 :: ∀v .(v → v → v )→ k × v → (Map〈k〉 v → Map〈k〉 v )

insert〈k〉 c (i , v ) t = merge〈k〉 c (single〈k〉 (i , v )) t .

Unfortunately, this is not the most efficient implementation of insert〈k〉, since

singleton tries are in general given by infinite trees. This implies that the running

time of insert〈k〉 is not proportional to the size of the inserted key, as one would

expect. The problem vanishes, however, if we employ the alternative representation

of generalized tries to be introduced in section 4.1.

Merging two tries is surprisingly simple. Given an auxiliary function for combining

two values of type Maybe a

combine :: ∀v .(v → v → v )

→ (Maybe v → Maybe v → Maybe v )

combine c Nothing Nothing = Nothing

combine c Nothing (Just v ′) = Just v ′

combine c (Just v ) Nothing = Just v

combine c (Just v ) (Just v ′) = Just (c v v ′),

we can define merge〈k〉 as follows:

merge〈k〉 :: ∀v .(v → v → v )

→ (Map〈k〉 v → Map〈k〉 v → Map〈k〉 v )

merge〈1〉 c t t ′ = combine c t t ′

merge〈Int〉 c t t ′ = Patricia .merge c t t ′

merge〈k1 + k2〉 c (t1, t2) (t ′1, t
′
2) = (merge〈k1〉 c t1 t ′1,merge〈k2〉 c t2 t ′2)

merge〈k1 × k2〉 c t t ′ = merge〈k1〉 (merge〈k2〉 c) t t ′.

The most interesting equation is the last one. The tries t and t ′ are of type

Map〈k1 × k2〉 v = Map〈k1〉 (Map〈k2〉 v ). To merge them we can use merge〈k1〉; we

must, however, supply a combining function of type Map〈k2〉 v → Map〈k2〉 v →
Map〈k2〉 v . A moment’s reflection reveals that merge〈k2〉 c is the desired combining

function. Using functional composition we can write the last equation quite succinctly

as

merge〈k1 × k2〉 = merge〈k1〉 ◦ merge〈k2〉.
The definition of merge〈k〉 shows that it is sometimes necessary to implement

operations more general than immediately needed. If merge〈k〉 had the simplified

type ∀v .Map〈k〉 v → Map〈k〉 v → Map〈k〉 v , then we would not be able to give a

defining equation for k = k1 × k2.

To complete the picture, let us again specialize the merging operation for lists and

perfect trees. To begin with here is merge1〈 f 〉’s type signature:

merge1〈 f 〉 :: ∀m .(∀v .(v → v → v )→ (m v → m v → m v ))

→ (∀v .(v → v → v )

→ (Map1〈 f 〉 m v → Map1〈 f 〉 m v → Map1〈 f 〉 m v )).
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The different instances of merge1〈 f 〉 are surprisingly concise:

mergeL :: ∀m .(∀v .(v → v → v )→ (m v → m v → m v ))

→ (∀v .(v → v → v )→ (MapL m v → MapL m v → MapL m v ))

mergeL m c (TrieL tn tc) (TrieL tn ′ tc′)

= TrieL (combine c tn tn ′) (m (mergeL m c) tc tc′)

mergeF :: ∀m .(∀v .(v → v → v )→ (m v → m v → m v ))

→ (∀v .(v → v → v )→ (MapF m v → MapF m v → MapF m v ))

mergeF m c (TrieF tf ) (TrieF tf ′)

= TrieF (m (m c) tf tf ′)

mergeP :: ∀m .(∀v .(v → v → v )→ (m v → m v → m v ))

→ (∀v .(v → v → v )→ (MapP m v → MapP m v → MapP m v ))

mergeP m c (TrieP tn ts) (TrieP tn ′ ts ′)

= TrieP (m c tn tn ′) (mergeP (mergeF m) c ts ts ′).

3.5 Laws

Polytypic functions enjoy polytypic properties. The following laws hold generically

for all instances of k , and can be proved by fixpoint induction over the structure of

type expressions:

lookup〈k〉 i (empty〈k〉) = Nothing

lookup〈k〉 i (single〈k〉 (i1, v1)) = if i == i1 then Just v1 else Nothing

lookup〈k〉 i (merge〈k〉 c t1 t2) = combine c (lookup〈k〉 i t1) (lookup〈k〉 i t2).

The last law, for instance, states that looking up a key in the merge of two tries yields

the same result as looking up the key in each trie separately and then combining

the results. If the combining form c is associative,

c v1 (c v2 v3) = c (c v1 v2) v3,

then merge〈k〉 c is associative, as well. Furthermore, empty〈k〉 is the left and the

right unit of merge〈k〉 c:

merge〈k〉 c (empty〈k〉) t = t

merge〈k〉 c t (empty〈k〉) = t

merge〈k〉 c t1 (merge〈k〉 c t2 t3) = merge〈k〉 c (merge〈k〉 c t1 t2) t3.

4 Variations on the theme

4.1 Spotted tries

The representation of tries as defined in section 3.1 has two major drawbacks:

(i) it relies in an essential way on lazy evaluation; and (ii) it is inefficient. Both

disadvantages have their roots in the representation of tries on sums. A trie on

k1 +k2 is a pair of tries irrespective of whether the trie is empty or not. This suggests
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it would be worth devising a special representation for the empty trie. Technically,

this is achieved using so-called spot products (Connelly and Morris, 1995):

data a1 ×• a2 = Spot | Pair a1 a2.

Spot products are also known as optional pairs since a1 ×• a2
∼= Maybe (a1 × a2).

Changing Map〈k〉’s definition to

Map〈k1 + k2〉 = Map〈k1〉 ×• Map〈k2〉

we can now represent the empty trie in constant space.

empty〈k1 + k2〉 = Spot

To ensure that the representation is unique, we require that the empty trie on sums

is always represented by Spot . Maintaining this invariant in our implementation

is, however, trivial, since tries never shrink. The situation would be different if we

additionally supplied an operation for removing bindings from a trie.

The remaining operations must be modified accordingly:

single〈k1 + k2〉 (Inl i1, v ) = Pair (single〈k1〉 (i1, v )) (empty〈k2〉)
single〈k1 + k2〉 (Inr i2, v ) = Pair (empty〈k1〉) (single〈k2〉 (i2, v ))

lookup〈k1 + k2〉 i Spot = Nothing

lookup〈k1 + k2〉 (Inl i1) (Pair t1 t2) = lookup〈k1〉 i1 t1

lookup〈k1 + k2〉 (Inr i2) (Pair t1 t2) = lookup〈k2〉 i2 t2

merge〈k1 + k2〉 c Spot t ′ = t ′

merge〈k1 + k2〉 c t Spot = t

merge〈k1 + k2〉 c (Pair t1 t2) (Pair t ′1 t ′2)

= Pair (merge〈k1〉 c t1 t ′1) (merge〈k2〉 c t2 t ′2).

4.2 Skinny tries

Extending the idea of the previous section one step further, we could additionally

devise a special representation for singleton tries:

data a1 •×• a2 = None | Onlyl a1 | Onlyr a2 | Both a1 a2.

Using •×• instead of ×• has the advantage that single〈k〉 need not refer to empty〈k〉:

single〈k1 + k2〉 (Inl i1, v ) = Onlyl (single〈k1〉 (i1, v ))

single〈k1 + k2〉 (Inr i2, v ) = Onlyr (single〈k2〉 (i2, v )).

This representation is furthermore a bit more space economical. A potential disad-

vantage is the increased number of cases one must consider when defining lookup〈k〉
and merge〈k〉. Here are a few of the cases:
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lookup〈k1 + k2〉 (Inl i1) None = Nothing

lookup〈k1 + k2〉 (Inl i1) (Onlyl t1) = lookup〈k1〉 i1 t1

lookup〈k1 + k2〉 (Inl i1) (Onlyr t2) = Nothing

lookup〈k1 + k2〉 (Inl i1) (Both t1 t2) = lookup〈k1〉 i1 t1

merge〈k1 + k2〉 c (Onlyl t1) None = Onlyl t1

merge〈k1 + k2〉 c (Onlyl t1) (Onlyl t ′1) = Onlyl (merge〈k1〉 c t1 t ′1)

merge〈k1 + k2〉 c (Onlyl t1) (Onlyr t ′2) = Both t1 t ′2
merge〈k1 + k2〉 c (Onlyl t1) (Both t ′1 t ′2) = Both (merge〈k1〉 c t1 t ′1) t ′2.

The remaining cases are defined accordingly.

5 Sample application: Generalized tries for de Bruijn terms

As a slightly larger application, let us construct generalized tries for de Bruijn terms

(de Bruijn, 1972) building upon the representation given in section 4.1. These tries

may be useful for performing common subexpression elimination on lambda terms,

or for implementing a memoizing interpreter for the lambda calculus. de Bruijn

notation is a special encoding of lambda terms, where a bound variable is represented

by a natural number, giving the number of abstractions lying between the variable

and its binding abstraction. For instance, λx → x is represented by λ0 and λx →
λy → x by λ(λ1). Recently, Bird and Paterson (1999) devised a nested implementation

of de Bruijn terms, which nicely captures the ‘distance invariant’:

data Term v = Var v | App (Term v ) (Term v ) | Lam (Term (Incr v ))

data Incr v = Zero | Succ v .

Closed de Bruijn terms can be represented as elements of Term Void , where Void

is the empty type. For instance, λ0 and λ(λ1) are written as Lam (Var Zero)

and Lam (Lam (Var (Succ Zero))). Non-closed terms where the free variables are

drawn from the type Int are given by elements of Term Int . For example, Var 0

and Lam (Lam (Var (Succ (Succ 0)))) correspond to the lambda terms z and

λx → λy → z , in which the variable z appears free.

Figures 3, 4 and 5 contain the complete code for generalized tries on non-closed

de Bruijn terms of type Term Int .2

Some remarks are appropriate. First of all, the datatype MapT in figure 4 is based

on the functor equation

MapT m = m ×• MapT m ·MapT m ×• MapT (MapI m).

For simplicity, we interpret a1 ×• a2 ×• a3 as the type of optional triples and not as

nested optional pairs.

data a1 ×• a2 ×• a3 = Spot | Triple a1 a2 a3

All the definitions with the notable exception of the empty instances have been

2 The source code is available from the Journal of Functional Programming Internet home page
(http://www.dcs.gla.ac.uk/jfp/online/jfpvol10.4/hinze/index.html).
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data MapI m v = SpotI | TrieI (Maybe v ) (m v )

emptyI :: ∀m .(∀v .MapI m v )

emptyI = SpotI

singleI :: ∀m .(∀v .m v )→ (∀v .k × v → m v )

→ (∀v .Incr k × v → MapI m v )

singleI e s (Zero, v ) = TrieI (Just v ) e

singleI e s (Succ i , v ) = TrieI Nothing (s (i , v ))

lookupI :: ∀m .(∀v .k → m v → Maybe v )

→ (∀v .Incr k → MapI m v →Maybe v )

lookupI l i SpotI = Nothing

lookupI l Zero (TrieI tz ts) = tz

lookupI l (Succ i ) (TrieI tz ts) = l i ts

mergeI :: ∀m .(∀v .(v → v → v )→ (m v → m v → m v ))

→ (∀v .(v → v → v )

→ (MapI m v → MapI m v → MapI m v ))

mergeI m c SpotI t ′ = t ′

mergeI m c t SpotI = t

mergeI m c (TrieI tz ts) (TrieI tz ′ ts ′)

= TrieI (combine c tz tz ′) (m c ts ts ′)

Fig. 3. Generalized tries for variables of type Incr v .

mechanically derived from the generic definitions given in this and in the previous

sections. The definition of emptyI has been simplified by omitting its parameter,

which is not required. The same remark applies to emptyT and emptyTI .

Let us stress that the code does not conform to the Haskell 98 standard (Peyton

Jones and Hughes, 1999), which neither provides explicit universal quantifiers nor

rank-2 type signatures. However, both GHC 4.04 (GHC Team, 1999) and Hugs 98 (as

of September 1999 (Jones and Peterson, 1999)) implement the necessary extensions

(Peyton Jones, 1998). We only have to adjust the type signatures. To exemplify, the

signature

lookupI :: ∀m .(∀v .k → m v → Maybe v )→ (∀v .Incr k → MapI m v → Maybe v )

must be changed to

lookupI :: (∀v .k → m v → Maybe v )→ (Incr k → MapI m w → Maybe w ).

The rewrite involves two steps: (i) use t → ∀v.u = ∀w.t → u[v := w], where w is

a fresh type variable to push quantifiers to the top-level; and (ii) discard top-level

quantifiers. Both steps are meaning preserving (recall that every free type variable

in a signature is implicitly universally quantified).

6 Related and future work

Knuth (1998) attributes the idea of a trie to Thue (1912), who introduced it in a paper

about strings that do not contain adjacent repeated substrings. de la Briandais (1959)

recommended tries for computer searching. The generalization of tries from strings

to elements built according to an arbitrary signature was discovered by Wadsworth
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data MapT m v = SpotT | TrieT (m v )

(MapT m (MapT m v ))

(MapT (MapI m) v )

emptyT :: ∀m .(∀v .MapT m v )

emptyT = SpotT

singleT :: ∀m .(∀v .m v )→ (∀v .k × v → m v )

→ (∀v .Term k × v → MapT m v )

singleT e s (Var i , v ) = TrieT (s (i , v )) emptyT emptyT

singleT e s (App i1 i2, v ) = TrieT e (singleT e s (i1, singleT e s (i2, v ))) emptyT

singleT e s (Lam i , v ) = TrieT e emptyT (singleT emptyI (singleI e s) (i , v ))

lookupT :: ∀m .(∀v .k → m v → Maybe v )

→ (∀v .Term k → MapT m v → Maybe v )

lookupT l i SpotT = Nothing

lookupT l (Var i ) (TrieT tv ta tl )

= l i tv

lookupT l (App i1 i2) (TrieT tv ta tl)

= (lookupT l i1 3 lookupT l i2) ta

lookupT l (Lam i ) (TrieT tv ta tl )

= lookupT (lookupI l) i tl

mergeT :: ∀m .(∀v .(v → v → v )→ (m v → m v → m v ))

→ (∀v .(v → v → v )

→ (MapT m v → MapT m v → MapT m v ))

mergeT m c SpotT t ′ = t ′

mergeT m c t SpotT = t

mergeT m c (TrieT tv ta tl ) (TrieT tv ′ ta ′ tl ′)

= TrieT (m c tv tv ′)

(mergeT m (mergeT m c) ta ta ′)

(mergeT (mergeI m) c tl tl ′)

Fig. 4. Generalized tries for de Bruijn terms of type Term v .

type MapTI = MapT Patricia .Dict

emptyTI :: ∀v .MapTI v

emptyTI = emptyT

singleTI :: ∀v .Term Int × v → MapTI v

singleTI = singleT Patricia .empty Patricia .single

lookupTI :: ∀v .Term Int → MapTI v → Maybe v

lookupTI = lookupT Patricia .lookup

insertTI :: ∀v .(v → v → v )→ Term Int × v → (MapTI v → MapTI v )

insertTI c (i , v ) t = mergeTI c (singleTI (i , v )) t

mergeTI :: ∀v .(v → v → v )→ (MapTI v → MapTI v → MapTI v )

mergeTI = mergeT Patricia .merge

Fig. 5. Generalized tries for non-closed de Bruijn terms of type Term Int .
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(1979) and others independently since. Connelly and Morris (1995) formalized the

concept of a trie in a categorical setting: they showed that a trie is a functor, and

that the corresponding look-up function is a natural transformation. Interestingly,

despite the framework of category theory they base the development on many-sorted

signatures, which makes the definitions somewhat unwieldy. This paper shows that

the construction of generalized tries is much simpler if we replace the concept of a

many-sorted signature by its categorical counterpart, the concept of a functor.

The first implementation of generalized tries was given by Okasaki (1998) in his

recent textbook on functional data structures. Tries for parameterized types like lists

or binary trees are represented as Standard ML functors. While this approach works

for regular datatypes, it fails for nested datatypes such as Perfect or Term . In the

latter case, datatypes of the second-order kind are indispensable.

That said, a direction for future work suggests itself, namely to generalize tries

to arbitrary higher-order kinded datatypes. To give an impression of the extensions

consider the standard definition of rose trees:

data Rose k = Branch k (List (Rose k )).

Its trie is given by

data MapR mk v = TrieR (mk (MapL (MapR mk ) v )).

Now, abstracting the list functor away we obtain the following generalization of

rose trees:

data GRose t k = GBranch k (t (GRose t k )).

The trie of Rose can be generalized in a similar way:

data MapGR mt mk v = TrieGR (mk (mt (MapGR mt mk ) v )).

Note that GRose is a type constructor of kind (∗ → ∗) → (∗ → ∗), while its trie

has kind ((∗ → ∗) → (∗ → ∗)) → ((∗ → ∗) → (∗ → ∗)). Now, the same systematics

can be applied to generalize the operations on MapR to operations on MapGR.

Currently, the author is working on a suitable extension of the framework that

makes it possible to define polytypic values generically for all datatypes expressible

in Haskell 98.
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