Generalizing generalized tries

RALF HINZE
Institut für Informatik III, Universität Bonn, Römerstraße 164, 53117 Bonn, Germany (e-mail: ralf@informatik.uni-bonn.de)

Abstract

A trie is a search tree scheme that employs the structure of search keys to organize information. Tries were originally devised as a means to represent a collection of records indexed by strings over a fixed alphabet. Based on work by C. P. Wadsworth and others, R. H. Connelly and F. L. Morris generalized the concept to permit indexing by elements built according to an arbitrary signature. Here we go one step further, and define tries and operations on tries generically for arbitrary datatypes of first-order kind, including parameterized and nested datatypes. The derivation employs techniques recently developed in the context of polytypic programming and can be regarded as a comprehensive case study in this new programming paradigm. It is well known that for the implementation of generalized tries, nested datatypes and polymorphic recursion are needed. Implementing tries for first-order kinded datatypes places even greater demands on the type system: it requires rank-2 type signatures and secondorder nested datatypes. Despite these requirements, the definition of tries is surprisingly simple, which is mostly due to the framework of polytypic programming.

Capsule Review

Implementing tries whose search keys are values of a complicated datatype is far from trivial - or is it?

Using a new approach to polytypic programming, this paper shows how to implement tries for arbitrary datatypes, including even nested datatypes. This problem is solved by the systematic, largely mechanical, application of simple rules.

If you are willing to be convinced of the advantages of the emerging paradigm of polytypic programming, in particular its conceptual simplicity, read this paper!

All generalizations are dangerous, even this one.
Alexandre Dumas

1 Introduction

The concept of a trie was introduced by A. Thue in 1912 as a means to represent a set of strings (see Knuth, 1998). In its simplest form, a trie is a multiway branching tree where each edge is labelled with a character. For example, the set of strings \{ear, earl, east,easy,eye\} is represented by the trie depicted in figure 1. Searching in a trie starts at the root and proceeds by traversing the edge that matches the first

Fig. 1. A simple trie.
character, then traversing the edge that matches the second character, and so forth. The search key is a member of the represented set if the search stops in a node that is marked - marked nodes are drawn as filled circles in figure 1 . Tries can also be used to represent finite maps. In this case marked nodes additionally contain values associated with the strings. Interestingly, the move from sets to finite maps is not a mere variation of the scheme. As we shall see it is essential for the further development.

On a more abstract level, a trie itself can be seen as a composition of finite maps. Each collection of edges descending from the same node constitutes a finite map sending a character to a trie. With this interpretation in mind, it is relatively straightforward to devise an implementation of string-indexed tries. For concreteness, programs will be given in the functional programming language Haskell 98 (Peyton Jones and Hughes, 1999). If strings are defined by the datatype

$$
\text { data Str }=\text { Nil } \mid \text { Cons Char Str, }
$$

we can represent string-indexed tries with associated values of type v as follows:

$$
\begin{aligned}
& \text { data MapStr } v=\text { TrieStr }(\text { Maybe } v)(\text { MapChar }(\text { MapStr } v)) \\
& \text { data Maybe } v=\text { Nothing } \mid \text { Just } v .
\end{aligned}
$$

The first component of the constructor TrieStr contains the value associated with Nil. Its type is Maybe v instead of v, since Nil may not be in the domain of the finite map represented by the trie. In this case, the first component equals Nothing. The second component corresponds to the edge map. To keep the example manageable, we implement MapChar using association lists (note that in Haskell List t is written [$t]$).

```
type MapChar \(v \quad=\) List (Char,v)
lookupChar \(\quad::\) Char \(\rightarrow\) MapChar \(v \rightarrow v\)
lookupChar c [] \(\quad=\) error "not found"
lookupChar \(c\left(\left(c^{\prime}, v\right): x\right)=\) if \(c==c^{\prime}\) then \(v\) else lookupChar \(c x\)
```

Building upon lookupChar, we can define a look-up function for strings. To lookup the empty string we access the first component of the trie. To lookup a non-empty string, say, Cons $c s$ we lookup c in the edge map obtaining a trie, which is then recursively searched for s :

lookupStr	$::$ Str \rightarrow MapStr $v \rightarrow v$
lookupStr Nil (TrieStr tn tc)	$=$ value tn
lookupStr (Cons c s) (TrieStr tn tc)	$=$ (lookupStr s \circ lookupChar c) tc
value	$::$ Maybe $v \rightarrow v$
value Nothing	$=$ error "not found"
value (Just v)	$=v$.

If the key is not in the domain of the finite map, a run-time error is raised. This will be remedied later.

Based on work by C. P. Wadsworth and others, R. H. Connelly and F. L. Morris (1995) have generalized the concept of a trie to permit indexing by elements built according to an arbitrary signature, i.e. by elements of an arbitrary non-parameterized datatype. The definition of lookupStr already gives a clue what a suitable generalization might look like: the trie TrieStr th tc contains a finite map for each constructor of the datatype Str; to lookup Cons cs the look-up functions for the components, c and s, are simply composed. Generally, if we have a datatype with k constructors, the corresponding trie has k components. To look up a constructor with n fields, we must select the corresponding finite map and compose n look-up functions of the appropriate types. If a constructor has no fields such as Nil, we extract the associated value using value. Note that a nullary constructor of type T can be viewed as a function of type ()$\rightarrow T$. Consequently, the type constructor Maybe can be seen as implementing finite maps over the unit datatype '()' with value as its look-up function.

As a second example, consider the datatype of external search trees.

$$
\text { data Bin }=\text { Leaf Str } \mid \text { Node Bin Char Bin }
$$

A trie for external search trees represents a finite map from Bin to some value type v. It is an element of MapBin v given by

$$
\begin{aligned}
\text { data MapBin } v=\quad \text { TrieBin }(\text { MapStr } v) \\
(\text { MapBin }(\text { MapChar }(\text { MapBin } v))) .
\end{aligned}
$$

The type MapBin is an instance of a so-called nested datatype (nest for short). The term 'nested datatype' has been coined by Bird and Meertens (1998), and characterizes parameterized datatypes whose definition involves 'recursive calls' MapBin (MapChar (MapBin v)) in the example above - that are substitution instances of the defined type. Functions operating on nested datatypes are known to require a non-schematic form of recursion, called polymorphic recursion (Mycroft, 1984). The look-up function on external search trees may serve as an example:

$$
\begin{aligned}
& \text { lookupBin } \quad:: \operatorname{Bin} \rightarrow \operatorname{MapBin} v \rightarrow v \\
& \text { lookupBin (Leaf s) (TrieBin tl tn) }=\text { lookupStr } s t l \\
& \text { lookupBin (Node l cr) (TrieBin tl tn) } \\
& =(\text { lookupBin } r \circ \text { lookupChar } c \circ \text { lookupBin l) } t n
\end{aligned}
$$

Looking up a node involves two recursive calls. The second, lookupBin l, is of type Bin \rightarrow MapBin (MapChar (MapBin $v)) \rightarrow$ MapChar (MapBin v), which is a substitution instance of the declared type. Haskell 98 allows polymorphic recursion
only if an explicit type signature is provided for the function(s). The rationale behind this restriction is that type inference in the presence of polymorphic recursion is undecidable (Henglein, 1993).

It is absolutely necessary that MapBin and lookupBin are parametric with respect to the codomain of the finite maps. Had we restricted the type of lookupBin to Bin \rightarrow MapBin $V \rightarrow V$ for some fixed type V, the definition would have no longer type-checked. This also explains why the construction does not work for the finite set abstraction.

Remark 1

Looking up a constructed value boils down to composing look-up functions. Interestingly, the order of composition is completely arbitrary: we are free to use either textual order or reverse textual order. For instance, MapStr and lookupStr can alternatively be defined by

```
data MapStr v = TrieStr (Maybe v) (MapStr (MapChar v))
lookupStr :: Str }->\mathrm{ MapStr v }->
lookupStr Nil (TrieStr tn tc) = value tn
lookupStr (Cons c s) (TrieStr tn tc) = (lookupChar c ○ lookupStr s) tc.
```

These definitions employ reverse textual order $-s$ is looked up first and then $c-$ and correspond to the textual order implementation of tries for 'snoc' strings given by data Rts $=$ Lin \mid Snoc Rts Char. That said, it becomes clear that both orders must work equally well. As an aside, note that MapStr is now a nested datatype and lookupStr requires polymorphic recursion.

From the discussion above it should be clear how to define tries for arbitrary non-parameterized datatypes. In this paper we go one step further, and show how to generalize the concept to arbitrary datatypes of first-order kind, including parameterized and nested datatypes. Note that a datatype of first-order kind may be parameterized by types, but not by type constructors. In the sequel, the qualifier 'of first-order kind' will usually be omitted. Now, we are particularly interested in giving a compositional definition of tries. Let us briefly discuss what we mean by 'compositional'. In Haskell, strings are represented as lists of characters: String $=$ List Char. This suggests that tries for strings should be compositionally defined in terms of tries for lists and tries for characters: MapString = MapList MapChar. Since List is a function on types (a so-called functor), MapList is consequently a function on tries - or rather, on trie types (a so-called higher-order functor). A note on terminology: though MapList is a function, we often refer to MapList simply as a trie just like List is often referred to as a type.

In generalizing tries to type constructors, we will answer in particular the intriguing question what the generalized trie of a nested datatype looks like. This question is not only of theoretical but also of practical interest, since a number of data structures, such as 2-3 trees or red-black trees, have recently been shown to be expressible by nested declarations. Bird and Paterson (1999) use a nested datatype for expressing de Bruijn notation. Now, if a look-up structure for de Bruijn terms is required, say, to implement common subexpression elimination, we are confronted with the
problem of constructing generalized tries for a nested datatype (the solution to this problem will be presented in section 5).

To develop generalized tries we will employ the framework of polytypic programming. In fact, the following can be regarded as a comprehensive case study in this new programming paradigm. Briefly, a polytypic or generic function is one that is defined by induction on the structure of types. A simple example for a polytypic function is encode :: $T \rightarrow$ [Bit $]$, which encodes an element of type T as a bit string. The function encode can sensibly be defined for each type, and it is usually a tiresome, routine matter to do so. A polytypic programming language enables the user to program encode once and for all times. The specialization of encode to concrete instances of T is then handled automatically by the system. Polytypic programming can be surprisingly simple. In a companion paper (Hinze, 1999b), we show that it suffices to define a polytypic function on predefined types, sums and products. This information is sufficient to specialize a polytypic function to arbitrary datatypes, including mutually recursive, parameterized and nested datatypes.

Generalized tries make a particularly interesting application of polytypic programming. The central insight is that a trie can be considered as a type-indexed datatype. This makes it possible to define tries and operations on tries generically for arbitrary datatypes. We already have the necessary prerequisites at hand: we know how to define tries for sums and for products. A trie for a sum is a product of tries and a trie for a product is a composition of tries. The extension to arbitrary datatypes is then uniquely defined. Mathematically speaking, generalized tries are based on the following isomorphisms:

$$
\begin{aligned}
\left(k_{1}+k_{2}\right) \rightarrow_{\mathrm{fin}} v & \cong\left(k_{1} \rightarrow_{\mathrm{fin}} v\right) \times\left(k_{2} \rightarrow_{\mathrm{fin}} v\right) \\
\left(k_{1} \times k_{2}\right) \rightarrow_{\mathrm{fin}} v & \cong k_{1} \rightarrow_{\mathrm{fin}}\left(k_{2} \rightarrow_{\mathrm{fin}} v\right) .
\end{aligned}
$$

Here, $k \rightarrow_{\mathrm{fin}} v$ denotes the set of all finite maps from k to v. Note that $k \rightarrow_{\mathrm{fin}} v$ is sometimes written $v^{[k]}$, which explains why these equations are also known as the 'laws of exponentials'.

We have seen that nested datatypes and polymorphic recursion are necessary for the implementation of generalized tries. Implementing tries for datatypes of first-order kind, especially nested datatypes, places even greater demands on the type system: it requires rank-2 type signatures (McCracken, 1984), datatypes of second-order kind (Jones, 1995) and second-order nests. Since Haskell 98 does not offer rank-2 types, we will give the examples in an ideal, Haskell-like language. In particular, we will write polymorphic types using explicit universal quantifiers. The simple changes necessary to make the examples run under GHC (GHC Team, 1999) or Hugs 98 (Jones and Peterson, 1999) are given at the end of section 5.

The rest of this paper is structured as follows. In section 2 we briefly review the theoretical background of polytypic programming. A more detailed account is given in the companion paper (Hinze, 1999b). Section 3 applies the technique to implement a finite map abstraction based on generalized tries. Section 4 discusses variations on the theme. Generalized tries for de Bruijn terms are presented in section 5. Finally, section 6 reviews related work, and points out a direction for future work.

2 A polytypic programming primer

2.1 Datatypes

A polytypic function is one that is parameterized by datatype. The polytypic programming primer therefore starts with a brief investigation of the structure of types. The following definitions will serve as running examples throughout the paper:

```
data List a \(\quad=\quad\) Nil \(\mid\) Cons a (List a)
data Bintree \(a_{1} a_{2}=\) Leaf \(a_{1} \mid\) Node \(\left(\right.\) Bintree \(\left.a_{1} a_{2}\right) a_{2}\left(\right.\) Bintree \(\left.a_{1} a_{2}\right)\)
data Fork a \(\quad=\) Fork a a
data Perfect \(a=\) Null \(a \mid \operatorname{Succ}(\) Perfect (Fork a) \()\)
data Sequ a \(=\) Empty \(\mid\) Zero (Sequ (Fork a) ) \(\mid\) One a (Sequ (Fork a))
```

The meaning of these datatypes in a nutshell: the first equation defines the ubiquitous datatype of lists; Bintree encompasses external binary search trees. The types Perfect and Sequ are examples for nested datatypes: Perfect comprises perfectly balanced, binary leaf trees (Hinze, 1999a); and Sequ implements binary random-access lists (Okasaki, 1998). Both definitions make use of the auxiliary datatype Fork whose elements may be interpreted as internal nodes.

Haskell's data construct combines several features in a single coherent form: sums, products and recursion. Using more conventional notation (' + ' for sums and ' \times ' for products) and omitting constructor names, we obtain the following emaciated recursion equations:

$$
\begin{array}{ll}
\text { List } a & =1+a \times \text { List } a \\
\text { Bintree } a_{1} a_{2} & =a_{1}+\text { Bintree } a_{1} a_{2} \times a_{2} \times \text { Bintree } a_{1} a_{2} \\
\text { Fork } a & =a \times a \\
\text { Perfect } a & =a+\text { Perfect }(\text { Fork } a) \\
\text { Sequ a } & =1+\text { Sequ }(\text { Fork } a)+a \times \text { Sequ }(\text { Fork } a) .
\end{array}
$$

In the following, we treat 1, ' + ' and ' x ' as if they were given by the following datatype declarations (note that in Haskell, 1 and ' x ' have an extra element, \perp, which we simply ignore):

$$
\begin{array}{ll}
\text { data } 1 & =() \\
\text { data } a_{1}+a_{2} & =\text { Inl } a_{1} \mid \operatorname{Inr} a_{2} \\
\text { data } a_{1} \times a_{2} & =\left(a_{1}, a_{2}\right)
\end{array}
$$

Now, the central idea of polytypic programming is that the set of all types or rather, the set of all type expressions - itself can be modelled by a datatype. Assuming a fixed set of primitive type constructors $\{1$, Int,,$+ \times\}$ type expressions can be seen as being defined by the following grammar (which is akin to a data declaration except that the latter does not allow us to use ' 1 ', ' + ', and ' x ' as constructor names):

$$
T::=1 \mid \text { Int }|(T+T)|(T \times T)
$$

Fig. 2. Types interpreted as infinite type expressions.

In the sequel, we let t range over type expressions, and we agree upon that ' x ' binds more tightly than ' + '.

The question remains how recursive types are modelled. The answer probably comes as no surprise to the experienced Haskell programmer: recursive types are modelled by infinite type expressions! Figure 2 displays the infinite type expressions List Int and Perfect Int in a tree-like form. The expressions are obtained by unrolling the equations for List and Perfect ad infinitum. The recursion equations above can be regarded as defining functions over type expressions. Note that List Int is a rational tree while Perfect Int is an algebraic tree. A rational tree is a possibly infinite tree that has only a finite number of subtrees. Algebraic trees are obtained as solutions of so-called algebraic equations (Courcelle, 1983), which are akin to datatype declarations. In general, we obtain rational trees for regular types such as List, Bintree and Fork, and algebraic trees for nested types such as Perfect and Sequ.

2.2 Polytypic definitions

A polytypic value is defined by induction on the structure of type expressions. In general, the definition takes the following form:

$$
\begin{aligned}
\text { poly }\langle a\rangle & :: \tau\langle a\rangle \\
\text { poly }\langle 1\rangle & =\text { poly }_{1} \\
\text { poly }\langle\text { Int }\rangle & =\text { poly }_{\text {Int }} \\
\text { poly }\left\langle a_{1}+a_{2}\right\rangle & =\text { poly }_{+}\left(\text {poly }\left\langle a_{1}\right\rangle, \text { poly }\left\langle a_{2}\right\rangle\right) \\
\text { poly }\left\langle a_{1} \times a_{2}\right\rangle & =\text { poly }_{\times}\left(\text {poly }\left\langle a_{1}\right\rangle, \text { poly }\left\langle a_{2}\right\rangle\right) .
\end{aligned}
$$

Here, poly is the name of the polytypic value; a, a_{1} and a_{2} are type variables; τ, poly ${ }_{1}$, poly ${ }_{\text {Int }}$, poly ${ }_{+}$and poly ${ }_{\times}$are the ingredients that have to be supplied by the polytypic programmer. The type of poly $\langle a\rangle$ is given by the type scheme $\tau\langle a\rangle$, which may contain function types and universally quantified types. Note that type parameters are always written in angle brackets, to distinguish them from ordinary value parameters.

Example 1

The function encode $\langle a\rangle$, which encodes elements of type a as bit strings implementing a simple form of data compression (Jansson and Jeuring, 1999), can be defined as follows:

data Bit	$=0 \mid 1$
encode $\langle a\rangle$	$: a \rightarrow[$ Bit $]$
encode $\langle 1\rangle x$	$=[]$
encode \langle Int $\rangle x$	$=$ encodeInt x
encode $\left\langle a_{1}+a_{2}\right\rangle\left(\operatorname{Inl} x_{1}\right)$	$=0:$ encode $\left\langle a_{1}\right\rangle x_{1}$
encode $\left\langle a_{1}+a_{2}\right\rangle\left(\operatorname{Inr} x_{2}\right)$	$=1:$ encode $\left\langle a_{2}\right\rangle x_{2}$
encode $\left\langle a_{1} \times a_{2}\right\rangle\left(x_{1}, x_{2}\right)$	$=$ encode $\left\langle a_{1}\right\rangle x_{1}+$ encode $\left\langle a_{2}\right\rangle x_{2}$.

To encode the single element of the unit type no bits are required. Integers are encoded using the primitive function encodeInt, whose existence we assume. To encode an element of a sum, we emit one bit for the constructor followed by the encoding of its argument. Finally, the encoding of a pair is given by the concatenation of the component's encodings. The code above implicitly defines the type scheme $\tau\langle a\rangle=a \rightarrow[$ Bit $]$ and the functions encode $_{1}$, encode $_{\text {Int }}$, encode ${ }_{+}$and encode ${ }_{\times}$:

$$
\begin{array}{ll}
\text { encode }_{1} & =\lambda x \rightarrow[] \\
\text { encode }_{\text {Int }} & =\lambda x \rightarrow \text { encodeInt } x \\
\text { encode }_{+}\left(\varphi_{1}, \varphi_{2}\right) & =\lambda x \rightarrow \text { case } x \text { of }\left\{\text { Inl } x_{1} \rightarrow 0: \varphi_{1} x_{1} ; \text { Inr } x_{2} \rightarrow 1: \varphi_{2} x_{2}\right\} \\
\text { encode }_{\times}\left(\varphi_{1}, \varphi_{2}\right) & =\lambda x \rightarrow \varphi_{1}(\text { fst } x)+\varphi_{2}(\text { snd } x) .
\end{array}
$$

The inductive definition of poly induces a unique function poly $\langle t\rangle$ for each type expression t (Courcelle, 1983). Of course, since t may be infinite - and usually is - we require that types are interpreted by complete partial orders and functions by continuous functions between them. Both conditions are met, since types and functions are given by Haskell programs, which are interpreted in these domains.

The use of infinite type expressions as index sets for polytypic values distinguishes our approach from previous ones that are based on the initial algebra semantics of datatypes (Jeuring and Jansson, 1996; Jansson and Jeuring, 1997). Briefly, our approach has two major advantages: it is simpler (the programmer must consider fewer cases); and it is more general (it covers all datatypes of first-order kind). As an aside, note that our approach also allows to define polytypic values that are indexed by type constructors rather than types. The archetypical example for such a function is size $\langle f\rangle:: \forall a . f a \rightarrow I n t$, which counts the number of values of type a in a given structure of type $f a$. Further details can be found in the companion paper (Hinze, 1999b).

2.3 Specializing polytypic definitions

The main purpose of a polytypic programming system is to specialize a polytypic value poly $\langle t\rangle$ for different instances of t. Unfortunately, the specialization cannot be based on the inductive definition of poly - at least, not directly. Consider the following attempt to specialize encode \langle Perfect Int \rangle :

```
    encode \(\langle\) Perfect Int \(\rangle\)
\(=\) encode \(\langle\) Int + Perfect (Fork Int) \(\rangle\)
\(=\) encode \(_{+}\left(\right.\)encode \(_{\text {Int }}\), encode \(\langle\) Perfect (Fork Int) \()\) )
\(=\) encode \(_{+}\left(\right.\)encode \(_{\text {Int }}\), encode \(\left\langle\right.\) Fork Int + Perfect \(\left(\right.\) Fork \(^{2}\) Int \(\left.\left.)\right\rangle\right)\)
\(=\) encode \(_{+}\left(\right.\)encode \(_{\text {Int }}\), encode \(_{+}\left(\right.\)encode \(\langle\)Fork Int \(\rangle\), encode \(\left\langle\right.\)Perfect \(\left(\right.\)Fork \(^{2}\) Int \(\left.\left.\left.)\right\rangle\right)\right)\)
= ...
```

To define encode \langle Perfect Int \rangle we require encode $\left\langle\right.$ Perfect (Fork ${ }^{n}$ Int) $\left.)\right\rangle$ for each $n \geqslant 1$. It is probably clear that in general we cannot hope to obtain a finite representation of poly $\langle t\rangle$ this way. Instead, we must base the specialization on the representation of types, i.e. on the datatype declarations themselves, which are by necessity finite.

To exhibit the structure of datatype declarations more clearly, we shall rewrite them as functor equations. Roughly speaking, a functor can be seen as a function on types. Functor expressions of arity n are given by the following grammar:

$$
F^{n}::=\Pi_{i}^{n}\left|P^{n}\right| F^{k} \cdot\left(F_{1}^{n}, \ldots, F_{k}^{n}\right) .
$$

By Π_{i}^{n} we denote the n-ary projection functor selecting its i th component. For $n=1$ and $n=2$ we use the following more familiar names: $I d=\Pi_{1}^{1}$, Fst $=\Pi_{1}^{2}$ and Snd $=\Pi_{2}^{2}$. Elements of P^{n} are predefined functors of arity n, i.e. $P^{0}=\{1$, Int $\}-$ we identify types and nullary functors - and $P^{2}=\{+, \times\}$. The expression $f \cdot\left(f_{1}, \ldots, f_{k}\right)$ denotes the composition of a k-ary functor f with functors f_{i}, all of arity n. We omit parentheses when $k=1$, and we write $K t$ instead of $t \cdot()$ when $k=0$. Note that, in $K t$, the component t is a type viewed as a nullary functor; $K t$ is then an n-ary functor. Furthermore, we write $f_{1}+f_{2}$ for $+\cdot\left(f_{1}, f_{2}\right)$, and similarly, $f_{1} \times f_{2}$. We agree upon that '', binds more tightly than ' x ', which in turn takes precedence over ' + '. For instance, $f+g \times h \cdot h$ means $f+(g \times(h \cdot h))$. Finally, we let f, g, and h range over functor expressions and p over primitive functors.

Here are the datatype definitions of section 2.1 rewritten as functor equations:

$$
\begin{array}{ll}
\text { List } & =K 1+I d \times \text { List } \\
\text { Bintree } & =\text { Fst }+ \text { Bintree } \times \text { Snd } \times \text { Bintree } \\
\text { Fork } & =I d \times I d \\
\text { Perfect } & =I d+\text { Perfect } \cdot \text { Fork } \\
\text { Sequ } & =K 1+\text { Sequ } \cdot \text { Fork }+I d \times \text { Sequ } \cdot \text { Fork. } .
\end{array}
$$

In essence, functor equations are written in a compositional or 'point-free' style, while data definitions are written in an applicative or 'pointwise' style. A system of functor equations has the general form $x_{1}=f_{1} ; \ldots ; x_{m}=f_{m}$, where the x_{i} are functor variables (acting as unknowns) and the f_{i} are functor expressions.

Now, the central idea of the specialization is to mimic the structure of datatypes on the value level. For instance, encode \langle Perfect Int \rangle will be compositionally defined in terms of the specializations for the constituent datatypes Perfect and Int. Since Perfect is a function on types, the 'encoder' for Perfect is consequently a function on encoders: it takes an encoder for values of type t, and yields an encoder for
values of type Perfect t, i.e. it takes encode $\langle t\rangle$ to encode \langle Perfect $t\rangle$. In general, we define, for each functor f of arity n, an n-ary function poly $_{n}\langle f\rangle$ satisfying

$$
\begin{equation*}
\operatorname{poly}_{n}\langle f\rangle\left(\operatorname{poly}\left\langle t_{1}\right\rangle, \ldots, \text { poly }\left\langle t_{n}\right\rangle\right)=\operatorname{poly}\left\langle f\left(t_{1}, \ldots, t_{n}\right)\right\rangle, \tag{1}
\end{equation*}
$$

for all type expressions t_{1}, \ldots, t_{n}. It can be shown that the following definition satisfies this specification:

$$
\begin{aligned}
\operatorname{poly}_{n}\langle f\rangle & :: \forall a_{1} \ldots a_{n} \cdot \tau\left\langle a_{1}\right\rangle \times \cdots \times \tau\left\langle a_{n}\right\rangle \rightarrow \tau\left\langle f\left(a_{1}, \ldots, a_{n}\right)\right\rangle \\
\operatorname{poly}_{n}\left\langle\Pi_{i}^{n}\right\rangle & =\pi_{i}^{n} \\
\text { poly }_{n}\langle p\rangle & =\operatorname{poly}_{p} \\
\text { poly }_{n}\left\langle g \cdot\left(h_{1}, \ldots, h_{k}\right)\right\rangle & =\operatorname{poly}_{k}\langle g\rangle \star\left(\text { poly }_{n}\left\langle h_{1}\right\rangle, \ldots, \text { poly }_{n}\left\langle h_{k}\right\rangle\right),
\end{aligned}
$$

where $\pi_{i}^{n}\left(\varphi_{1}, \ldots, \varphi_{n}\right)=\varphi_{i}$ is the i th projection function, and ' \star ' denotes n-ary composition defined by $\varphi \star\left(\varphi_{1}, \ldots, \varphi_{n}\right)=\lambda v \rightarrow \varphi\left(\varphi_{1} v, \ldots, \varphi_{n} v\right)$. Note that $\varphi \star\left(\varphi_{1}\right)=$ $\varphi \circ \varphi_{1}$ when $n=1$. Furthermore, note that the definition of poly $_{n}\langle f\rangle$ is inductive on the structure of functor expressions. On a more abstract level, we can view poly ${ }_{n}$ as an interpretation of functor expressions: Π_{i}^{n} is interpreted by π_{i}^{n}, p by poly ${ }_{p}$, and ',' by ' \star '.

Finally, we can define poly in terms of poly ${ }_{0}$:

$$
\begin{array}{lll}
\text { poly }\langle t\rangle & :: \quad \tau\langle t\rangle \\
\text { poly }\langle t\rangle & =\operatorname{poly}_{0}\langle t\rangle()
\end{array}
$$

In the sequel we will identify poly and poly y_{0} just like we identify types and nullary functors.

By now we have the necessary prerequisites at hand to define the specialization of a polytypic value poly $\langle t\rangle$ for a given instance of t. Assume that the type is defined by the system of equations $x_{1}=f_{1} ; \ldots ; x_{m}=f_{m}$, with $t=x_{i}$ for some i. For each equation $x_{i}=f_{i}$, where f_{i} is a k-ary functor expression, a function definition of the form $\operatorname{poly}_{k}\left\langle x_{i}\right\rangle=$ poly $_{k}\left\langle f_{i}\right\rangle$ is generated. The expression poly $_{k}\left\langle f_{i}\right\rangle$ is given by the inductive definition above, additionally setting poly ${ }_{k}\left\langle x_{i}\right\rangle=$ poly x_{i}, where poly x_{i} is a new function symbol.

Example 2

Let us apply the above framework to specialize encode $\langle t\rangle$ for $t=$ Perfect Int. The specialization proceeds entirely mechanically. Using the original constructor names and abbreviating type names to their first letter, we obtain

```
encodePI :: Perfect Int }->\mathrm{ [Bit]
encodePI x = encodeP encodeInt x
encodeF :: \foralla. (a->[Bit]) }->\mathrm{ (Fork a }->\mathrm{ [Bit])
encodeF enca (Fork x ( }\mp@subsup{x}{2}{}\mathrm{ ) = enca }\mp@subsup{x}{1}{}+\mathrm{ enca }\mp@subsup{x}{2}{
encodeP :: \foralla.(a->[Bit]) }->\mathrm{ (Perfect }a->[\mathrm{ Bit ])
encodeP enca (Null x) = 0: enca x
encodeP enca (Succ x) = 1: encodeP (encodeF enca) x.
```

Encoding a perfect tree operates in two stages: while recursing encodeP constructs
a tailor-made encoding function encodeF F^{i} enca of type Fork $^{i} a \rightarrow$ [Bit], which is eventually applied in the base case.

3 Tries generically

In this section we apply the framework of polytypic programming to implement generalized tries generically for all datatypes of first-order kind. We have already mentioned the basic idea that generalized tries can be considered as a type-indexed datatype. To put this idea in concrete terms, we define a scheme for constructing datatypes

$$
\operatorname{Map}\langle k:: *\rangle \quad:: \quad * \rightarrow *,
$$

which assigns a type constructor of kind $* \rightarrow$ to each key type k of kind $*$. The kind system of Haskell specifies the 'type' of a type constructor (Jones, 1995). The ' $*$ ' kind comprises nullary constructors like Int. The kind $\kappa_{1} \rightarrow \kappa_{2}$ comprises type constructors that map type constructors of kind κ_{1} to those of kind κ_{2}. The order of a kind is given by $\operatorname{order}(*)=0$ and $\operatorname{order}\left(\kappa_{1} \rightarrow \kappa_{2}\right)=\max \left\{1+\operatorname{order}\left(\kappa_{1}\right), \operatorname{order}\left(\kappa_{2}\right)\right\}$.

The type $\operatorname{Map}\langle k\rangle v$ represents the set $k \rightarrow_{\mathrm{fin}} v$ of finite maps from k to v. It is worth noting that the two arguments of ' \rightarrow fin' are treated in a different way: the key type k is used as a type index, i.e. Map will be defined by induction on the structure of k, whereas v is a type parameter, i.e. Map will be parametric in the value type v, and the operations on tries will be polymorphic with respect to v.

We will implement the following operations on tries.

$$
\begin{array}{ll}
\text { empty }\langle k\rangle & :: \forall v . \operatorname{Map}\langle k\rangle v \\
\text { single }\langle k\rangle & :: \forall v . k \times v \rightarrow \operatorname{Map}\langle k\rangle v \\
\text { lookup }\langle k\rangle & :: \forall v . k \rightarrow \operatorname{Map}\langle k\rangle v \rightarrow \text { Maybe } v \\
\text { insert }\langle k\rangle & :: \forall v .(v \rightarrow v \rightarrow v) \rightarrow k \times v \rightarrow(\operatorname{Map}\langle k\rangle v \rightarrow \operatorname{Map}\langle k\rangle v) \\
\text { merge }\langle k\rangle & :: \forall v .(v \rightarrow v \rightarrow v) \rightarrow(\operatorname{Map}\langle k\rangle v \rightarrow \operatorname{Map}\langle k\rangle v \rightarrow \operatorname{Map}\langle k\rangle v)
\end{array}
$$

The signature of lookup $\langle k\rangle$ deviates slightly from that used in the introduction: the look-up function returns a value of type Maybe v instead of v to be able to signal that a key is unbound. The functions insert $\langle k\rangle$ and merge $\langle k\rangle$ take as a first argument a so-called combining function, which is applied whenever two bindings have the same key. For instance, Anew old \rightarrow new is used as the combining function for insert $\langle k\rangle$ if the new binding is to override an old binding with the same key. For finite maps of type $\operatorname{Map}\langle k\rangle$ Int, addition may also be a sensible choice. Interestingly, we will see that the combining function is not only a convenient feature for the user; it is also necessary for defining insert $\langle k\rangle$ and merge $\langle k\rangle$ generically for all types!

3.1 Type-indexed tries

We have already noted in the introduction that generalized tries are based on the laws of exponentials:

$$
\begin{aligned}
1 \rightarrow_{\mathrm{fin}} v & \cong v \\
\left(k_{1}+k_{2}\right) \rightarrow_{\mathrm{fin}} v & \cong\left(k_{1} \rightarrow_{\mathrm{fin}} v\right) \times\left(k_{2} \rightarrow_{\mathrm{fin}} v\right) \\
\left(k_{1} \times k_{2}\right) \rightarrow_{\mathrm{fin}} v & \cong k_{1} \rightarrow_{\mathrm{fin}}\left(k_{2} \rightarrow_{\mathrm{fin}} v\right)
\end{aligned}
$$

To define the notion of finite map, it is customary to assume that each value type v contains a distinguished element or base point \perp_{v} - see Connelly and Morris (1995). A finite map is then a function whose value is \perp_{v} for all but finitely many arguments. For the implementation of tries it is, however, inconvenient to make such a strong assumption (though one could use type classes for this purpose). Instead, we explicitly add when necessary a base point using Maybe. It appears that this is only required for the unit type motivating the following definition of $\operatorname{Map}\langle k\rangle$:

$$
\begin{array}{ll}
\text { Map }\langle 1\rangle v & =\text { Maybe } v \\
\text { Map }\langle\text { Int }\rangle v & =\text { Patricia.Dict } v \\
\operatorname{Map}\left\langle k_{1}+k_{2}\right\rangle v & =\operatorname{Map}\left\langle k_{1}\right\rangle v \times \operatorname{Map}\left\langle k_{2}\right\rangle v \\
\operatorname{Map}\left\langle k_{1} \times k_{2}\right\rangle v & =\operatorname{Map}\left\langle k_{1}\right\rangle\left(\operatorname{Map}\left\langle k_{2}\right\rangle v\right)
\end{array}
$$

We take for granted the existence of a suitable library implementing finite maps with integer keys. Such a library could be based, for instance, on a data structure known as a Patricia tree (Okasaki and Gill, 1998). This data structure fits particularly well in the current setting, since Patricia trees are a variety of tries. For clarity, we will use qualified names when referring to entities defined in the hypothetical module Patricia.

Note that $\operatorname{Map}\langle k\rangle$ is a unary functor. Using the functorial notation of section 2.3, we can define $\operatorname{Map}\langle k\rangle$ more succinctly as

$$
\begin{array}{ll}
\operatorname{Map}\langle 1\rangle & =\text { Maybe } \\
\operatorname{Map}\langle\text { Int }\rangle & =\text { Patricia.Dict } \\
\operatorname{Map}\left\langle k_{1}+k_{2}\right\rangle & =\operatorname{Map}\left\langle k_{1}\right\rangle \times \operatorname{Map}\left\langle k_{2}\right\rangle \\
\operatorname{Map}\left\langle k_{1} \times k_{2}\right\rangle & =\operatorname{Map}\left\langle k_{1}\right\rangle \cdot \operatorname{Map}\left\langle k_{2}\right\rangle .
\end{array}
$$

Since the trie for the unit type is given by Maybe rather than $I d$, tries for isomorphic types are, in general, not isomorphic. We have, for instance, $1 \cong 1 \times 1$, but $\operatorname{Map}\langle 1\rangle=$ Maybe $\not \approx$ Maybe \cdot Maybe $=$ Map $\langle 1 \times 1\rangle$. The trie type Maybe \cdot Maybe has two different representations of the empty trie: Nothing and Just Nothing. However, only the first one will be used in our implementation.

Building upon the techniques developed in section 2.3 we can now specialize $M a p\langle k\rangle$ for a given instance of k. That is, for each functor f of arity n we will define an n-ary higher-order functor Map $_{n}\langle f\rangle$. For $n=1$ we have, for instance,

$$
\operatorname{Map}_{1}\langle f:: * \rightarrow *\rangle \quad:: \quad(* \rightarrow *) \rightarrow(* \rightarrow *)
$$

The type constructor $\mathrm{Map}_{1}\langle f\rangle$ is the generalized trie of the unary type constructor f. It takes as argument the generalized trie of the base type, say, t and yields the generalized trie of $f t$. In general, $M a p_{n}\langle f\rangle$ satisfies

$$
\begin{equation*}
M a p_{n}\langle f\rangle\left(\operatorname{Map}\left\langle t_{1}\right\rangle, \ldots, \operatorname{Map}\left\langle t_{n}\right\rangle\right)=\operatorname{Map}\left\langle f\left(t_{1}, \ldots, t_{n}\right)\right\rangle, \tag{2}
\end{equation*}
$$

for all type expressions t_{1}, \ldots, t_{n}. It may come as a surprise that the framework for specializing type-indexed values is also applicable to type-indexed datatypes. The reason is quite simple: the definition of poly ${ }_{n}\langle f\rangle$ requires only two operations, namely projection and composition, both of which are available in the world of
functors and higher-order functors. Consequently, $\operatorname{Map}_{n}\langle f\rangle$ is given by

$$
\begin{aligned}
\operatorname{Map}_{n}\langle f\rangle & ::(* \rightarrow *) \times \cdots \times(* \rightarrow *) \rightarrow(* \rightarrow *) \\
\operatorname{Map}_{n}\left\langle\Pi_{i}^{n}\right\rangle & =\Pi_{i}^{n} \\
\text { Map }_{n}\langle p\rangle & =\text { Map }_{p} \\
\text { Map }_{n}\left\langle g \cdot\left(h_{1}, \ldots, h_{k}\right)\right\rangle & =\text { Map }_{k}\langle g\rangle \cdot\left(\text { Map }_{n}\left\langle h_{1}\right\rangle, \ldots, \text { Map }_{n}\left\langle h_{k}\right\rangle\right) .
\end{aligned}
$$

Let us specialize $M a p_{n}\langle f\rangle$ to the datatypes listed in section 2.1. As before, we abbreviate type names to their first letter, i.e. we write MapL instead of MapList :

$$
\begin{array}{ll}
\text { MapL } m & \text { Maybe } \times m \cdot \operatorname{MapL} m \\
\text { MapB }\left(m_{1}, m_{2}\right) & =m_{1} \times \operatorname{MapB}\left(m_{1}, m_{2}\right) \cdot m_{2} \cdot \operatorname{MapB}\left(m_{1}, m_{2}\right) \\
\text { MapF } m & =m \cdot m \\
\text { MapP } m & =m \times \operatorname{MapP}(\text { MapF } m) \\
\text { MapS } m & \text { Maybe } \times \operatorname{MapS}(\text { MapF } m) \times m \cdot \operatorname{MapS}(\text { MapF } m) .
\end{array}
$$

Since Haskell 98 permits the definition of higher-order kinded datatypes, the secondorder functors above can be directly coded as datatypes. ${ }^{1}$ All we have to do is to bring the equations into an applicative form:

```
data MapLmv = TrieL (Maybev)(m(MapLmv))
data MapB m1 m2v = TrieB (m1v)
```

(MapB $\left.m_{1} m_{2}\left(m_{2}\left(\operatorname{MapB} m_{1} m_{2} v\right)\right)\right)$.
These types are the parametric variants of MapStr and MapBin defined in the introduction: we have MapStr \cong MapL MapChar (corresponding to Str \cong List Char) and MapBin \cong MapB MapStr MapChar (corresponding to Bin \cong Bintree Str Char). Things become interesting if we consider nested datatypes:

```
data MapF mv \(\quad=\operatorname{TrieF}(m(m v))\)
data MapP \(m v=\operatorname{TrieP}(m v)\)
    (MapP \((\) MapF m) \(v)\)
data MapS mv \(=\) TrieS (Maybe v)
    (MapS (MapF m) v)
    ( \(m\) (MapS (MapF m) \(v)\) ).
```

The generalized trie of a nested datatype is a second-order nested datatype! A nest is termed second-order, if a parameter that is instantiated in a recursive call ranges over type constructors of first-order kind. The tries MapP and MapS are second-order nests since the parameter m of kind $* \rightarrow$ is changed in the recursive calls. By contrast, $M a p B$ is a first-order nest since its instantiated parameter v has kind *. It is quite easy to produce generalized tries that are both firstand second-order nests. If we swap the components of Sequ's third constructor -

[^0]One a (Sequ (Fork a)) becomes One (Sequ (Fork a)) a-then the third component of TrieS has type MapS (MapFm) ($m v$), and since both m and v are instantiated, MapS is consequently both a first- and a second-order nest.

3.2 Empty and singleton tries

The empty trie is defined as follows:

$$
\begin{array}{ll}
\text { empty }\langle k\rangle & :: \forall v . \operatorname{Map}\langle k\rangle v \\
\text { empty }\langle 1\rangle & =\text { Nothing } \\
\text { empty }\langle\text { Int }\rangle & =\text { Patricia.empty } \\
\text { empty }\left\langle k_{1}+k_{2}\right\rangle & =\left(\text { empty }\left\langle k_{1}\right\rangle, \text { empty }\left\langle k_{2}\right\rangle\right) \\
\text { empty }\left\langle k_{1} \times k_{2}\right\rangle & =\text { empty }\left\langle k_{1}\right\rangle .
\end{array}
$$

The definition already illustrates several interesting aspects of programming with generalized tries. To begin with, the polymorphic type of empty $\langle k\rangle$ is necessary to make the definition work. Consider the last equation: empty $\left\langle k_{1} \times k_{2}\right\rangle$, which is of type $\forall v \cdot \operatorname{Map}\left\langle k_{1}\right\rangle\left(\operatorname{Map}\left\langle k_{2}\right\rangle v\right)$, is defined in terms of empty $\left\langle k_{1}\right\rangle$, which is of type $\forall v \cdot \operatorname{Map}\left\langle k_{1}\right\rangle v$. That means that empty $\left\langle k_{1}\right\rangle$ is used polymorphically. In other words, empty $\langle k\rangle$ makes use of polymorphic recursion!

Since empty $\langle k\rangle$ has a polymorphic type, empty ${ }_{n}\langle f\rangle$ takes polymorphic values to polymorphic values. We have, for instance,

$$
\text { empty }_{1}\langle f\rangle \quad:: \quad \forall k \cdot(\forall v \cdot M a p\langle k\rangle v) \rightarrow(\forall v \cdot M a p\langle f k\rangle v) .
$$

The type signature contains two occurrences of Map. Of course, if we want to specialize empty $_{1}\langle f\rangle$ for a given f we must specialize its type signature, as well. In a first step, we use the specification of $M a p_{n}$, equation (2), to replace $M a p\langle f k\rangle$ by $M a p_{1}\langle f\rangle(\operatorname{Map}\langle k\rangle)$.

$$
\text { empty }_{1}\langle f\rangle \quad:: \quad \forall k \cdot(\forall v \cdot M a p\langle k\rangle v) \rightarrow\left(\forall v \cdot \operatorname{Map}_{1}\langle f\rangle(\operatorname{Map}\langle k\rangle) v\right)
$$

In a second step, we generalize $M a p\langle k\rangle$ to a fresh type variable, say, m.

$$
\text { empty }_{1}\langle f\rangle \quad:: \quad \forall m .(\forall v \cdot m v) \rightarrow\left(\forall v \cdot M_{1} p_{1}\langle f\rangle m v\right)
$$

Note that empty $y_{1}\langle f\rangle$ has a so-called rank-2 type signature (McCracken, 1984).
Let us take a look at some examples:

$$
\begin{array}{ll}
\text { emptyL } & :: \forall m \cdot(\forall v \cdot m v) \rightarrow(\forall v \cdot M a p L m v) \\
\text { emptyLe } & =\operatorname{TrieL} \text { Nothing } e \\
\text { emptyF } & :: \forall m \cdot(\forall v \cdot m v) \rightarrow(\forall v \cdot M a p F m v) \\
\text { emptyF } e & =\text { TrieF } e \\
\text { empty } P & :: \forall m .(\forall v \cdot m v) \rightarrow(\forall v \cdot M a p P m v) \\
\text { emptyP } e & =\text { TrieP } e(\text { empty } P(\text { emptyF } e))
\end{array}
$$

The second function, emptyF, illustrates the polymorphic use of the parameter: e has type $\forall v . m v$, but is used as an element of m ($m w$). The last definition employs 'higher-order polymorphic' recursion: the recursive call is of type $(\forall v \cdot M a p F m v) \rightarrow$
($\forall v \cdot \operatorname{Map} P(M a p F m) v$), which is a substitution instance of the declared type. The function emptyP illustrates another point: the implementation of generalized tries relies in an essential way on lazy evaluation. As an example, consider the empty trie for Perfect Int, which is represented by the infinite tree (abbreviating Patricia.empty to e)

$$
\text { TrieP } e(\text { TrieP }(\text { TrieF e) }(\operatorname{TrieP}(\operatorname{TrieF}(\operatorname{TrieF} e)) \ldots)) .
$$

In section 4.1, we shall discuss a slightly modified representation of generalized tries that avoids this problem.

The singleton trie, which contains only a single binding, is defined as follows:

$$
\begin{array}{ll}
\text { single }\langle k\rangle & :: \forall v . k \times v \rightarrow \operatorname{Map}\langle k\rangle v \\
\text { single }\langle 1\rangle((), v) & =\text { Just } v \\
\text { single }\langle\text { Int }\rangle(i, v) & =\text { Patricia.single }(i, v) \\
\text { single }\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inl } i_{1}, v\right) & =\left(\text { single }\left\langle k_{1}\right\rangle\left(i_{1}, v\right), \text { empty }\left\langle k_{2}\right\rangle\right) \\
\text { single }\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inr } i_{2}, v\right) & =\left(\text { empty }\left\langle k_{1}\right\rangle, \text { single }\left\langle k_{2}\right\rangle\left(i_{2}, v\right)\right) \\
\text { single }\left\langle k_{1} \times k_{2}\right\rangle\left(\left(i_{1}, i_{2}\right), v\right) & =\operatorname{single}\left\langle k_{1}\right\rangle\left(i_{1}, \text { single }\left\langle k_{2}\right\rangle\left(i_{2}, v\right)\right) .
\end{array}
$$

The definition of single $\langle k\rangle$ is interesting because it falls back on empty $\langle k\rangle$ in the third and the fourth equations. This requires a small extension of the theory of section 2: the specialization single ${ }_{n}\langle f\rangle$ must be parameterized both with single $\langle k\rangle$ and with empty $\langle k\rangle$. For $n=1$ we obtain the type signature

$$
\begin{aligned}
& \operatorname{single}_{1}\langle f\rangle \quad:: \quad \forall m .(\forall v . m v) \rightarrow(\forall v . k \times v \rightarrow m v) \\
& \rightarrow\left(\forall v . f k \times v \rightarrow \operatorname{Map}_{1}\langle f\rangle m v\right) .
\end{aligned}
$$

Let us again specialize the polytypic function to lists and perfect trees:

$$
\left.\begin{array}{lll}
\text { singleL } & : & \forall m .(\forall v . m v) \rightarrow(\forall v . k \times v \rightarrow m v) \\
& & \rightarrow(\forall v . L i s t ~ \\
& & \text { TrieL }(\text { Just } v) e
\end{array}\right)
$$

The function singleF illustrates that the 'mechanically' generated definitions can sometimes be slightly improved. Since the definition of Fork does not involve sums, single F does not require its first argument, which could be safely removed.

3.3 Look-up

The look-up function implements the scheme discussed in the introduction:

$$
\begin{array}{ll}
\text { lookup }\langle k\rangle & :: \forall v . k \rightarrow \text { Map }\langle k\rangle v \rightarrow \text { Maybe v } \\
\text { lookup }\langle 1\rangle() t & =t \\
\text { lookup }\langle\text { Int }\rangle \text { it } & =\text { Patricia.lookup it } \\
\text { lookup }\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inl } i_{1}\right)\left(t_{1}, t_{2}\right) & =\text { lookup }\left\langle k_{1}\right\rangle i_{1} t_{1} \\
\text { lookup }\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inr } i_{2}\right)\left(t_{1}, t_{2}\right) & =\operatorname{lookup}\left\langle k_{2}\right\rangle i_{2} t_{2} \\
\text { lookup }\left\langle k_{1} \times k_{2}\right\rangle\left(i_{1}, i_{2}\right) t_{1} & =\left(\operatorname{lookup}\left\langle k_{1}\right\rangle i_{1} \diamond \operatorname{lookup}\left\langle k_{2}\right\rangle i_{2}\right) t_{1} .
\end{array}
$$

On sums the look-up function selects the appropriate map; on products it 'composes' the look-up functions for the components. Since lookup $\langle k\rangle$ has the result type Maybe v, the composition must take care of the error signal Nothing:

$$
\begin{array}{ll}
(\diamond) & ::(a \rightarrow \text { Maybe } b) \rightarrow(b \rightarrow \text { Maybe } c) \rightarrow(a \rightarrow \text { Maybe } c) \\
\left(m_{1} \diamond m_{2}\right) a_{1} & =\text { case } m_{1} a_{1} \text { of }\left\{\text { Nothing } \rightarrow \text { Nothing } ; \text { Just } a_{2} \rightarrow m_{2} a_{2}\right\} .
\end{array}
$$

The operation (\diamond) amounts to the monad or Kleisli composition (Bird, 1998). As an aside, note that the arguments are not in the same order as with functional composition.

Specializing lookup $\langle k\rangle$ to concrete instances of k is by now probably a matter of routine. Here is lookup ${ }_{1}\langle f\rangle$'s type signature:

$$
\begin{aligned}
& \text { lookup }_{1}\langle f\rangle \quad:: \quad \forall m .(\forall v . k \rightarrow m v \rightarrow \text { Maybe } v) \\
& \rightarrow\left(\forall v . f k \rightarrow \text { Map }_{1}\langle f\rangle m v \rightarrow \text { Maybe } v\right) .
\end{aligned}
$$

For lists and perfect trees we obtain

$$
\begin{aligned}
& \text { lookupL :: } \forall m .(\forall v . k \rightarrow m v \rightarrow \text { Maybe } v) \\
& \rightarrow(\forall v . \text { List } k \rightarrow \text { MapL } m v \rightarrow \text { Maybe } v) \\
& \text { lookupL l Nil (TrieL tn tc) }=\text { tn } \\
& \text { lookupL } l \text { (Cons } i \text { is) }(\text { TrieL tn tc) }=(l i \diamond \text { lookupL } l \text { is) } t c \\
& \text { lookupF }:: \quad \forall m .(\forall v . k \rightarrow m v \rightarrow \text { Maybe } v) \\
& \rightarrow(\forall v . \text { Fork } k \rightarrow \text { MapF } m v \rightarrow \text { Maybe } v) \\
& \text { lookupF } l\left(\text { Fork } i_{1} i_{2}\right)(\text { TrieF } t f)=\left(l i_{1} \diamond l i_{2}\right) t f \\
& \text { lookup } \quad:: \quad \forall m .(\forall v . k \rightarrow m v \rightarrow \text { Maybe } v) \\
& \rightarrow(\forall v . \text { Perfect } k \rightarrow \text { MapP } m v \rightarrow \text { Maybe } v) \\
& \text { lookup } \operatorname{l} \text { (Null i) (TrieP tn ts) }=1 i t n \\
& \text { lookupP } l(\text { Succ i) (TrieP th ts) }=\text { lookupP }(\text { lookupF } l) \text { its. }
\end{aligned}
$$

The function lookupL generalizes lookupStr defined in the introduction to this paper; we have lookupStr $s \cong$ value olookupL lookupChar s. The definition of lookupP employs the same recursion scheme as encodeP : while recursing, lookup P constructs a tailor-made look-up function lookupF ${ }^{i} l$ of type $\forall v$. Fork $^{i} k \rightarrow$ MapF $^{i} v \rightarrow$ Maybe v, which is finally applied in the base case.

3.4 Inserting and merging

Insertion is defined in terms of merge $\langle k\rangle$ and single $\langle k\rangle$:

$$
\begin{array}{ll}
\operatorname{insert}\langle k\rangle & :: \forall v .(v \rightarrow v \rightarrow v) \rightarrow k \times v \rightarrow(\operatorname{Map}\langle k\rangle v \rightarrow \operatorname{Map}\langle k\rangle v) \\
\operatorname{insert}\langle k\rangle c(i, v) t & =\operatorname{merge}\langle k\rangle c(\text { single }\langle k\rangle(i, v)) t .
\end{array}
$$

Unfortunately, this is not the most efficient implementation of insert $\langle k\rangle$, since singleton tries are in general given by infinite trees. This implies that the running time of insert $\langle k\rangle$ is not proportional to the size of the inserted key, as one would expect. The problem vanishes, however, if we employ the alternative representation of generalized tries to be introduced in section 4.1.

Merging two tries is surprisingly simple. Given an auxiliary function for combining two values of type Maybe a

```
combine :O \forallv.(v->v->v)
    (Maybe v}->\mathrm{ Maybe v 位Maye v)
combine c Nothing Nothing = Nothing
combine c Nothing (Just v') = Just v
combine c (Just v) Nothing = Just v
combine c (Just v) (Just v') = Just (cvev'),
```

we can define merge $\langle k\rangle$ as follows:

```
merge \(\langle k\rangle \quad:: \quad \forall v .(v \rightarrow v \rightarrow v)\)
    \(\rightarrow(\operatorname{Map}\langle k\rangle v \rightarrow \operatorname{Map}\langle k\rangle v \rightarrow \operatorname{Map}\langle k\rangle v)\)
merge \(\langle 1\rangle\) c \(t t^{\prime} \quad=\) combine ct \(t^{\prime}\)
merge \(\langle\) Int \(\rangle\) c \(t t^{\prime} \quad=\) Patricia.merge ct \(t^{\prime}\)
merge \(\left\langle k_{1}+k_{2}\right\rangle c\left(t_{1}, t_{2}\right)\left(t_{1}^{\prime}, t_{2}^{\prime}\right)=\left(\right.\) merge \(\left\langle k_{1}\right\rangle c t_{1} t_{1}^{\prime}\), merge \(\left.\left\langle k_{2}\right\rangle c t_{2} t_{2}^{\prime}\right)\)
\(\operatorname{merge}\left\langle k_{1} \times k_{2}\right\rangle\) ct \(t^{\prime} \quad=\operatorname{merge}\left\langle k_{1}\right\rangle\left(\operatorname{merge}\left\langle k_{2}\right\rangle c\right) t t^{\prime}\).
```

The most interesting equation is the last one. The tries t and t^{\prime} are of type $\operatorname{Map}\left\langle k_{1} \times k_{2}\right\rangle v=\operatorname{Map}\left\langle k_{1}\right\rangle\left(\operatorname{Map}\left\langle k_{2}\right\rangle v\right)$. To merge them we can use merge $\left\langle k_{1}\right\rangle$; we must, however, supply a combining function of type $\operatorname{Map}\left\langle k_{2}\right\rangle v \rightarrow \operatorname{Map}\left\langle k_{2}\right\rangle v \rightarrow$ $\operatorname{Map}\left\langle k_{2}\right\rangle v$. A moment's reflection reveals that merge $\left\langle k_{2}\right\rangle c$ is the desired combining function. Using functional composition we can write the last equation quite succinctly as

$$
\operatorname{merge}\left\langle k_{1} \times k_{2}\right\rangle=\operatorname{merge}\left\langle k_{1}\right\rangle \circ \operatorname{merge}\left\langle k_{2}\right\rangle .
$$

The definition of merge $\langle k\rangle$ shows that it is sometimes necessary to implement operations more general than immediately needed. If merge $\langle k\rangle$ had the simplified type $\forall v \cdot \operatorname{Map}\langle k\rangle v \rightarrow \operatorname{Map}\langle k\rangle v \rightarrow \operatorname{Map}\langle k\rangle v$, then we would not be able to give a defining equation for $k=k_{1} \times k_{2}$.
To complete the picture, let us again specialize the merging operation for lists and perfect trees. To begin with here is merge ${ }_{1}\langle f\rangle$'s type signature:

$$
\begin{aligned}
& \text { merge }_{1}\langle f\rangle \quad:: \quad \forall m .(\forall v .(v \rightarrow v \rightarrow v) \rightarrow(m v \rightarrow m v \rightarrow m v)) \\
& \rightarrow(\forall v \cdot(v \rightarrow v \rightarrow v) \\
& \left.\rightarrow\left(\operatorname{Map}_{1}\langle f\rangle m v \rightarrow M a p_{1}\langle f\rangle m v \rightarrow \operatorname{Map}_{1}\langle f\rangle m v\right)\right) .
\end{aligned}
$$

The different instances of merge ${ }_{1}\langle f\rangle$ are surprisingly concise:

```
mergeL :: \forallm.(\forallv.(v->v->v)->(mv->mv->mv))
```



```
mergeL m c (TrieL tn tc) (TrieLtn'tc')
    = TrieL (combine c tn tn')(m (mergeL m c)tc tc')
mergeF :: \forallm.(\forallv.(v->v->v)->(mv->mv->mv))
    ->(\forallv.(v->v->v)->(MapFmv->MapF mv->MapF mv))
mergeF m c (TrieF tf )(TrieF tf')
    = TrieF (m (mc)tftf}
mergeP :: \forallm.(\forallv.(v->v->v)->(mv->mv->mv))
```



```
mergePmc(TrieP tn ts)(TrieP tn'ts')
    = TrieP (m c tn tn') (mergeP (mergeF m) c ts ts').
```


3.5 Laws

Polytypic functions enjoy polytypic properties. The following laws hold generically for all instances of k, and can be proved by fixpoint induction over the structure of type expressions:

$$
\begin{aligned}
\text { lookup }\langle k\rangle i(\text { empty }\langle k\rangle) & =\text { Nothing } \\
\text { lookup }\langle k\rangle i\left(\text { single }\langle k\rangle\left(i_{1}, v_{1}\right)\right) & =\text { if } i==i_{1} \text { then Just } v_{1} \text { else Nothing } \\
\text { lookup }\langle k\rangle i\left(\text { merge }\langle k\rangle c t_{1} t_{2}\right) & \left.=\text { combine c (lookup }\langle k\rangle i t_{1}\right)\left(\text { lookup }\langle k\rangle i t_{2}\right) .
\end{aligned}
$$

The last law, for instance, states that looking up a key in the merge of two tries yields the same result as looking up the key in each trie separately and then combining the results. If the combining form c is associative,

$$
c v_{1}\left(c v_{2} v_{3}\right)=c\left(c v_{1} v_{2}\right) v_{3}
$$

then merge $\langle k\rangle c$ is associative, as well. Furthermore, empty $\langle k\rangle$ is the left and the right unit of merge $\langle k\rangle c$:

```
            merge }\langlek\ranglec(empty\langlek\rangle)t=
            merge \langlek\ranglect(empty\langlek\rangle)=t
```


4 Variations on the theme

4.1 Spotted tries

The representation of tries as defined in section 3.1 has two major drawbacks: (i) it relies in an essential way on lazy evaluation; and (ii) it is inefficient. Both disadvantages have their roots in the representation of tries on sums. A trie on $k_{1}+k_{2}$ is a pair of tries irrespective of whether the trie is empty or not. This suggests
it would be worth devising a special representation for the empty trie. Technically, this is achieved using so-called spot products (Connelly and Morris, 1995):

$$
\text { data } a_{1} \times \cdot a_{2}=\text { Spot } \mid \text { Pair } a_{1} a_{2}
$$

Spot products are also known as optional pairs since $a_{1} \times a_{2} \cong$ Maybe $\left(a_{1} \times a_{2}\right)$. Changing Map $\langle k\rangle$'s definition to

$$
\operatorname{Map}\left\langle k_{1}+k_{2}\right\rangle=\operatorname{Map}\left\langle k_{1}\right\rangle \times \bullet \operatorname{Map}\left\langle k_{2}\right\rangle
$$

we can now represent the empty trie in constant space.

$$
\text { empty }\left\langle k_{1}+k_{2}\right\rangle=\text { Spot }
$$

To ensure that the representation is unique, we require that the empty trie on sums is always represented by Spot. Maintaining this invariant in our implementation is, however, trivial, since tries never shrink. The situation would be different if we additionally supplied an operation for removing bindings from a trie.

The remaining operations must be modified accordingly:

$$
\begin{aligned}
& \operatorname{single}\left\langle k_{1}+k_{2}\right\rangle\left(\operatorname{Inl} i_{1}, v\right) \quad=\quad \text { Pair }\left(\operatorname{single}\left\langle k_{1}\right\rangle\left(i_{1}, v\right)\right)\left(\text { empty }\left\langle k_{2}\right\rangle\right) \\
& \operatorname{single}\left\langle k_{1}+k_{2}\right\rangle\left(\operatorname{Inr} i_{2}, v\right) \quad=\quad \text { Pair }\left(\operatorname{empty}\left\langle k_{1}\right\rangle\right)\left(\operatorname{single}\left\langle k_{2}\right\rangle\left(i_{2}, v\right)\right) \\
& \text { lookup }\left\langle k_{1}+k_{2}\right\rangle \text { i Spot } \quad=\quad \text { Nothing } \\
& \text { lookup }\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inl } i_{1}\right)\left(\text { Pair } t_{1} t_{2}\right)=\operatorname{lookup}\left\langle k_{1}\right\rangle i_{1} t_{1} \\
& \text { lookup }\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inr } i_{2}\right)\left(\text { Pair } t_{1} t_{2}\right)=\operatorname{lookup}\left\langle k_{2}\right\rangle i_{2} t_{2} \\
& \operatorname{merge}\left\langle k_{1}+k_{2}\right\rangle \text { c Spot } t^{\prime}=t^{\prime} \\
& \operatorname{merge}\left\langle k_{1}+k_{2}\right\rangle \text { ctSpot }=t \\
& \text { merge }\left\langle k_{1}+k_{2}\right\rangle c\left(\text { Pair } t_{1} t_{2}\right)\left(\text { Pair } t_{1}^{\prime} t_{2}^{\prime}\right) \\
& =\text { Pair }\left(\text { merge }\left\langle k_{1}\right\rangle c t_{1} t_{1}^{\prime}\right)\left(\text { merge }\left\langle k_{2}\right\rangle c t_{2} t_{2}^{\prime}\right) .
\end{aligned}
$$

4.2 Skinny tries

Extending the idea of the previous section one step further, we could additionally devise a special representation for singleton tries:

$$
\text { data } a_{1} \bullet \times \cdot a_{2}=\text { None } \mid \text { Onlyl } a_{1} \mid \text { Onlyr } a_{2} \mid \text { Both } a_{1} a_{2}
$$

Using \times_{\bullet} instead of x_{\bullet} has the advantage that single $\langle k\rangle$ need not refer to empty $\langle k\rangle$:

$$
\begin{aligned}
& \operatorname{single}\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inl } i_{1}, v\right)=\text { Onlyl }\left(\operatorname{single}\left\langle k_{1}\right\rangle\left(i_{1}, v\right)\right) \\
& \operatorname{single}\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inr } i_{2}, v\right)=\text { Onlyr }\left(\operatorname{single}\left\langle k_{2}\right\rangle\left(i_{2}, v\right)\right) .
\end{aligned}
$$

This representation is furthermore a bit more space economical. A potential disadvantage is the increased number of cases one must consider when defining lookup $\langle k\rangle$ and merge $\langle k\rangle$. Here are a few of the cases:

$$
\begin{array}{ll}
\text { lookup }\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inl } i_{1}\right) \text { None } & =\text { Nothing } \\
\text { lookup }\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inl } i_{1}\right)\left(\text { Onlyl } t_{1}\right) & =\text { lookup }\left\langle k_{1}\right\rangle i_{1} t_{1} \\
\text { lookup }\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inl } i_{1}\right)\left(\text { Onlyr } t_{2}\right) & =\text { Nothing } \\
\text { lookup }\left\langle k_{1}+k_{2}\right\rangle\left(\text { Inl } i_{1}\right)\left(\text { Both } t_{1} t_{2}\right) & =\text { lookup }\left\langle k_{1}\right\rangle i_{1} t_{1} \\
\text { merge }\left\langle k_{1}+k_{2}\right\rangle c\left(\text { Onlyl } t_{1}\right) \text { None } & =\text { Onlyl } t_{1} \\
\text { merge }\left\langle k_{1}+k_{2}\right\rangle c\left(\text { Onlyl } t_{1}\right)\left(\text { Onlyl } t_{1}^{\prime}\right) & =\text { Onlyl }\left(\text { merge }\left\langle k_{1}\right\rangle c t_{1} t_{1}^{\prime}\right) \\
\text { merge }\left\langle k_{1}+k_{2}\right\rangle c\left(\text { Onlyl } t_{1}\right)\left(\text { Onlyr } t_{2}^{\prime}\right) & =\text { Both } t_{1} t_{2}^{\prime} \\
\text { merge }\left\langle k_{1}+k_{2}\right\rangle c\left(\text { Onlyl } t_{1}\right)\left(\text { Both } t_{1}^{\prime} t_{2}^{\prime}\right) & =\text { Both }\left(\text { merge }\left\langle k_{1}\right\rangle c t_{1} t_{1}^{\prime}\right) t_{2}^{\prime} .
\end{array}
$$

The remaining cases are defined accordingly.

5 Sample application: Generalized tries for de Bruijn terms

As a slightly larger application, let us construct generalized tries for de Bruijn terms (de Bruijn, 1972) building upon the representation given in section 4.1. These tries may be useful for performing common subexpression elimination on lambda terms, or for implementing a memoizing interpreter for the lambda calculus. de Bruijn notation is a special encoding of lambda terms, where a bound variable is represented by a natural number, giving the number of abstractions lying between the variable and its binding abstraction. For instance, $\lambda x \rightarrow x$ is represented by $\lambda 0$ and $\lambda x \rightarrow$ $\lambda y \rightarrow x$ by $\lambda(\lambda 1)$. Recently, Bird and Paterson (1999) devised a nested implementation of de Bruijn terms, which nicely captures the 'distance invariant':

```
data Term v = Varv| App (Term v) (Term v)| Lam (Term (Incr v))
data Incr v = Zero | Succ v.
```

Closed de Bruijn terms can be represented as elements of Term Void, where Void is the empty type. For instance, $\lambda 0$ and $\lambda(\lambda 1)$ are written as Lam (Var Zero) and Lam (Lam (Var (Succ Zero))). Non-closed terms where the free variables are drawn from the type Int are given by elements of Term Int. For example, Var 0 and $\operatorname{Lam}(\operatorname{Lam}(\operatorname{Var}(\operatorname{Succ}(\operatorname{Succ} 0))))$ correspond to the lambda terms z and $\lambda x \rightarrow \lambda y \rightarrow z$, in which the variable z appears free.

Figures 3, 4 and 5 contain the complete code for generalized tries on non-closed de Bruijn terms of type Term Int. ${ }^{2}$

Some remarks are appropriate. First of all, the datatype MapT in figure 4 is based on the functor equation

$$
\text { MapT } m=m \times \cdot \operatorname{Map} T m \cdot \operatorname{Map} T m \times \bullet \text { MapT }(\text { MapI } m) .
$$

For simplicity, we interpret $a_{1} \times \cdot a_{2} \times \cdot a_{3}$ as the type of optional triples and not as nested optional pairs.

$$
\text { data } a_{1} \times \cdot a_{2} \times a_{\bullet}=\text { Spot } \mid \text { Triple } a_{1} a_{2} a_{3}
$$

All the definitions with the notable exception of the empty instances have been

[^1]```
data MapI \(m v \quad=\quad\) SpotI \(\mid\) TrieI \((\) Maybe \(v)(m v)\)
emptyI \(\quad:: \quad \forall m .(\forall v . M a p I m v)\)
emptyI \(=\) SpotI
singleI \(\quad:: \quad \forall m .(\forall v . m v) \rightarrow(\forall v . k \times v \rightarrow m v)\)
 \(\rightarrow(\forall v . \operatorname{Incr} k \times v \rightarrow\) MapI \(m v)\)
singleI es \((\) Zero,\(v) \quad=\quad\) TrieI \((\) Just \(v) e\)
singleI es \((\) Succ \(i, v) \quad=\quad\) TrieI Nothing \((s(i, v))\)
lookupI
 \(:: \quad \forall m .(\forall v . k \rightarrow m v \rightarrow\) Maybe \(v)\)
 \(\rightarrow(\forall v\). Incr \(k \rightarrow\) MapI \(m v \rightarrow\) Maybe \(v)\)
lookupI li SpotI = Nothing
lookupI l Zero (TrieI tz ts) \(=t z\)
lookupI \(l\) (Succ i)(TrieI tz ts) \(=l i t s\)
mergeI \(\quad:: \quad \forall m .(\forall v .(v \rightarrow v \rightarrow v) \rightarrow(m v \rightarrow m v \rightarrow m v))\)
 \(\rightarrow(\forall v .(v \rightarrow v \rightarrow v)\)
 \(\rightarrow(\) MapI \(m v \rightarrow\) MapI \(m v \rightarrow\) MapI \(m v))\)
mergeI \(m\) c SpotI \(t^{\prime} \quad=t^{\prime}\)
mergeI m ct SpotI \(=t\)
mergeI \(m c(\) TrieI \(t z t s)\left(\right.\) TrieI \(\left.t z^{\prime} t s^{\prime}\right)\)
 \(=\) TrieI (combine ctz tz') (m c ts ts')
```

Fig. 3. Generalized tries for variables of type Incr $v$.
mechanically derived from the generic definitions given in this and in the previous sections. The definition of emptyI has been simplified by omitting its parameter, which is not required. The same remark applies to emptyT and emptyTI.

Let us stress that the code does not conform to the Haskell 98 standard (Peyton Jones and Hughes, 1999), which neither provides explicit universal quantifiers nor rank-2 type signatures. However, both GHC 4.04 (GHC Team, 1999) and Hugs 98 (as of September 1999 (Jones and Peterson, 1999)) implement the necessary extensions (Peyton Jones, 1998). We only have to adjust the type signatures. To exemplify, the signature
lookupI $\quad:: \quad \forall m .(\forall v . k \rightarrow m v \rightarrow$ Maybe $v) \rightarrow(\forall v . I n c r ~ k \rightarrow$ MapI $m v \rightarrow$ Maybe $v)$
must be changed to

$$
\text { lookupI } \quad:: \quad(\forall v . k \rightarrow m v \rightarrow \text { Maybe } v) \rightarrow(\text { Incr } k \rightarrow \text { MapI } m w \rightarrow \text { Maybe } w) .
$$

The rewrite involves two steps: (i) use $t \rightarrow \forall v \cdot u=\forall w . t \rightarrow u[v:=w]$, where $w$ is a fresh type variable to push quantifiers to the top-level; and (ii) discard top-level quantifiers. Both steps are meaning preserving (recall that every free type variable in a signature is implicitly universally quantified).

## 6 Related and future work

Knuth (1998) attributes the idea of a trie to Thue (1912), who introduced it in a paper about strings that do not contain adjacent repeated substrings. de la Briandais (1959) recommended tries for computer searching. The generalization of tries from strings to elements built according to an arbitrary signature was discovered by Wadsworth

```
data MapT \(m v=\operatorname{Spot} T \mid \operatorname{TrieT}(m v)\)
 (MapT m (MapT m v))
 (MapT (MapI m) v)
emptyT \(\quad \because: \quad \forall m \cdot(\forall v \cdot \operatorname{Map} T m v)\)
empty \(\quad=\operatorname{Spot} T\)
single \(T \quad:: \quad \forall m .(\forall v . m v) \rightarrow(\forall v . k \times v \rightarrow m v)\)
 \(\rightarrow(\forall v\). Term \(k \times v \rightarrow\) MapT \(m v)\)
singleT e \(s(\) Var \(i, v)=\operatorname{TrieT}(s(i, v))\) emptyT emptyT
singleT es \(\left(\right.\) App \(\left.i_{1} i_{2}, v\right)=\) TrieT e (singleT es \(\left(i_{1}\right.\), singleT es \(\left.\left.\left(i_{2}, v\right)\right)\right)\) emptyT
singleT es \((\) Lam \(i, v)=\) TrieT e emptyT \((\operatorname{singleT}\) emptyI \((\operatorname{singleI}\) e \(s)(i, v))\)
lookup \(\quad:: \quad \forall m .(\forall v . k \rightarrow m v \rightarrow\) Maybe \(v)\)
 \(\rightarrow(\forall v\). Term \(k \rightarrow\) MapT \(m v \rightarrow\) Maybe \(v)\)
lookupT li SpotT \(=\) Nothing
lookupT l(Var i) (TrieT to ta tl)
\[
=l i t v
\]
lookupT l(App i \(\left.i_{1} i_{2}\right)(\) TrieT to ta tl)
 \(=\left(\right.\) lookupT l \(i_{1} \diamond\) lookupT l \(\left.i_{2}\right)\) ta
lookupT \(l\) (Lam i) (TrieT tv ta tl)
 \(=\) lookupT (lookupI l) itl
mergeT \(\quad \because \quad \forall m .(\forall v .(v \rightarrow v \rightarrow v) \rightarrow(m v \rightarrow m v \rightarrow m v))\)
 \(\rightarrow(\forall v .(v \rightarrow v \rightarrow v)\)
 \(\rightarrow(\) MapT \(m v \rightarrow\) MapT \(m v \rightarrow\) MapT \(m v))\)
mergeT \(m \mathrm{c} \operatorname{Spot} T t^{\prime}=t^{\prime}\)
mergeT m ct SpotT \(=t\)
mergeT \(m\) c (TrieT to ta tl) (TrieT tv' \(\left.t a^{\prime} t l^{\prime}\right)\)
 \(=\operatorname{TrieT}\left(m c t v t v^{\prime}\right)\)
 (mergeT \(m\) (mergeT \(m c\)) ta ta')
 (mergeT \((\) mergeI \(m\)) c tl tl')
```

Fig. 4. Generalized tries for de Bruijn terms of type Term $v$.

| type MapTI | $=$ MapT Patricia.Dict |
| :--- | :--- |
| emptyTI | $:: \forall v$. MapTI $v$ |
| emptyTI | $=$ emptyT |
| singleTI | $:: \forall v$. Term Int $\times v \rightarrow$ MapTI $v$ |
| singleTI | $=$ singleT Patricia.empty Patricia.single |
| lookupTI | $:: \forall v$. Term Int $\rightarrow$ MapTI $v \rightarrow$ Maybe $v$ |
| lookupTI | $=$ lookupT Patricia.lookup |
| insertTI | $:: \forall v .(v \rightarrow v \rightarrow v) \rightarrow$ Term Int $\times v \rightarrow($ MapTI $v \rightarrow$ MapTI $v)$ |
| insertTI $c(i, v) t$ | $=$ mergeTI $c($ singleTI $(i, v)) t$ |
| mergeTI | $:: \forall v .(v \rightarrow v \rightarrow v) \rightarrow($ MapTI $v \rightarrow$ MapTI $v \rightarrow$ MapTI $v)$ |
| mergeTI | $=$ mergeT Patricia.merge |

Fig. 5. Generalized tries for non-closed de Bruijn terms of type Term Int.
(1979) and others independently since. Connelly and Morris (1995) formalized the concept of a trie in a categorical setting: they showed that a trie is a functor, and that the corresponding look-up function is a natural transformation. Interestingly, despite the framework of category theory they base the development on many-sorted signatures, which makes the definitions somewhat unwieldy. This paper shows that the construction of generalized tries is much simpler if we replace the concept of a many-sorted signature by its categorical counterpart, the concept of a functor.

The first implementation of generalized tries was given by Okasaki (1998) in his recent textbook on functional data structures. Tries for parameterized types like lists or binary trees are represented as Standard ML functors. While this approach works for regular datatypes, it fails for nested datatypes such as Perfect or Term. In the latter case, datatypes of the second-order kind are indispensable.

That said, a direction for future work suggests itself, namely to generalize tries to arbitrary higher-order kinded datatypes. To give an impression of the extensions consider the standard definition of rose trees:

$$
\text { data Rose } k=\text { Branch } k(\text { List }(\text { Rose } k)) \text {. }
$$

Its trie is given by

```
data MapR mk v= TrieR (mk (MapL (MapR mk)v)).
```

Now, abstracting the list functor away we obtain the following generalization of rose trees:

$$
\text { data GRose } t k=\text { GBranch } k(t(\text { GRose } t k)) \text {. }
$$

The trie of Rose can be generalized in a similar way:

$$
\text { data MapGR mt } m k v=\operatorname{TrieGR}(m k(m t(\operatorname{MapGR} m t m k) v)) .
$$

Note that GRose is a type constructor of kind $(* \rightarrow *) \rightarrow(* \rightarrow *)$, while its trie has kind $((* \rightarrow *) \rightarrow(* \rightarrow *)) \rightarrow((* \rightarrow *) \rightarrow(* \rightarrow *))$. Now, the same systematics can be applied to generalize the operations on $\operatorname{MapR}$ to operations on MapGR. Currently, the author is working on a suitable extension of the framework that makes it possible to define polytypic values generically for all datatypes expressible in Haskell 98.

## Acknowledgements

Thanks are due to Chris Okasaki for his helpful comments on an earlier draft of this paper. Suggestions by Patrik Jansson, Colin Runciman, Phil Wadler and three anonymous referees were very valuable and greatly improved the quality of the paper.

## References

Bird, R. (1998) Introduction to Functional Programming using Haskell. 2nd ed. Prentice Hall.
Bird, R. and Meertens, L. (1998) Nested datatypes. In: Jeuring, J. (editor), Fourth International Conference on Mathematics of Program Construction (MPC'98), pp. 52-67. Marstrand, Sweden. Lecture Notes in Computer Science 1422. Springer-Verlag.

Bird, R. and Paterson, R. (1999) de Bruijn notation as a nested datatype. J. Functional Programming, 9(1), 77-91.
Connelly, R. H. and Morris, F. L. (1995) A generalization of the trie data structure. Mathematical Structures in Comput. Sci. 5(3), 381-418.
Courcelle, B. (1983) Fundamental properties of infinite trees. Theor. Comput. Sci., 25(2), 95-169.
de Bruijn, N. G. (1972) A lambda calculus notation with nameless dummies: A tool for automatic formula manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae, 34, 381-392.
de la Briandais, R. (1959) File searching using variable length keys. Proc. Western Joint Computer Conference, 15, pp. 295-298. AFIPS Press.
GHC Team (1999) The Glasgow Haskell Compiler User's Guide, Version 4.04. Available from http://www.haskell.org/ghc/documentation.html.
Henglein, F. (1993) Type inference with polymorphic recursion. ACM Trans. Programming Languages and Systems, 15(2), 253-289.
Hinze, R. (1999a) Functional Pearl: Perfect trees and bit-reversal permutations. J. Functional Programming, 10(3) 305-317.
Hinze, R. (1999b) Polytypic programming with ease (extended abstract). 4th Fuji International Symposium on Functional and Logic Programming (FLOPS'99), pp. 21-36. Tsukuba, Japan. Lecture Notes in Computer Science 1722. Springer-Verlag.

Jansson, P. and Jeuring, J. (1997) PolyP-a polytypic programming language extension. Conference Record 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL'97, pp. 470-482. Paris, France. ACM-Press.
Jansson, P. and Jeuring, J. (1999) Polytypic compact printing and parsing. In: Swierstra, S. D. (editor), Proceedings European Symposium on Programming, ESOP'99. Lecture Notes in Computer Science 1576. Springer-Verlag.
Jeuring, J. and Jansson, P. (1996) Polytypic programming. In: Launchbury, J., Meijer, E. and Sheard, T. (editors), Tutorial Text 2nd International School on Advanced Functional Programming, pp. 68-114. Olympia, WA. Lecture Notes in Computer Science 1129. SpringerVerlag.
Jones, M. P. (1995) Functional programming with overloading and higher-order polymorphism. First International Spring School on Advanced Functional Programming Techniques, pp. 97-136. Lecture Notes in Computer Science 925. Springer-Verlag.
Jones, M. P. and Peterson, J. C. (1999) Hugs 98 user manual. Available from http://www.haskell.org/hugs.
Knuth, D. E. (1998) The Art of Computer Programming, Volume 3: Sorting and Searching. 2nd ed. Addison-Wesley.
McCracken, N. J. (1984) The typechecking of programs with implicit type structure. In: Kahn, G., MacQueen, D. B. and Plotkin, G. D. (editors), Semantics of Data Types: International symposium, , pp. 301-315. Sophia-Antipolis, France. Lecture Notes in Computer Science 173. Springer-Verlag.
Mycroft, A. (1984) Polymorphic type schemes and recursive definitions. In: Paul, M. and Robinet, B. (editors), Proceedings of the International Symposium on Programming, 6th Colloquium, pp. 217-228, Toulouse, France. Lecture Notes in Computer Science 167. Springer-Verlag.
Okasaki, C. (1998) Purely Functional Data Structures. Cambridge University Press.
Okasaki, C. and Gill, A. (1998) Fast mergeable integer maps. The 1998 ACM SIGPLAN Workshop on ML, pp. 77-86. Baltimore, MD.

Peyton Jones, S. (1998) Explicit quantification in Haskell. Available from http://research.microsoft.com/Users/simonpj/Haskell/quantification.html.
Peyton Jones, S. and Hughes, J. (editors) (1999) Haskell $98-A$ non-strict, purely functional language. Available from http://www.haskell.org/definition/.
Thue, A. (1912) Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Skrifter udgivne af Videnskaps-Selskabet i Christiania, Mathematisk-Naturvidenskabelig Klasse, 1. Reprinted in Thue's "Selected Mathematical Papers", pp. 413-477 (Oslo: Universitetsforlaget, 1977).
Wadsworth, C. P. (1979) Recursive type operators which are more than type schemes. Bulletin of the EATCS, 8, 87-88.


[^0]:    ${ }^{1}$ Note that Miranda (trademark of Research Software Ltd), Standard ML and previous versions of Haskell (1.2 and before) only have first-order kinded datatypes.

[^1]:    ${ }^{2}$ The source code is available from the Journal of Functional Programming Internet home page (http://www.dcs.gla.ac.uk/jfp/online/jfpvol10.4/hinze/index.html).

