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Abstract
Political scientists commonly focus on quantities of interest computed from model coefficients rather than

on the coefficients themselves. However, the quantities of interest, such as predicted probabilities, first

differences, and marginal effects, do not necessarily inherit the small-sample properties of the coefficient

estimates. Indeed, unbiased coefficient estimates are neither necessary nor sufficient for unbiased estimates

of the quantities of interest. I characterize this transformation-induced bias, calculate an approximation,

illustrate its importance with two simulation studies, and discuss its relevance to methodological research.

Political scientists use a wide range of statistical models yi ∼ f (θi ), where i ∈ {1, . . . ,N } and

f represents a probability distribution. The parameter θi is connected to a design matrix X of k

explanatory variables and a column of ones by a link function g , so that g (θi ) = Xi β . In the binary

logit, for example, f represents the Bernoulli probability mass function and g represents the logit

function, so that yi ∼ Bernoulli(πi ) and πi = logit−1(Xi β ).

The researcher usually estimates β with maximum likelihood (ML), and, depending on the

choiceofg and f , the estimate β̂ might havedesirable small-sampleproperties.However,MLdoes

not produce unbiased estimates in general. For this reason,methodologists frequently use Monte

Carlo simulations to assess the small-sampleproperties of estimators andprovideuserswith rules

of thumb about appropriate sample sizes. For example, the ML estimates of β for the binary logit

are biased away from zero, leading Long (1997, p. 54) to suggest that “it is risky to use ML with

samples smaller than 100, while samples larger than 500 seem adequate.”

Although methodologists tend to focus on estimating model coefficients, substantive

researchers tend to focus on some other quantity of interest. A quantity of interest is simply

a transformation τ of the model coefficients. Examples include marginal effects, first and

second differences, predicted probabilities and expected values, and risk ratios (King, Tomz, and

Wittenberg 2000).

Fortunately, the invariance principle allows the researcher to calculate estimates of the

quantities of interest from the coefficient estimates in a principled manner. The invariance

principle states that if β̂ is the ML estimate of β , then for any function τ , the ML estimate of

τ(β ) is τ(β̂ ) (King 1998, pp. 75–76, and Casella and Berger 2002, pp. 320–321). That is, researchers

can simply transform the ML estimates of the model coefficients to obtain an ML estimate of the

quantity of interest. Of course, if β̂ is a consistent estimator of β , then τ(β̂ ) must be a consistent

estimator of τ(β ). But the invariance principle raises an important question: Does τ(β̂ ) inherit the

small-sample properties of β̂ , such as unbiasedness or approximate unbiasedness? The answer

is no; the estimates of the quantities of interest do not inherit the small-sample properties of

the coefficient estimates. For example, a sample size of N = 250 that produces nearly unbiased

coefficient estimates for a probitmodel can lead to bias in themarginal effect estimates of 25%or

more.

Author’s note: All computer codenecessary for replication is available at https://github.com/carlislerainey/transformation-

induced-bais and dx.doi.org/10.7910/DVN/CYXFB8 (Rainey 2017).
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As another example, methodologists often point out the optimal small-sample properties of

least squares estimators under the normal-linear model. Indeed, under the normal-linear model,

least squared estimators are the best unbiased estimator. However,many substantive researchers

use a simple log-transformation, so that log(y ) ∼ N (Xβ ,σ2). And while the coefficients retain

their optimal properties, several substantively interesting functions of the coefficients, such as

the expected value of y , the expected change in y for a given change inX , and themarginal effect

of an explanatory variable on the expected value of y , do not inherit these properties.

This subtle, yet crucial, point reveals a disconnect between the work done by substantive

scholars and that done by methodologists. Methodological work tends to focus on obtaining

excellent estimates of the model coefficients, while substantive research tends to focus on

estimating quantities of interest.

Much methodological research implicitly suggests that an approximately unbiased coefficient

estimate is necessary and/or sufficient for an approximately unbiased estimate of the quantity

of interest. Classically, Nagler (1994) uses Monte Carlo simulations to assess the small-sample

properties of the scobit model coefficients, but he focuses on marginal effects and predicted

probabilities in his illustrative application. Recently, Nieman (2015) uses simulations to assess the

small-sample properties of the coefficients in his strategic probit with partial observability, but he

focuses his illustrative application on the predicted probability of civil war. In order to provide

more compelling tools for substantive scholars, methodologists must extend their evaluations

beyond coefficient estimates to the quantities that substantive researchers typically care about.

However, the quantities of interest and likely parameter values vary dramatically across

substantive applications, making it difficult or impossible for methodologists to formulate

general claims about the behavior of the estimators of potential quantities of interest. Therefore,

substantive researchersmust not shy away from studying the behavior of their chosen estimators

in a particular application, especially given their deep knowledge of the underlying political

processes, the appropriate quantities of interest, and the substantive importance of any

biases. Particularly with small-sample sizes, large standard errors, and/or highly nonlinear

transformations, substantive scholars should consider application-specific simulations to assess

the potential for bias. Closing the gap betweenmethodological and substantive research requires

mindful methodological work from both methodologists and substantive scholars.

The Concepts

As a motivating example, consider the log-linear model

log(incomei ) = βcons + βedueducationi + εi ,

where εi ∼ N (0,σ2), education is measured in years, and income is measured in thousands of

dollars. Assuming that the researcher uses the correctmodel, then least squares, which is also the

ML estimator, provides the best unbiased estimator of the coefficients βcons and βedu. However,

the researcher is not likely interested in log(income), but in income itself. In particular, she might

want to estimate the median income among those with 20 years of education med(income �

education = 20) = eβcons+20βedu . Because med[log(y )] = log[med(y )] for a random variable y , one

might guess that unbiased estimates of βcons and βedu lead to unbiased estimates ofmed(income �

education = 20), but that is not the case. If we suppose that N = 10, βcons = 2.5, βedu = 0.1,

σ2 = 1, and education takes on integers roughly uniformly from 10 to 20, then τ(βcons, βedu) =

eβcons+20βedu ≈ $90k . A simple Monte Carlo simulation, though, shows that although β̂cons and β̂edu
are unbiased, the estimate of med(income � education = 20) is strongly biased upward, so that

E[τ(β̂cons, β̂edu)] = E(e
β̂cons+20β̂edu ) ≈ $106k .
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A similar, but conceptually distinct issue arises when researchers want to calculate the mean

froma log-linearmodel log(y ) = Xβ+ε. Many textbookshighlight that E[log(y �X )] � log[E(y �X )],
so that E(y �Xi ) � eXi β (e.g., Wooldridge 2013, pp. 212-215). This inequality follows from a

transformation of the random component of the model (i.e., εi ). Even if the model coefficients

β are known, then this inequality holds. But researchers can easily avoid this issue by using

the correct transformation E(y �Xi ) = eXi β+
σ2

2 . However, the bias that interests me flows from a

transformation of themodel coefficients—even if the researcher uses the correct transformation,

then τ̂ is biased.

But how does a simple transformation of unbiased coefficient estimates induce a large bias in

the estimate of the quantity of interest? We usually think about bias as occurring in the model

coefficients β , so that

coefficient bias = E(β̂ ) − β .

But substantive researchers care mostly about bias in the quantities of interest. For convenience,

I refer to the bias in the quantities of interest as τ-bias, so that

τ-bias = E[τ(β̂ )] − τ(β ).

τ-bias is more complex and subtle than biases in the coefficients. It can be rewritten and

decomposed into two components: transformation-induced τ-bias and coefficient-induced τ-

bias, so that

total τ-bias = E[τ(β̂ )] − τ[E(β̂ )]︸����������������︷︷����������������︸
transformation-induced

+

coefficient-induced︷������������︸︸������������︷
τ[E(β̂ )] − τ(β ) .

Any bias in the coefficients passes through to the quantities of interest in the sense that, if the

coefficient estimates are biased, then the transformation of the true coefficient is not equal to the

transformation of the average coefficient estimate, so that

coefficient-induced τ-bias = τ[E(β̂ )] − τ(β ).

But the transformation itself introduces bias as well, so that

transformation-induced τ-bias = E[τ(β̂ )] − τ[E(β̂ )].

Transformation-inducedbiasoccursbecause, ingeneral,h[E(y )] � E[h(y )] for anarbitrary random
variable y and function h.

Little methodology research explicitly recognizes this transformation-induced τ-bias and less

fully appreciates its practical importance. Bothmethodologists and substantive researchersmust

become more conscientious of transformation-induced τ-bias, which can be much larger than

coefficient bias and disappear more slowly as the sample size increases.

A Characterization

But how can we characterize the direction of this bias? For strictly convex and strictly concave

transformations, Jensen’s inequality enables a straightforward characterizationof thedirectionof

the transformation-induced τ-bias. This characterization also provides the key intuition for more

complicated transformations.
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THEOREM 1. Suppose a nondegenerate estimator β̂ . Then any strictly convex (concave) τ creates

upward (downward) transformation-induced τ-bias.

PROOF. The proof follows directly from Jensen’s inequality. Suppose that the nondegenerate

sampling distribution of β̂ is given by Sβ (b) so that β̂ ∼ Sβ (b). Then E(β̂ ) =
∫
B
bSβ (b)db

and E[τ(β̂ )] =
∫
B
τ(b)Sβ (b)db . Suppose first that τ is convex. By Jensen’s inequality,∫

B
τ(b)Sβ (b)db > τ

[∫
B
bSβ (b)db

]
, which implies that E[τ(β̂ )] > τ[E(β̂ )]. Because E[τ(β̂ )] −

τ[E(β̂ )] > 0, the transformation-induced τ-bias is upward. By similar argument, one can show

that for any strictly concave τ , E[τ(β̂ )]−τ[E(β̂ )] > 0 and that the transformation-induced τ-bias

is downward. �

In general, researchers do not restrict themselves to a strictly convex or strictly concave τ .

This situation is much more difficult to characterize generally because τ(b) might contain a

mixture of convex and concave regions. For example, typical transformations of logistic regression

coefficients, suchaspredictedprobabilities, first and seconddifferences,marginal effects, and risk

ratios, all have both convex regions and concave regions. Making matters even more difficult, at

any particular point b , the multivariate function τ might be convex in one direction and concave

in another. In general, though, the direction of the bias depends on the location of the sampling

distribution. But the intuition from Theorem 1 is clear. If most of the sampling distribution is

located in a mostly concave region, then the bias will be downward. If most of the sampling

distribution is located in a mostly convex region, then the bias will be upward.1

An Approximation

While Theorem 1 cultivates an intuition about direction of the bias, how can we assess the

magnitude of the transformation-induced τ-bias? To approximate themagnitude, I use a second-

order Taylor expansion. First, notice that E[τ(β̂ )] = E[τ(E[β̂ ] + (β̂ − E[β̂ ]))]. Now approximate the
term inside the right-hand expectation with a second-order Taylor expansion, so that

E[τ(β̂ )] ≈ E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
τ[E(β̂ )] +

k+1∑
r=1

∂τ[E(β̂ )]

∂βr
[β̂r − E(β̂r )] + 1

2

k+1∑
r=1

k+1∑
s=1

Hessian=Hr s︷������︸︸������︷
∂2τ[E(β̂ )]

∂βr βs

Cov(β̂r ,β̂s )=Σr s︷�������������������������︸︸�������������������������︷
[β̂r − E(β̂r )][β̂s − E(β̂s )]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Taking the expectation of the right-hand side eliminates the middle term and allows expressing

the final term as a function of the variance of the sampling distribution, so that

E[τ(β̂ )] ≈ τ[E(β̂ )] +
1

2

k+1∑
r=1

k+1∑
s=1

Hr sΣr s ,

where H represents the Hessian matrix of second derivatives of τ at the point E(β̂ ) and,

conveniently,Σ represents the covariance matrix of the sampling distribution. Rearranging gives

an approximation to the magnitude of the transformation-induced τ-bias, so that

transformation-induced τ-bias = E[τ(β̂ )] − τ[E(β̂ )] ≈ 1

2

k+1∑
r=1

k+1∑
s=1

Hr sΣr s . (1)

1 Onemight wonder about the relevance of these ideas to Bayesian analyses. Indeed, the researcher can usually use MCMC

to sample directly from posterior of the model coefficients and, by simple extension, sample the quantity of interest from

the posterior distribution. But if the researcher uses the posterior mode as the point estimate, then the identical logic

applies. For an alternative point estimate (e.g., posteriormean), the invariance principle no longer holds, so the argument

breaks down (i.e., the point estimate of τ(β ) is not longer τ(β̂ )). However, regardless of the point estimate the researcher
uses, a Bayesian approach does not guarantee an unbiased quantity of interest.
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IfH is constant then the approximation is exact. If β̂ is unbiased, then τ[E(β̂ )] can be replacedwith

τ(β ), so that Equation (1) represents both transformation-induced and the total τ-bias.

Equation (1) does not depend on a strictly convex or concave transformation. As long as τ is

not highly nonlinear (e.g., � ∂3τ
∂βr ∂βs ∂βt

� ≈ 0), then Equation (1) provides a reasonable estimate of the

direction andmagnitude of the bias.

Equation (1) quantifies two intuitions. First, the amount of bias depends on the standard error

or sample size. As the sample size grows large,Σr s shrinks to zero, which drives the bias to zero as

well. This matches the previous observation that τ(β̂ ) is a consistent estimator of τ(β ). Secondly,

the amount of bias depends on the curvature in τ . If τ is nearly linear so that H ≈ 0, then the

transformation introducesminimal bias.On theother hand,more curvature, so thatH >> 0, leads

to a large bias.

TwoMonte Carlo Simulations

But does this bias matter in practice? The following two Monte Carlo studies illustrate the

importance of accounting for transformation-induced bias when evaluating estimators.2

Approximately unbiased coefficients are not enough—one must assess the bias in the quantities

of interest as well.

A hypothetical model
Many substantive researchers realize that logistic regression estimates are biased away from zero

in small samples and use “rules of thumb” to judge whether asymptotic properties, such as

asymptotic unbiasedness, approximately apply to a finite sample. When nonevents outnumber

events, one such rule of thumb requires ten events per explanatory variable (Peduzzi et al. 1996). I

show that this rule works quite well choosing a sample size that yields approximately unbiased

coefficients, but severely underestimates the sample size needed for approximately unbiased

estimates of the marginal effects.

For simplicity, I focus on the model Pr(y ) = logit−1(βcons + β1x1 + β2x2 + β3x3 + β4x4 +

β5x5 + β6x6), where y indicates whether or not each observation experiences an event and the

xj represent fixed explanatory variables that I create by simulating from independent, standard

normal distributions. For this simulation, I set βcons = −1 and βj = 0.15 for j ∈ {1, . . . , 6}. I assume
that “approximately unbiased” means a bias of less than three percent, where

percent bias = 100 × E [τ(β̂ )] − τ(β )
τ(β )

. (2)

I vary number of observations N from 100 to 3,000, and, for each sample size, I simulate 100,000

data sets, use each data set to estimate the coefficients, and use the estimated coefficients to

calculate the marginal effects. I use these 100,000 estimates to calculate the percent bias given

by Equation (2).

Figure 1 shows the bias in the coefficients as the sample size increases. The left panel shows

the bias in β̂cons and the right panel shows the bias in β̂1. For N = 100, β̂cons and β̂1 are biased

away from zero by about ten percent. However, this bias drops to about three percent forN = 250

and nearly disappears forN = 3,000. The rule of thumbworkswell; the bias is negligible for about

N = 219.

Figure 2 shows the bias in the estimates of the marginal effects as the sample size increases.

The left panel shows the total bias, the middle panel shows the coefficient-induced bias, and the

right panel shows the transformation-induced bias. Since the marginal effect of x1 varies with x1

itself, I plot the estimates for a range of values of x1.

2 All computer code necessary to reproduce these simulations as well as the data analysis below can be found at

github.com/carlislerainey/transformation-induced-bias and dx.doi.org/10.7910/DVN/CYXFB8 (Rainey 2017).
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Figure 1. This figure shows the percent bias for the intercept and coefficient for x1. The rule of thumb
requiring ten events per explanatory variable suggests a minimum sample size of about 219. For samples

larger than about 250, the bias falls below three percent and it nearly disappears as the sample size approach

3,000.

Figure2.This figure shows the total, coefficient-induced, and transformation-inducedτ-bias for themarginal
effects. The rule of thumb requiring ten events per explanatory variable suggests a minimum sample size of

about 219. However, the bias falls well outside the three percent threshold for this suggested sample size.

The estimates fall within the three percent threshold only for sample sizes nearing 3,000—more than ten

times the rule of thumb that works well for the coefficients. Also notice that while the coefficient-induced

bias receives the most attention frommethodologists, the transformation-induced bias ismuch larger.

Two features stand out. First, small-sample bias is much larger for the marginal effects than

for the coefficients. For N = 100, the estimate of the marginal effect is biased by about −75% for

x1 = −3,−50% for x1 = −2, and−25% for x1 = −1. Second, the small-sample bias in the estimates
of the marginal effects descends to zero more slowly than the coefficient estimates. While the

coefficient estimates areapproximatelyunbiased for aboutN = 250, the estimatesof themarginal

effects retain substantial bias. Indeed, thebias in theestimatesof themarginal effectsdropsbelow

the 3% threshold at about N = 3,000—more than ten times the rule of thumb that works well for

the coefficients.

An actual model
To further highlight the practical implications of transformation-induced τ-bias, I use the

explanatory variables and coefficients reported for Model 1 in Table 2 of Lacina (2006,

p. 286) to conduct a second simulation. Lacina uses a normal-linear regression model with a

log-transformed outcome variable to assess several hypotheses about the causes of the number

of battle deaths in civil conflicts. Using her reported coefficients as the truemodel parameters and

her explanatory variables the predictors (105 complete observations; 9 explanatory variables), I

repeatedly (1) simulate a new outcome variable, (2) re-estimate the regression model, and (3)
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Figure 3. This figure shows the transformation-induced τ-bias for two quantities of interest. Each point
represents a single observation from Lacina’s (2006) data set. For each observation, I calculate the

transformation-induced τ-bias in the expected value—the expected number of battle deaths—and in the first
difference—the change in the expected number of deaths if each case was changed from a nondemocracy to

a democracy.

calculate the quantities of interest. For each set of estimates β̂ and σ̂2, I calculate two quantities

of interest:

(1) The expected number of battle deathsE (deathsi � Xi ) = eXi β̂+
σ̂2

2 for each observed caseXi .

(2) The first difference (i.e., the change in the expected number of battle deaths) Δ(deathsi �

XD
i ,X

∼D
i ) = E (deathsi � X

D
i ) − E (deathsi � X ∼Di ) = eX

D
i
β̂+ σ̂2

2 − eX ∼Di
β̂+ σ̂2

2 if each observed

caseXi were changed from a nondemocracyX ∼Di to a democracy XD
i .

Because the estimates of β andσ2 are unbiased, there is no coefficient-induced τ-bias. Indeed,

the least squares estimate of β is the best unbiased estimator under the assumed normal-linear

model. However, this ideal small-sample property does not apply to the quantities of interest.

Figure 3 summarizes these simulations anddemonstrates that transformation-induced τ-bias can

create considerable bias in thequantities of interest evenwhen coefficient estimates haveoptimal

properties.

The left panel of Figure 3 shows the true value and percent bias for the expected number of

battle deaths E (deaths) = eX β̂+ σ̂2

2 . Because the estimates β̂ and σ̂2 are unbiased, there is no

coefficient-induced τ-bias in the expected value. However, there is a substantial upward bias in

the expected value due to transformation-induced τ-bias. The upward bias in the expected value

ranges from 4% (307 deaths) to 37% (51,120 deaths). The average upward bias is 10%—these are

not trivial biases.

The right panel of Figure 3 shows that these upward biases do not cancel for the first difference.

Indeed, transformation-induced τ-bias leads to an overly optimistic estimate of the effect of

democracy. Lacina correctly notes that “democracy is associated with fewer battle deaths” (p.

287), but transformation-induced τ-bias might lead researchers to over-estimate this pacifying

effect by up to 10% (and about 35% in one extreme case) and 6% on average.

The Implications

Quantities of interest do not inherit the small-sample properties of the coefficient estimates. This

fact has important implications for how we evaluate the small-sample properties of estimators.

First,τ-biashas important implications for thesample sizes thatmethodologists recommendto

substantive researchers. Methodologists usually parameterize models so that the coefficients lie

in an unbounded space. This allows the coefficient estimates to rapidly approach their asymptotic

distribution, which ensures the estimates have acceptable small-sample properties. Substantive

researchers, though, usually transform these coefficient estimates into a quantity of interest,

which, because it often lies in a bounded space, might approach its asymptotic distribution
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more slowly. As a result, substantive researchers might need much larger sample sizes than

methodologists usually recommend.Methodologistsmust remain conscientious of the quantities

of interest to substantive researchers and assess the performance of their estimators in terms of

these quantities. Unfortunately, it remains impossible or difficult to assess the bias in general or

for a wide range of sample sizes, quantities of interest, or parameter values.

But substantive researchers must also remain aware of the potential to introduce bias into

estimates by transforming coefficient estimates. Fortunately, substantive researchers can use

Monte Carlo simulations to quickly assess the potential for bias in a specific substantive context

in which researchers know the sample size, quantity of interest, and likely parameter values.

Secondly, τ-bias has important implications for the bias-variance tradeoff in choosing an

estimator. Methodologists usually recognize a tradeoff between bias and variance in estimating

parameters. Actions intended to remove bias might increase variance and vice versa. However,

the approximation to the transformation-induced τ-bias given in Equation (1) points out an

important result. Greater variance in the coefficient estimates might lead to increased bias in

the quantities of interest. This implies that if an estimator is essentially unbiased, then greater

efficiency translates to reducedbias in thequantities of interest. Similarly, small reductions in bias

at the expenseof a large increase in variancemight lead to greater bias in thequantities of interest.

For example, refinements of the usual logit model intended to reduce bias in the coefficients,

such as heteroskedastic probit or scobit, might actually increase bias in the quantities of interest.

Methodologists must be aware of this tradeoff when recommending more complex estimators to

substantive researchers and comparing alternative estimators.

Methodologists cannot ignore transformation-induced bias. Substantive researchers must not

assume that sample size recommendations remain valid for any quantity of interest. Nearly

unbiased estimates of coefficients are not enough. We must remain thoughtful about our

quantities of interest and calibrate our tools for these quantities.
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