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Abstract
Statistical learning—the skill to pick up probability-based regularities of the environment—plays a crucial
role in adapting to the environment and learning perceptual, motor, and language skills in healthy and
clinical populations. Here, we developed a new method to measure statistical learning without any manual
responses.We used the Alternating Serial Reaction Time (ASRT) task, adapted to eye-tracker, which, besides
measuring reaction times (RTs), enabled us to track learning-dependent anticipatory eye movements. We
found robust, interference-resistant learning on RT; moreover, learning-dependent anticipatory eye move-
ments were even more sensitive measures of statistical learning on this task. Our method provides a way to
apply the widely used ASRT task to operationalize statistical learning in clinical populations where the use of
manual tasks is hindered, such as in Parkinson’s disease. Furthermore, it also enables future basic research to
use a more sensitive version of this task to measure predictive processing.
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Introduction

Developing perceptual and motor skills through extensive practice, that is, procedural learning is key
to adapting to complex environmental stimuli (Simor et al., 2019). It underlies several everyday
behaviors and habits, such as language, social, and musical skills (Lieberman, 2000; Romano
Bergstrom et al., 2012; Ullman, 2016). Procedural learning, among other cognitive mechanisms,
requires recognizing and picking up probability-based regularities of the environment—a mechan-
ism referred to as statistical learning (Armstrong et al., 2017; Saffran et al., 1996; Turk-Browne et al.,
2009). Although it has been widely researched for decades (Frost et al., 2019), measuring statistical
learning still faces difficulties. First, statistical learning tasks often requiremanual responses (see, e.g.,
Howard & Howard, 1997; Nissen & Bullemer, 1987; Schlichting et al., 2017), which adds noise to the
measurement (Vakil et al., 2017); moreover, manual responses are infeasible with special target
groups like infants or Parkinson’s disease patients (Koch et al., 2020; Vakil et al., 2021b). Second,
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some of the widely used tasks do not allow to separate different mechanisms that contribute to
procedural learning; thus, the measured performance does not solely reflect statistical learning
(Nemethet al., 2013). A task that separates different aspects of procedural learning can contribute
tomore replicable and reliable findings. In this study, we aimed to develop the eye-tracking version of
the widely used Alternating Serial Reaction Time (ASRT) task. Our version can overcome the above-
mentioned difficulties: it minimizes required motor responses and can measure statistical learning
separately from other mechanisms.

Using eye-tracking extends the potential scope of statistical learning research by providing
information that mere manual reaction times (RTs) cannot. Tracking oculomotor responses enables
us to catch predictive processing involved in statistical learning (Friston, 2009) by measuring
anticipatory eye movements. This way, we also can reveal the processes underlying participants’
mistakes (Tal & Vakil, 2020; Vakil et al., 2021b). Moreover, in tasks requiring manual responses,
learning involves inseparably both perceptual and motor components (Deroost & Soetens, 2006),
since participants typically both fixate on the appearing stimuli and press a corresponding button at
the same time (Howard & Howard, 1997). We can gain a closer insight into the ongoing perceptual/
cognitive processes by minimizing the motor component of the learning: by using an oculomotor
version.

Studies on procedural learning commonly use forced-choice RT tasks, such as the Serial Reaction
Time (SRT) task (Nissen & Bullemer, 1987) or the ASRT task (Howard & Howard, 1997). In both,
target stimuli appear serially in one of the possible (usually four) locations, and participants are asked
to press the key corresponding to the location of the target as fast as possible. Unknown to the
participants, the order of the stimuli is not random but follows a specific structure. Both tasks can
separate knowledge specific to this structure from a more general stimulus–response (S-R) mapping,
indicated by faster responses regardless of the underlying structure of the task, henceforth referred to
as general skill learning (Csabi et al., 2014; Vakil et al., 2017). The most significant difference between
the SRT and ASRT tasks, however, lies in the transitional probabilities between consecutive elements.
In the SRT task, appearing stimuli follow a predetermined order, that is, the transitional probability of
consecutive elements is one. In the ASRT task, however, random elements alternate with pattern
elements, that is, every second stimulus is random (Howard & Howard, 1997; Nemeth et al., 2013).
Due to this alternation, the transitional probability of consecutive elements is necessarily less
than one.

This alternating structure of the ASRT task results in three important benefits. First, the underlying
structure is more difficult to extract in the ASRT than in the SRT task, thus, participants hardly ever gain
explicit knowledge (Janacsek et al., 2012; Nemeth et al., 2013; Song et al., 2007; Vékony et al., 2021). This
limits the possible learning mechanisms involved in the performance, resulting in a clearer, process-level
measurement (see Farkas et al., 2021). Second, tracking the temporal dynamics of the learning process is
unfeasible in the SRT task, as its pattern and random elements occur in separate blocks. In contrast, the
alternation of random and pattern elements in the ASRT task enables us to measure the learning process
continuously (Song et al., 2007). Third, and most importantly, while the measured learning on the SRT
task does not solely depend on learning probability-based regularities, in the ASRT task, we can extract
learning scores that reflect a purer measurement of statistical learning (Nemeth et al., 2013). These
benefits merged with the advantages of using eye-tracking motivated us to develop an oculomotor
version of the ASRT task.

Many previous studies have used the oculomotor version of the SRT task (Albouy et al., 2006; Bloch
et al., 2020; Kinder et al., 2008; Koch et al., 2020; Lum, 2020; Tal et al., 2021; Tal &Vakil, 2020; Vakil et al.,
2017; Vakil et al., 2021a), but to our knowledge, no study to date has developed the eye-tracking version of
the ASRT task. Moreover, many of the above-mentioned eye-tracking-SRT studies have used a version
where participants made both eyemovements andmanual responses (Lum, 2020;Marcus et al., 2006; Tal
et al., 2021; Tal &Vakil, 2020). Despite its benefits, no study to date has used an oculomotor version of the
ASRT task. To fill this gap, we adapted the ASRT task to eye-tracking, using the oculomotor version that
requires no manual responses.
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Objective

We intended to develop a version of the ASRT task that (a) adequately measures statistical learning and
general skill learning using oculomotor RT/learning-dependent anticipatory eye movements and
(b) provides a robust and purer measurement of statistical learning than previous tasks.

Methods
Participants

Thirty-eight healthy young adults participated in our study. Due to the failure of the eye-tracker
calibration, four participants were excluded; thus, we used the data of 34 participants (Mage¼ 22.06 years,
SD¼ 3.61 years, 29 females). Further, 10 participants were excluded from the analyses due to the outlier
filtering for eye-tracking data quality (see Supplementary Materials Methods). Thus, our
sample consisted of 24 participants (Mage ¼ 22.79 years, SDage ¼ 4.02 years, Meducation ¼ 14.83 years,
SDeducation ¼ 1.24 years, 20 females). Every participant provided informed consent to the procedure as
approved by the research ethics committee of Eötvös Loránd University, Budapest, Hungary, and
received course credits for their participation. The authors assert that all procedures contributing to
this work comply with the ethical standards of the relevant national and institutional committees on
human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

Task and procedure

Wemodified the ASRT task (Howard & Howard, 1997) to measure statistical learning. Participants saw
four empty circles—one in each corner of a 1,920� 1,080 resolution screen, arranged in a square shape.
One of them turned blue sequentially, indicating the activation of the stimulus. Participants were
instructed to look at the active stimulus as fast as possible. After they fixated on it, the next stimulus
appearedwith a response–stimulus interval (RSI) of 500ms. The stimulus presentation is described in the
Supplementary Materials Methods.

Unbeknownst to the participants, the stimuli followed a predefined, alternating sequence. In this
sequence, each first element belonged to a predetermined pattern (i.e., they always appeared in the same
location), and each second appeared randomly in any of the four placeholders (e.g., 2-r-4-r-1-r-3-r,
where numbers indicate one of the four circles on the screen, and “r” letters indicate a randomly selected
circle out of the four). Because of this alternating structure, there were some chunks of three consecutive
elements (triplets) that occurred with a higher probability. In the example provided above, 2-x-4, 4-x-1,
1-x-3, and 3-x-2 are high-probability triplets, because their last element can be both a pattern (when the
“x” marks a random element) and a random element, occurring occasionally (where the “x” marks a
pattern element). In contrast, the rest of the triplets occurred with lower probability: in the above
example, for example, 2x1 or 4x3 were low-probability triplets, since they cannot be formed by the
pattern. Due to this structure, high-probability triplets occurred with 62.5%, while low-probability
triplets with 37.5% probability (for more details on the ASRT sequence structure, see Supplementary
Materials Methods). Thus, the last elements of the high-probability triplets are more predictable than
those of the low-probability triplets. Statistical learning is the performance difference on the last elements
of high- and low-probability triplets: participants had learned the underlying statistical structure if they
were faster and show more learning-dependent anticipations on the last elements of high-probability
triplets than those of low-probability ones (see Figure 1).

The task was presented in blocks, each block contained 82 stimuli. Each block started with two
random elements. Then an eight-element sequence was repeated 10 times. To avoid noise due to intra-
individual variability, we merged five blocks into one unit of analysis called epoch. Furthermore, the task
was divided into a Learning and a Testing phase, with a 15-min break between them. Before both phases,
we calibrated the eye-tracker and tested the calibration using 20 random trials (see Supplementary
Materials Methods for details). The Learning phase consisted of five epochs. In the first epoch, stimuli
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were generated randomly, by a uniform distribution. In the following four epochs, stimuli were generated
based on one specific, randomly assigned 8-element sequence (henceforth referred to as original
sequence [OS]), as defined above. The Testing phase consisted of three additional epochs (see
Figure 1). Furthermore, we used a questionnaire and the Inclusion–Exclusion task (Destrebecqz &
Cleeremans, 2001; Horváth et al., 2020; Jacoby, 1991) to access the level of explicit knowledge, see in the
Supplementary Materials Methods.

In the Testing phase, we used the OS in the sixth and eighth epochs. However, in the seventh epoch,
unknown to the participants, we used a different, previously unpracticed sequence to measure interfer-
ence (interference sequence [IS]). The IS partially overlapped with the OS: two of the four pattern
elements remained the same. For example, if the OS was 2-r-4-r-1-r-3-r, the IS could be 2-r-4-r-3-r-1-r,
where the locations 2 and 4 remained unchanged, but the rest of the pattern differed. Consequently, four
of the originally high-probability triplets remained high probability in the IS (“high-high” triplets: HH; in
the example, 2-x-4 triplets). Twelve of the triplets that were high probability in the OS turned into low
probability (“high-low”: HL; 4-x-1-, 1-x-3, and 3-x-2 in the example). Of the 48 originally low-probability
triplets, 12 became high probability (“low-high”: LH; 4-x-3, 3-x-1, and 1-x-2 in the example) and
36 remained low probability in both sequences (“low-low”: LL, e.g., 2-x-3 in the example). See
Figure 1 for examples.

Eye-tracking

Eye-tracker device
We used a Tobii Pro X3-120 eye-tracker to register the gaze positions (Tobii, 2017) at a sampling rate of
120 Hz. Its required subject-screen distance was 50–90 cm, optimally 65 cm. This distance in our study
wasM¼ 65.36 cm, SD¼ 4.15 cm.We used this ~65 cm to convert cm units to degrees of visual angle; all

Figure 1. The task and design. (a) The active stimulus appeared in one of the four locations. Pattern and random stimuli
alternated. (b) Examples for the original sequence (OS) and the interference sequence (IS). High-probability (High-prob.)
triplets can be built up by two pattern (P) elements and one random (r), or by two random and one pattern element. Low-
probability (Low-prob.) triplets can only be formed occasionally, by two random, and one pattern elements; thus, they occur
less frequently. The OS and the IS partially overlapped: some triplets were high probability in both (HH), high in the OS, but
low in the IS (H-L), low in the OS, but high in the IS (LH), and ones that were low in both (LL). (c) Study design. The first block
consisted of randomized trials, then in the 2-5th epochs, participants practiced the OS. After a break of 15min, they practiced
the OS in the 6th epoch, then the previously unseen IS (seventh epoch), and in the eighth epoch, the OS returned.
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the angles reported are visual angles based on this measure. Under ideal conditions, the binocular
accuracy of the device is ~0.4° and the precision value is 0.24°. Under nonideal conditions, the accuracy
can vary between 0.4 and 1.0° and the precision can be ~0.23–0.52° (Tobii, 2017).

Software
To record eye-tracking data, we used the Tobii Pro Python SDK (Tobii Pro, 2020), integrated into a
Psychopy-based experiment script (Psychopy version: 3.2.3, Peirce et al., 2019). The current oculomotor
version is amodification of a previous, motor implementation of theASRT task (Szegedi-Hallgató, 2019).
The script used in this study is available on GitHub (Project ET Zero Developers, 2021).

Gaze position estimation
We used the Tobii Pro Python SDK to obtain the recorded gaze data from the eye-tracker. This SDK
returned the left and right eye data separately. We used a hybrid eye selection method, similar to Tobii’s
“average” eye selection option (see Olsen, 2012), but optimized for minimizing the missing data: when
data were available, we used the average of the position of both eyes, and the data of a single eye position
when the other eye position was unavailable. When the position data were invalid for both eyes, we
marked the sample as missing. We controlled for participants with accommodation issues by checking
the registered eye-to-eye distances during fixations and excluded subjects with large differences between
the gaze positions of the left and right eyes.

Fixation identification

Algorithm
Fixation identification was used only for calculating RTs, but not anticipatory eye movements (see later).
We defined RT as the time interval between the appearance of a new stimulus and the start of the fixation
on it. Responses were defined as valid if this fixation lasted 100ms. To identify these fixations, we used the
dispersion threshold identification algorithm, because this method is recommended for low-speed eye-
tracking (<200 Hz, see SMI, 2017). We used the online version of this method, that is, we had a sliding
window including the last recorded eye positions of the subject. We calculated the dispersion of the gaze
direction, and the center of the fixation for each of these windows separately. To find whether fixation
happened in the given window, the algorithm used two parameters: the dispersion threshold (DT) and
the duration threshold (DuT). The main parameter was the maximum size of the area on the screen
where the gaze direction can disperse within one fixation (i.e., the DT). We calculated the dispersion
value (D) based on Salvucci and Goldberg (2000), see SupplementaryMaterialsMethods for the formula.
Fixations could be registered if the dispersion value was less than the DT. The second parameter was the
minimum time interval indicating fixation, that is, the DuT—this equaled the size of the sliding window
mentioned above (100 ms). We allowed inaccuracy in the eye positions using our third parameter, the
size of the area of interest (AOI):We added square-shaped AOIs around all four stimuli placeholders (see
Figure 2). Within each sliding window, we calculated the D, and if it was less than the DT, we identified a
fixation. To determinewhether the participant was looking at the active stimulus, we calculated the center
of the fixation, and if it fell within the AOI, the response was registered, the active stimulus disappeared,
and the next trial started.

In addition, to fill the gaps of successive invalid data returned by the eye-tracker, we used linear
interpolation included in the Tobii I-VT filter (see Olsen, 2012), which is based on the closest valid
neighbors in both directions. The twomain parameters of the interpolation are the maximum gap length
(i.e., themaximum length ofmissing data that we still interpolate) and themaximum ratio of interpolated
and registered data. Our parameters are shown in Table 1, and parameter selection is described in the
Supplementary Materials Methods.
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Learning-dependent anticipation

Eye movements during the RSI were also recorded. It enabled us to record whether participants moved
their eyes toward a placeholder after the active stimulus disappeared. Unlike some previous studies (e.g.,
Bloch et al., 2020; Lum, 2020; Tal et al., 2021; Tal & Vakil, 2020; Vakil et al., 2017; Vakil et al., 2021a), we
did not define anticipatory eyemovements as fixations but rather as the last valid gaze position before the
new stimulus appeared. Using this definition, we were able to identify anticipations shorter than the
minimum length of fixations (100 ms, see above), and using the last, rather than the first gaze position
enabled us to avoid carryover from the previous stimulus (as suggested in Tal et al., 2021). Anticipating
elements that correspond to high-probability triplets rather than to low-probability triplets (i.e., a high
ratio of learning-dependent anticipations) means that the participants have acquired the statistical
structure. Importantly, due to the statistical nature of the task, learning-dependent anticipations do
not always mean accurate predictions, unlike in the eye-tracking SRT task with deterministic sequences
(Vakil et al., 2021a; 2021b).

Figure 2. AOIs used for (a) fixation identification and (b) anticipatory eye-movement calculation.

Table 1. Parameters of the algorithm used in fixation identification

Parameter Value

DT 2.8 cm (~2.5°)

DuT 100 ms

AOI size 4 � 4 cm squares around the
stimuli

Maximum gap length
(maximum percentage of interpolated data)

33.33 ms
(33%)
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We calculated the learning-dependent anticipation ratio by (a) identifying all anticipatory eye
movements, (b) determining whether a given anticipatory eye movement was learning-dependent
anticipation, and (c) calculating the ratio of learning-dependent anticipations compared to all anticipa-
tions. Since anticipatory eye movements were defined as occasions where the participant’s gaze moved
away from the previous stimulus during the RSI, we divided the screen into four equal regions by the
center lines. These four fields, each containing one of the possible placeholders, were the AOIs of
the anticipatory eye movement calculation (see Figure 2). If the last detectable gaze did not fall within
the AOI of the previous stimulus, the event was marked as anticipatory eye movement. If the location
of the last gaze corresponded to a high-probability triplet (i.e., the participant’s eye settled in the AOI of a
high-probability stimulus), we labeled it as learning-dependent anticipation. The ratio of the learning-
dependent anticipations compared to all anticipations indicated statistical learning.

Participants showed anticipatory eye movements in 18.91% of all trials in our task overall. In 7.4% of
all trials (i.e., 39.15% of the anticipatory eye movements), the anticipation corresponded to high-
probability triplets; thus, they were learning-dependent anticipations. These ratios are much lower than
those reported in SRT studies, where typically, most trials are anticipated (e.g., Vakil et al., 2021a). This
might be because of the probabilistic nature of the ASRT task. Moreover, our participants might have
changed their gaze direction less frequently than in previous studies with the SRT task, because
repetitions can occur in the ASRT task—which cannot possibly happen in the deterministic SRT task.
For the ratio of all anticipatory, and learning-dependent anticipatory eye movements separately in each
epoch, see Figure 4 Panel a.

Statistical analysis

Statistical analyses were carried out using JASP 0.14.1 (JASP Team, 2017). First, we excluded trills (e.g.,
2-1-2) and repetitions (e.g., 2-2). Participants show a preexisting tendency to react faster to these
elements; thus, they can bias the RTs (Howard et al., 2004). Each element was categorized in a sliding
window manner as the last element of a high- or a low-probability triplet (i.e., a given trial was the last
element of a triplet, but it was also the middle and the first element of the two consecutive triplets,

Figure 3. RTs are presented as a function of high-probability (blue line with triangle symbols) and low-probability (orange line
with square symbol) triplets throughout the epochs of the Learning phase (1–5) and the Testing phase (6–8). Note that stimuli
were presented randomly in the first epoch, and participants performed on an IS in the seventh epoch, instead of the OS used
in the rest of the epochs (2–4th, sixth and eighth epochs). The difference between high- and low-probability triplets represents
statistical learning. In the Learning phase, the difference between triplet types reached significance in the fourth and
remained significant in the fifth epoch. In the Testing phase, the seventh, interference epoch has a temporal negative effect
on the RT differences, but when the OS was presented (sixth and eighth epoch), the learning was significant again. Error bars
represent the SEM.

Experimental Results 7

https://doi.org/10.1017/exp.2022.8 Published online by Cambridge University Press

https://doi.org/10.1017/exp.2022.8


respectively), and we calculated for them separately and epoch-wise the (a) median RTs and (b) the ratio
of learning-dependent anticipatory eye movements compared to all anticipatory eye movements.

We performed repeated-measures analyses of variance (ANOVAs) for the Learning and Testing
phases. To evaluate the effect of epoch and trial type, we used post-hoc comparisons with Bonferroni
correction. Greenhouse–Geisser epsilon (ε) correction was used if necessary. We calculated partial eta
squared to measure effect sizes. The effect of the interference was further investigated by paired-samples
t-tests orWilcoxon tests (depending on whether the sample was normally distributed) comparing the RT
of “HL” versus “LL” triplets and “LL” versus “LH” triplets in the interference (seventh) epoch. To show
whether the data support the null hypothesis (H0), we additionally performed Bayesian paired-samples
t-tests to calculate Bayes Factors (BF10) for relevant comparisons. BF10 between 1 and 3 means anecdotal
evidence for H1, and values between 3 and 10 indicate substantial evidence for H1. Conversely, values
between 0.33 and 1 indicate anecdotal evidence for H0, and values between 0.1 and 0.33 indicate

Figure 4. (A) The ratio of all anticipatory eye movements (green line) and learning-dependent anticipatory eye movements
(black line) compared to all trials, epochwise. Error bars represent the SEM. (B) Percentage of learning-dependent anticipa-
tion (solid line) compared to the chance level (dashed line) during the ASRT task. The first, randomized epoch shows the
smallest value. In the Learning phase, anticipatory eye movements of the sequential epochs (2–5th) are determined by the
original sequence to a higher extent than in the first (random) epoch. The interference epoch leads to a temporal decrease in
the learning-dependent anticipation ratio. Error bars represent the SEM.
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substantial evidence for H0. Values around one do not support either hypothesis. The analysis of the
Inclusion–Exclusion task is described in the Supplementary Materials Methods section.

Results

None of the participants reported explicit knowledge of the sequential structure of the ASRT task, for
further details and the analysis of the Inclusion–Exclusion task, see Supplementary Materials Results. All
data used in this article are available, see Zolnai et al. (2021). Before the analysis described here, we filtered
the eye-tracking data for outliers on data quality measures, see Supplementary Materials Methods
section.We additionally performed every analysis without filtering, see Supplementary Tables S1 and S2.

Reaction time

Do the RTs show the effect of statistical learning?
We tested the progress of learning in the Learning phase (first five epochs) using a repeated-measures
ANOVA on the RTs with the within-subject factors of TRIPLET (high versus low probability) and
EPOCH (1–5). Note that we did not expect any learning in the first epoch, where participants were
exposed to randomized stimuli; thus, they could not possibly acquire any statistical information. This
epoch serves as a reference point showing the performance before learning.

The ANOVA showed a significant main effect of TRIPLET [F(1, 23) ¼ 11.59, p ¼ .002, η2p ¼ .33].
Participants reacted slower to the low-probability triplets compared to high-probability triplets across
the first five epochs, which shows that subjects learned the statistical differences between the displayed
triplets. The EPOCH main effect was nonsignificant, [F(2.20, 50.68) ¼ 3.01, p ¼ .054, η2p ¼ .12]; the
gradual increasing of the RTs did not reach significance, indicating a lack of general skill learning. It is
contradictory to the classic motor ASRT task, where the RT usually significantly decreases. The RT
difference between high- and low-probability triplets changed throughout the task, that is, statistical
learning was improving, as indicated by a significant TRIPLET � EPOCH interaction [F(4, 92) ¼ 5.25,
p < .001, η2p ¼ .19]. As expected, the post-hoc test revealed no learning in the first, randomized epoch
(pBonf > 0.99). The difference between the triplet types did not reach significance in the 2–3rd epochs
either (pBonf≥ .568), but it did in the 4–5th epochs (pBonf≤ .016), meaning that significant learning could
be shown from the 4th epoch on. For means and SEM, see Figure 3; for further details of the analysis, see
Supplementary Table S1.

How does the IS affect statistical learning of the OS?
To test whether the knowledge acquired during the Learning phase was resistant to interference, we ran a
repeated-measures ANOVA on RTs of the Testing phase, with TRIPLET (high/low probability) and
EPOCH (6–8) as within-subject factors. The ANOVA showed a significant main effect of TRIPLET
[F(1, 23) ¼ 22.31, p < .001, η2p ¼ .49]: the RT was higher for low-probability triplets compared to high-
probability triplets regardless of the epochs, in which difference mainly comes from the sixth and eighth
epochs of the Testing phase, where we used the OS.

The EPOCHmain effect was significant [F(1.60, 36.91)¼ 6.01, p¼ .009, η2p¼ .21]: the RT was faster
in the sixth epoch than in the later epochs (pBonf ≤ .016), indicating a slowdown as the task progressed.
The TRIPLET� EPOCH interaction reached significance [F(1.39, 31.93)¼ 5.80, p¼ .014, η2p¼ .20]: the
post-hoc comparisons revealed that the RT difference between the low-probability and high-probability
triplets remained significant in the sixth and the eighth epochs when participants were exposed to the OS
(pBonf ≤ .033) but was not significant in the seventh (interference) epoch (pBonf > 0.99), which indicates
that participants maintained their statistical learning performance despite being exposed to an IS (see
Figure 3). For further details of the analysis, see Supplementary Table S1.
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How do the OS and the IS interact inside the interference epoch?
To further investigate the effect of the IS, we compared RT within the interference epoch on different
types of triplets (LL, HL, and LH as described in the Methods section). We found a significant difference
between LL (M ¼ 348.76, SD ¼ 29.68) and HL (M ¼ 339.99, SD ¼ 25.44) triplet types [t(23) ¼ �2.80,
p ¼ .010, d ¼ �0.57, BF10 ¼ 4.75], meaning that participants reacted faster on triplets that were high
probability only in theOS compared to the ones that were low probability in both sequences, which shows
that despite the interference, the acquired statistical structure of the OS still affected the RT. We also
found significant difference between LL and LH (M ¼ 335.64, SD ¼ 19.03) triplet types [Z ¼ 252.00,
p¼ .003, rrb¼ .68, BF10¼ 28.32], participants reacted to triplets that were high probability only in the IS
compared to triplets that were low probability in both sequences. It indicates that the participants also
learned the statistical structure of the IS. In summary, both sequences influenced the subject’s behavior
during the interference epoch; thus, while the subjects learned the IS, they still remembered the OS.

Learning-dependent anticipatory eye movements

Does the learning-dependent anticipatory eye movement ratio show the effect of learning?
We tested the process of learning in the Learning phase by comparing the learning-dependent antici-
pation ratio in the different epochs, see Figure 4 Panel b. We used repeated-measures ANOVA for
learning-dependent anticipation ratio with EPOCH as a within-subject factor. It revealed that the
learning-dependent anticipations were more frequent in the later epochs, indicated by the significant
EPOCH main effect [F(4, 92) ¼ 14.76, p < .001, η2p ¼ .39]. The post-hoc comparisons showed that
learning-dependent anticipations show a faster learning curve than the RT data—participants make a
significantly higher ratio of learning-dependent anticipatory eye movements after being exposed to a
single epoch of the OS than in the first (randomized) epoch (pBonf < .001). However, learning did not
develop further in the later epochs, as indicated by the lack of significance when comparing the 2–5th
epochs (pBonf ≥ .098 in each comparison), meaning that learning plateaued in the second epoch (i.e., the
first sequential epoch). For further details of the analysis, see Supplementary Table S2.

How does the interference epoch affect the learning-dependent anticipation ratio?
We tested the effect of the interference on the learning-dependent anticipation using a repeated-
measures ANOVA on the learning-dependent anticipation ratio with EPOCH as a within-subject factor,
which again showed a significant main effect [F(2, 46) ¼ 14.47, p < .001, η2p ¼ .39]. The post-hoc
comparison showed a decreased learning-dependent anticipation ratio from the sixth epoch to the
seventh (interference) epoch (pBonf < .001) and increased from the seventh to the eighth epoch
(pBonf ¼ .004)—participants anticipated high-probability triplets in the OS in a higher ratio than in
the IS. There was no significant difference between the sixth and the eighth epochs (pBonf ¼ .202),
meaning that the interference did not significantly disrupt the learning-dependent anticipations of the
OS (see Figure 4 Panel b).

Discussion

In our study, we aimed to develop the eye-tracking version of a statistical learning task (the ASRT task).
We have shown that oculomotor RTs reflect robust, interference-resistant statistical learning, without
any manual responses required. Moreover, we found that learning-dependent anticipatory eye move-
ments indicated learning sooner than the RTs; thus, they might serve as a more sensitive index of the
learning process. On the other hand, we found no general skill learning. For discussion of the Inclusion–
Exclusion task, see Supplementary Materials Discussion.

Previous eye-tracking studies using the SRT task have also found that oculomotor RTs reflected
learning (Albouy et al., 2006; Koch et al., 2020; Marcus et al., 2006; Vakil et al., 2017), which remained
intact even after exposure to interference (Kinder et al., 2008; Vakil et al., 2021a). Our method, however,
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allows us to track the temporal dynamics of learning, unlike the oculomotor SRT task. This enabled us to
show that participants also acquired the IS to some extent. Besides its methodological advantages, this
result has theoretical importance: earlier studies claimed that if the performance does not return to
baseline in the interference stage, it is due to a general skill learning (Vakil et al., 2017). Our study suggests
that to a small extent, statistical learning of the IS can contribute to performance above baseline. Thus,
our task provides a sensitive, nonmanual alternative to measure the dynamics of statistical learning.

Learning-dependent anticipatory eye movements indicated that participants predicted high-
probability stimulus combinations more often than low-frequency combinations. Similar results were
found on the SRT task (Vakil et al., 2017; Vakil et al., 2021a). Importantly, however, learning-dependent
anticipatory eye movements appeared after as few as ~5 min of practice while learning on the RTs
occurred only after ~15 min. These results imply that learning-dependent anticipations indicate robust
learning as well as the RT; moreover, they might be an even more sensitive measure of implicit statistical
learning. Interestingly, in contrast with previous oculomotor SRT (Kinder et al., 2008; Vakil et al., 2021a)
or manual ASRT studies (Howard & Howard, 1997), we found that average RTs did not decrease
throughout the training, that is, we could not show general skill learning. We can speculate that this was
due to a fatigue effect, considering our relatively long task. Alternatively, it can be due to the probability-
based structure of our task: participants are likely to expect high-probability stimulus combinations even
when low-probability ones occur (compare our results on learning-dependent anticipatory eye move-
ments), which can result in a slowdown of the RTs. Another possibility is that general skill learning shown
in previous studies is related to motor responses. A methodological explanation is that time passed since
the last calibration drove the increase in the RTs; thus, for future studies, more frequent re-calibrations
are advisable.

Conclusion

Our study is the first to demonstrate that statistical learning can be tracked and measured using an
oculomotor version of the ASRT task. This version of the task is useful in both basic and clinical research.
It allows us to minimize the motor component of the learning process; moreover, tracking anticipatory
eye movements allow us insight into predictive processes. The smaller number of motion artifacts is also
useful when using the paradigm combinedwith imaging techniques, such asmagnetic resonance imaging
and magnetoencephalography. Furthermore, our task enables the usage of the ASRT task on special
target groups such as infants, or individuals with basal ganglia disorders (e.g., Parkinson’s disease,
Huntington’s disease) or with cerebellum disorders (e.g., ataxia). To conclude, our study contributes to
the field of implicit statistical learning by opening the possibility to apply the widely used ASRT task
without manual responses required and gaining a highly fine-grained measure of the learning process.
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* Statistics need proofing (e.g. Z reported instead of t statistic; degrees of freedom 28 instead of 33).
* Text needs proofing (e.g. “LS” used instead of “OS”; “learned” and “anticipatory” eye movements

used interchangeably).
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