ON CERTAIN STABLE WEDGE SUMMANDS OF $B(\mathbf{Z} / p)_{+}^{n}$

JOHN C. HARRIS

Abstract

Campbell and Selick have given a natural decomposition of the cohomology of an elementary abelian p-group over the Steenrod algebra. We study the corresponding stable wedge summands of the classifying space $B(\mathbf{Z} / p)_{+}^{n}$ using representation theory and explicit idempotents in the group ring $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$.

Introduction. Let $B(\mathbf{Z} / p)_{+}^{n}$ be the classifying space of the elementary abelian p group $(\mathbf{Z} / p)^{n}$, together with a disjoint basepoint. Let $H=H^{*}\left(B(\mathbf{Z} / p) ; \mathbf{F}_{p}\right)$ regarded as a module over the mod- p Steenrod algebra, \mathcal{A}. And write $H^{\otimes n} \cong \mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right] \otimes$ $\operatorname{Ext}\left[u_{0}, \ldots, u_{n-1}\right]$, with $\beta\left(u_{k}\right)=t_{k}$ and $\mathcal{P}^{1}\left(t_{k}\right)=t_{k}^{p}$ (if $p=2$, take $\mathcal{P}^{1}=S q^{1}$ and Ext $=0)$. Note that $H^{\otimes n}$ is the reduced cohomology of $B(\mathbf{Z} / p)_{+}^{n}$.
Consider the following three problems:

1) Find a decomposition $B(\mathbf{Z} / p)_{+}^{n} \simeq X_{1} \vee \cdots \vee X_{N}$ into indecomposable stable wedge summands.
2) Find a decomposition $H^{\otimes n} \cong I_{1} \oplus \cdots \oplus I_{N}$ into indecomposable modules over the Steenrod algebra.
3) Find a decomposition $1=e_{1}+\cdots+e_{N}$ in $\mathbf{F}_{p}\left[\mathrm{M}_{n, n}(\mathbf{Z} / p)\right]$ into primitive orthogonal idempotents, where $\mathbf{M}_{n, n}(\mathbf{Z} / p)$ is the multiplicative semigroup of $n \times n$ matrices. The first and third problems are shown to be equivalent in [HK], where a solution to the third is given in terms of the modular representation theory of $\mathbf{M}_{n, n}(\mathbf{Z} / p)$. The second and third are equivalent by a result of Adams, Gunawardena, and Miller ([AGM], [LZ2], [Wo]). The correspondence from 1) to 2) is given by taking reduced mod $-p$ cohomology.

The importance of the modules I_{k} comes from results of Carlsson, Miller, Lannes, Zarati, and Schwartz ([Ca], [Mi], [LZ1], [LS]). In his proof of the Segal conjecture, Carlsson used a certain splitting which Miller later observed, in his proof of the Sullivan conjecture, was equivalent to the fact that the module H is injective in the category of unstable \mathcal{A}-modules, \mathcal{U}. Using this, Lannes and Zarati showed that $H^{\otimes n}$ (hence any direct summand of $H^{\otimes n}$) is also injective in \mathcal{U}. Then Lannes and Schwartz classified all of the injectives in \mathcal{U}, showing in particular that the modules I_{k} are exactly the indecomposable reduced injectives.

In [CS], Campbell and Selick give a very natural decomposition of $H^{\otimes n}$ into a direct sum of $\left(p^{n}-1\right) \mathcal{A}$-modules, called the weight summands, $M_{n}(j)$, for $j \in \mathbf{Z} /\left(p^{n}-1\right)$. These summands are particularly easy to work with because they have bases consisting of monomials in a certain finitely generated algebra. By the above correspondence of 1)
(C) Canadian Mathematical Society 1992.
and 2), the Campbell and Selick weight summands give a decomposition of $B(\mathbf{Z} / p)_{+}^{n}$ into $\left(p^{n}-1\right)$ stable wedge summands, which we call $Y_{n}(j)$, for $j \in \mathbf{Z} /\left(p^{n}-1\right)$.

The purpose of this paper is to describe the $Y_{n}(j)$. To do this, we produce a set of orthogonal idempotents in $\mathbf{F}_{p}\left[\mathrm{M}_{n, n}(\mathbf{Z} / p)\right]$ inducing Campbell and Selick's decomposition of $H^{\otimes n}$, hence inducing the $Y_{n}(j)$'s. Then we relate these idempotents to the irreducible $\mathbf{M}_{n, n}(\mathbf{Z} / p)$ representations to give the complete decompositions of the $Y_{n}(j)$'s.

Our construction of the idempotents was inspired by the work of Witten ([W]). She produces $\left(p^{n}-1\right)$ orthogonal idempotents in a certain group ring $\mathbf{F}_{p}[G]$ (with $G \cong$ $\left(\mathbf{F}_{p^{n}}\right)^{*} \rtimes \operatorname{Gal}\left(\mathbf{F}_{p^{n}}: \mathbf{F}_{p}\right) \subseteq \mathrm{M}_{n, n}(\mathbf{Z} / p)$) inducing a decomposition of $B(\mathbf{Z} / p)^{n}$ into wedge summands, each of which has rank $1 \bmod p K$-theory. Her idempotents are not uniquely specified, and it turns out that her summands are only well defined up to K-theoretically trivial pieces.

Theorem A. An appropriate choice of Witten's idempotents induces the Campbell and Selick decomposition of $B(\mathbf{Z} / p)^{n}$.

It follows that $Y_{n}(0)$ has rank $2 \bmod p K$-theory, and, for $j \neq 0, Y_{n}(j)$ has rank $1 \bmod p$ K-theory. (Note that $B(\mathbf{Z} / p)_{+}^{n} \simeq B(\mathbf{Z} / p)^{n} \vee S^{0}, S^{0}$ has rank $1 \bmod p K$-theory, and if we write $Y_{n}(0) \simeq \bar{Y}_{n}(0) \vee S^{0}$, then $\bar{Y}_{n}(0)$ is the Witten summand with rank $1 \bmod p$ K-theory.)

Results of Kuhn and Carlisle ([K], [CK]) can be used to determine which indecomposable summands have rank $1 \bmod p K$-theory. In Section 4, we show how these summands distribute themselves among the Campbell and Selick summands when $p=2$.

From the Campbell and Selick description it is easy to see that $Y_{n}(j) \simeq Y_{n}(j p)$; we let $\hat{Y}_{n}(i) \simeq Y_{n}(i) \vee \cdots \vee Y_{n}\left(i p^{z_{i}-1}\right)$, where z_{i} is the smallest positive exponent k with $i p^{k} \equiv i$ $\left(\bmod p^{n}-1\right)$.

THEOREM B. There are (unique) orthogonal idempotents in $\mathbf{F}_{p}[C]$, where $C \cong$ $\left(\mathbf{F}_{p^{n}}\right)^{*} \subseteq G$ is a cyclic subgroup of order $\left(p^{n}-1\right)$, inducing the wedge summands $\hat{Y}_{n}(i)$.

In fact, the $\hat{Y}_{n}(i)$ correspond to the distinct irreducible representations of $\mathbf{F}_{p}[C]$. (Note that these representations are not necessarily one dimensional since \mathbf{F}_{p} is not algebraically closed.) By comparing these to the irreducible $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ representations, we describe complete decompositions of the $\hat{Y}_{n}(i)$. Of course, complete decompositions of the $Y_{n}(j)$ follow.

The paper is organized as follows. In Section 1, we recall the methods from [HK] giving the complete decomposition of $B(\mathbf{Z} / p)_{+}^{n}$ using $\mathbf{F}_{p}\left[\mathbf{M}_{n, n}(\mathbf{Z} / p)\right]$ and giving a partial decomposition using $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$. In Section 2, the Campbell and Selick decomposition of $H^{\otimes n}$ is given. In Section 3, we first define the subgroups C and G of $\mathrm{GL}_{n}(\mathbf{Z} / p)$. Then we describe their irreducible representations over \mathbf{F}_{p} and construct our idempotents. The relationship between the $\mathbf{F}_{p}[C]$ irreducibles and the $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ irreducibles is given in (3.8). Section 4 contains the main results. Theorem B is given as 4.4 and Theorem A as 4.5. Theorem 4.6 gives the complete decompositions of the $\hat{Y}_{n}(i)$. In Section 5, we
give expressions for the Poincaré series of the $Y_{n}(j)$ using Molien's theorem. Finally, in Section 6, we give some examples of our results for small cases.

For F a field, we let $F\left\langle v_{1}, \ldots, v_{n}\right\rangle$ denote the F-vector space with basis $\left\{v_{1}, \ldots, v_{n}\right\}$. We let $F\left[v_{1}, \ldots, v_{n}\right] \otimes \mathrm{E}\left[v_{1}, \ldots, v_{n}\right]$ denote the tensor product of the polynomial ring and the exterior algebra over F. All cohomology groups will have coefficients in \mathbf{F}_{p} unless otherwise stated. All spectra are assumed to be completed at p. And K-theory will mean $\bmod p K$-theory.

The author would like to thank Paul Selick for a preliminary version of and many conversations about his paper with Campbell.

1. Preliminaries on stable splittings. A reference for this section is [HK]. Let G be a finite group, $B G_{+}$its classifying space with a disjoint basepoint. By a standard telescope construction, idempotents in $\left\{B G_{+}, B G_{+}\right\}$, the ring of stable self-maps, correspond to stable wedge summands: $B G_{+} \simeq e B G_{+} \vee(1-e) B G_{+}[\mathrm{Co}]$.

When G is a p-group, the summands can be found from idempotents in $\left\{B G_{+}, B G_{+}\right\} \otimes$ \mathbf{F}_{p}. There is a generalized Burnside ring, denoted $A(G, G)$, with a natural map to $\left\{B G_{+}, B G_{+}\right\}$. The following theorem was proven by Lewis, May, and McClure.

Theorem 1.1 ([M], 15). If G is a p-group, then the map $A(G, G) \otimes \mathbf{F}_{p}$ $\rightarrow\left\{B G_{+}, B G_{+}\right\} \otimes \mathbf{F}_{p}$ is an isomorphism.

Now let $G=(\mathbf{Z} / p)^{n}$. From the description of $A(G, G)$ in $[\mathrm{M}]$, it is easy to see that the semigroup ring $\mathbf{F}_{p}\left[\mathrm{M}_{n, n}(\mathbf{Z} / p)\right]$ is contained in $A(G, G) \otimes \mathbf{F}_{p}$. The following theorem was proven independently by the author and Nishida.

Theorem 1.2 ([HK], 2.6). If $e \in \mathbf{F}_{p}\left[\mathrm{M}_{n, n}(\mathbf{Z} / p)\right]$ is a primitive idempotent, then its image in $A(G, G) \otimes \mathbf{F}_{p}$ is also primitive, so e $B(\mathbf{Z} / p)_{+}^{n}$ is indecomposable.

It follows that a formula $1=\sum e_{k}$ in $\mathbf{F}_{p}\left[\mathbf{M}_{n, n}(\mathbf{Z} / p)\right]$, writing the identity as a sum of primitive orthogonal idempotents, gives a complete decomposition $B(\mathbf{Z} / p)_{+}^{n} \simeq$ $\vee e_{k} B(\mathbf{Z} / p)_{+}^{n}$.

From general representation theory (e.g. [CR1]), a primitive idempotent e in a finite dimensional algebra R over \mathbf{F}_{p} corresponds to a projective indecomposable left ideal $R e$, which in turn corresponds to the irreducible \mathbf{F}_{p} representation $\mathrm{Re} / \mathrm{Je}$, where J is the radical of R. There is a one-to-one correspondence between isomorphism types of projective indecomposables and isomorphism types of irreducible representations, and the number of times a given projective occurs in a complete decomposition of R equals the dimension of its associated irreducible over its endomorphism ring.

THEOREM 1.3 ([HK], A). In a complete stable decomposition of $B(\mathbf{Z} / p)_{+}^{n}$, there are wedge summands of p^{n} distinct homotopy types. These correspond to the p^{n} irreducible left $\mathbf{F}_{p}\left[\mathrm{M}_{n, n}(\mathbf{Z} / p)\right]$-modules, and a given homotopy type appears with multiplicity equal to the dimension of the corresponding module.

By the following theorem, there is a similar result for the \mathcal{A}-module summands of $H^{\otimes n}$.

THEOREM 1.4 ([AGM], P. 438). $\quad \mathbf{F}_{p}\left[\mathbf{M}_{n, n}(\mathbf{Z} / p)\right] \cong \operatorname{Hom}_{\mathcal{A}}\left(H^{\otimes n}, H^{\otimes n}\right)$.
Of course, orthogonal idempotents in any subring of $\mathbf{F}_{p}\left[\mathbf{M}_{n, n}(\mathbf{Z} / p)\right]$ will induce stable decompositions of $B(\mathbf{Z} / p)_{+}^{n}$ into (possibly decomposable) wedge summands. The most important subring for our purposes is $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$.

The irreducible representations of $\mathbf{F}_{p}\left[\mathbf{M}_{n, n}(\mathbf{Z} / p)\right]$ and $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ can be described using Young diagrams. We adopt the following notations (see [HK], Section 6).

$$
\begin{align*}
\operatorname{Irr}\left(\mathbf{F}_{p}\left[\mathbf{M}_{n, n}(\mathbf{Z} / p)\right]\right) & =\left\{S_{\lambda_{1}, \ldots, \lambda_{n}} \mid 0 \leq \lambda_{k} \leq p-1\right\} \tag{1.5}\\
\operatorname{Irr}\left(\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]\right) & =\left\{S_{\lambda_{1}, \ldots, \lambda_{n}}^{\prime} \mid 0 \leq \lambda_{k} \leq p-1, \text { and } \lambda_{n} \leq p-2\right\}
\end{align*}
$$

Denote the stable summand corresponding to $S_{(\lambda)}\left(\right.$ resp. $\left.S_{(\lambda)}^{\prime}\right)$ by $X_{(\lambda)}\left(\right.$ resp. $\left.X_{(\lambda)}^{\prime}\right)$. These notations give the following decompositions where the first is complete.

$$
\begin{equation*}
B(\mathbf{Z} / p)_{+}^{n} \simeq \bigvee_{(\lambda)} \operatorname{dim}\left(S_{(\lambda)}\right) X_{(\lambda)} \quad B(\mathbf{Z} / p)_{+}^{n} \simeq \bigvee_{(\lambda)} \operatorname{dim}\left(S_{(\lambda)}^{\prime}\right) X_{(\lambda)}^{\prime} \tag{1.6}
\end{equation*}
$$

(The indexing sets are those given in 1.5.)
Proposition 1.7 ([HK], 6.2). With the above notations, we have
(i) $X_{\lambda_{1}, \ldots, \lambda_{n-1}, 0} \simeq X_{\lambda_{1}, \ldots, \lambda_{n-1}}$,
(ii) $X_{\lambda_{1}, \ldots, \lambda_{n}}^{\prime} \simeq X_{\lambda_{1}, \ldots, \lambda_{n}}$, if $\lambda_{n} \neq 0$ or $p-1$, and
(iii) $X_{\lambda_{1}, \ldots, \lambda_{n-1}, 0}^{\prime} \simeq X_{\lambda_{1}, \ldots, \lambda_{n-1}, 0}^{\prime} \vee X_{\lambda_{1}, \ldots, \lambda_{n-1}, p-1}$.
2. The Campbell and Selick Summands. Let H be the mod- p cohomology of the classifying space $B(\mathbf{Z} / p)$. One of the results of the paper of Campbell and Selick is to give a decomposition of $H^{\otimes n}$ into a direct sum of $\left(p^{n}-1\right)$ modules over the Steenrod algebra. This section gives a sketch of their argument.

In $\mathbf{F}_{p^{n}}$, choose an element ω so that ω generates the cyclic group of units in $\mathbf{F}_{p^{n}}$ and $\left\{\omega, \phi(\omega), \ldots, \phi^{n-1}(\omega)\right\}$ forms a basis for $\mathbf{F}_{p^{n}}$ over $\mathbf{F}_{p}([\mathrm{D}])$, where $\phi(a)=a^{p}$ is the Frobenius. Let $p(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n}$ be the minimal polynomial for ω. Let

$$
T=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \tag{2.1}\\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -a_{n-1}
\end{array}\right)
$$

be the $n \times n$ matrix over \mathbf{F}_{p} representing multiplication by ω in the basis $\left\{1, \omega, \ldots, \omega^{n-1}\right\}$. Regard T as a linear transformation on the vector space $\mathbf{F}_{p^{n}}\left\langle t_{0}, \ldots, t_{n-1}\right\rangle$. The eigenvalues of T are $\omega, \omega^{p}, \ldots, \omega^{p^{n-1}}$ defined over $\mathbf{F}_{p^{n}}$. A basis of nonzero eigenvectors of $T,\left\{x_{0}, \ldots, x_{n-1}\right\}$, can be chosen with $T\left(x_{k}\right)=\omega^{p^{k}} x_{k}$ and $x_{k}=\phi\left(x_{k-1}\right)$ (here the Frobenius acts trivially on the t 's). Let B be the matrix in $\mathrm{GL}_{n}\left(\mathbf{F}_{p^{n}}\right)$ giving the x 's in terms of the t 's, $B: \mathbf{F}_{p^{n}}\left\langle t_{0}, \ldots, t_{n-1}\right\rangle \rightarrow \mathbf{F}_{p^{n}}\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$, and note that
$B T B^{-1}$ is the diagonal matrix $\operatorname{diag}\left(\omega, \omega^{p}, \ldots, \omega^{p^{n-1}}\right)$ in $\mathrm{GL}_{n}\left(\mathbf{F}_{p^{n}}\right)$. Extend B multiplicatively to polynomial algebras to give

$$
\begin{equation*}
B: \mathbf{F}_{p^{n}}\left[t_{0}, \ldots, t_{n-1}\right] \cong \mathbf{F}_{p^{n}}\left[x_{0}, \ldots, x_{n-1}\right] \tag{2.2}
\end{equation*}
$$

Give $\mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right]$ the usual \mathcal{A}-algebra structure (thought of as the polynomial part of the cohomology of $\left.B(\mathbf{Z} / p)^{n}\right) \mathcal{P}^{1}\left(t_{i}\right)=t_{i}^{p}$, and extend to $\mathbf{F}_{p^{n}}\left[t_{0}, \ldots, t_{n-1}\right]$ so that the action of \mathcal{A} is $\mathbf{F}_{p^{n}}$-linear. The induced \mathcal{A}-module action on the x 's is spucified by $\mathcal{P}^{\mathrm{1}}\left(x_{i}\right)=x_{i-1}^{p}$, where the subscripts are taken modulo n. The Cartan formula applies, so $\mathbf{F}_{p}\left[x_{0}, \ldots, x_{n-1}\right]$ is an \mathcal{A}-submodule of $\mathbf{F}_{p^{n}}\left[t_{0}, \ldots, t_{n-1}\right]$. (If p is odd, the Bockstein acts trivially, and if $p=2$, take $\mathcal{P}^{1}=S q^{1}$.)

THEOREM 2.3 ([CS], 1). $\quad \mathbf{F}_{p}\left[x_{0}, \ldots, x_{n-1}\right] \cong \mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right]$ as \mathcal{A}-modules.
The proof uses the composition

$$
\begin{equation*}
\Psi: \mathbf{F}_{p}\left[x_{0}, \ldots, x_{n-1}\right] \hookrightarrow \mathbf{F}_{p^{n}}\left[x_{0}, \ldots, x_{n-1}\right] \xrightarrow{B^{-1}} \mathbf{F}_{p^{n}}\left[t_{0}, \ldots, t_{n-1}\right] \xrightarrow{\lambda} \mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right], \tag{2.4}
\end{equation*}
$$

where $\lambda: \mathbf{F}_{p^{n}}\left[t_{0}, \ldots, t_{n-1}\right] \rightarrow \mathbf{F}_{p^{n}}\left[t_{0}, \ldots, t_{n-1}\right]$ is given by $\lambda(y)=\omega y+\phi(\omega y)+\cdots+$ $\phi^{n-1}(\omega y)$ and ϕ is the Frobenius (acting trivially on the t 's). Note that λ is \mathcal{A}-linear but not multiplicative.

Let $M_{n}=\mathbf{F}_{p}\left[x_{0}, \ldots, x_{n-1}\right]$ and define weights $w(m)$ in $\mathbf{Z} /\left(p^{n}-1\right)$ for monomials m in M_{n} by $w(1)=0, w\left(x_{k}\right)=p^{k}$, and $w(y z)=w(y)+w(z)$. Let $M_{n}(j)$ be the subspace of M_{n} having the monomials of weight j as basis. Since \mathcal{P}^{1} preserves weights (and β acts trivially if $p>2$), there is a decomposition

$$
\begin{equation*}
M_{n}=\bigoplus_{j \in \mathbf{Z} /\left(p^{n}-1\right)} M_{n}(j) \tag{2.5}
\end{equation*}
$$

as \mathcal{A}-modules. Note that $M_{n}(0)$ is a ring, and each $M_{n}(j)$ is an $M_{n}(0)$-module.
The self mapping $x_{l} \rightarrow x_{l+1}$ of M_{n} shows that $M_{n}(j)$ is isomorphic to $M_{n}(j p)$. Let $\widehat{M}_{n}(i)=M_{n}(i) \oplus \cdots \oplus M_{n}\left(i p^{z_{i}-1}\right)$, where z_{i} is the smallest positive exponent k with $i p^{k} \equiv i \quad\left(\bmod p^{n}-1\right)$.

If we let $\mathbf{Z} / n=\langle\phi\rangle$ act on $\mathbf{Z} /\left(p^{n}-1\right)$ by $\phi(i)=i p$, then the $\widehat{M}_{n}(i)$ can be described as follows. Let J_{i} be the orbit containing i, and let I be a set consisting of one element from each orbit. Then $\widehat{M}_{n}(i)=\oplus_{j \in J_{i}} M_{n}(j), z_{i}$ is the cardinality of J_{i}, and $M_{n}=\oplus_{i \in I} \widehat{M}_{n}(i)$. We will see in the next section that this last decomposition of M_{n} has a particularly nice description in terms of idempotents.

If $p>2$, let $\left\{u_{0}, \ldots, u_{n-1}\right\}$ denote generators for an exterior algebra with $\beta\left(u_{k}\right)=t_{k}$. Then $\mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right] \otimes \mathrm{E}\left[u_{0}, \ldots, u_{n-1}\right]$ gives the cohomology of $B(\mathbf{Z} / p)^{n}$. Define a new basis $\left\{y_{0}, \ldots, y_{n-1}\right\}$ from the $\left\{u_{0}, \ldots, u_{n-1}\right\}$ as the $\left\{x_{0}, \ldots, x_{n-1}\right\}$ were defined from the $\left\{t_{0}, \ldots, t_{n-1}\right\}$. With $\beta\left(y_{k}\right)=x_{k}$ Theorem 2.3 extends to give $\mathbf{F}_{p}\left[x_{0}, \ldots, x_{n-1}\right] \otimes$ $\mathrm{E}\left[y_{0}, \ldots, y_{n-1}\right] \cong \mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right] \otimes \mathrm{E}\left[u_{0}, \ldots, u_{n-1}\right]$ as \mathcal{A}-modules. With $w\left(y_{j}\right)=p^{j}$ the weight decomposition also extends.

We will use the notations $M E_{n}$ for $\mathbf{F}_{p}\left[x_{0}, \ldots, x_{n-1}\right] \otimes \mathrm{E}\left[y_{0}, \ldots, y_{n-1}\right], M E_{n}(j)$ for the weight j summand, and $\widehat{M E}_{n}(i)$ for the summand $\oplus_{j \in J_{i}} M E_{n}(j)$.

The modules $M_{n}(j)$ and $M E_{n}(j)$ are easy to work with because they have \mathbf{F}_{p}-bases consisting of monomials. For example, here we find the monomial of least degree in $M_{n}(j)$ or $M E_{n}(j)$. Let $j=\left(j_{n-1} j_{n-2} \ldots j_{0}\right)$ be the base- p representation of j, let $\sigma(j)=j_{0}+$ $\cdots+j_{n-1}$, and let $\alpha(j)$ be the cardinality of $\left\{k \mid j_{k} \neq 0\right\}$. (Here we use $\left\{0, \ldots, p^{n}-2\right\}$ to represent $\mathbf{Z} /\left(p^{n}-1\right)$.) Note that $\sigma(j)=\alpha(j)$ when $p=2$.

Proposition 2.6. The monomial of least degree in $M_{n}(j)$ is $x_{0}^{j_{0}} x_{1}^{j_{1}} \ldots x_{n-1}^{j_{n-1}} ;$ it has degree $\sigma(j)$.

For p odd, let the x_{k} 's and y_{k} 's in $M E_{n}$ have degrees 2 and 1 , respectively.
PROPOSITION 2.7. The monomial of least degree in $M E_{n}(j)$ is obtained by replacing $x_{k}^{j_{k}}$ by $x_{k}^{j_{k}-1} y_{k}\left(\right.$ when $\left.j_{k} \neq 0\right)$ in $x_{0}^{j_{0}} x_{1}^{j_{1}} \ldots x_{n-1}^{j_{n-1}}$; it has degree $2 \sigma(j)-\alpha(j)$.

It is often convenient to eliminate the degree zero elements (spanned by the identity) from the modules $M_{n}(0)$ and $M E_{n}(0)$. We let $\bar{M}_{n}(0)=M_{n}(0) / \mathbf{F}_{p} \cdot 1$ and $\overline{M E}_{n}(0)=$ $M E_{n}(0) / \mathbf{F}_{p} \cdot 1$. Note that $M_{n}(0) \cong \mathbf{F}_{p} \oplus \bar{M}_{n}(0)$ and $M E_{n}(0) \cong \mathbf{F}_{p} \oplus \overline{M E}_{n}(0)$ as A-modules.

Proposition 2.8. (i) The monomial of least degree in $\bar{M}_{n}(0)$ is $x_{0}^{p-1} \cdots x_{n-1}^{p-1}$; it has degree $n p-n$. (ii) The monomial of least degree in $\overline{M E}_{n}(0)$ is $x_{0}^{p-2} y_{0} \cdots x_{n-1}^{p-2} y_{n-1}$; it has degree $2 n p-3 n$.
3. Some Representation Theory. In this section we construct the idempotents in $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ that we will need. First we define subgroups C and G of $\mathrm{GL}_{n}(\mathbf{Z} / p)$. The idempotents for Theorem B are the (unique) primitive idempotents in $\mathbf{F}_{p}[C]$ and are given in (3.4). The idempotents for Theorem A are less canonical and lie in $\mathbf{F}_{p}[G]$ (see 3.18).

Let $G=\left\langle c, d \mid c^{p^{n}-1}=d^{n}=1, d^{-1} c d=c^{p}\right\rangle$ and let $C \subseteq G$ be the subgroup generated by c. To fix an inclusion of G in $\mathrm{GL}_{n}(\mathbf{Z} / p)$, consider the \mathbf{F}_{p} vector space $\mathbf{F}_{p^{n}}$ with basis $\left\{1, \omega, \ldots, \omega^{n-1}\right\}$ and identify c with multiplication by ω and d with the Frobenius, ϕ. (Thus G is isomorphic to the semidirect product $\left(\mathbf{F}_{p^{n}}\right)^{*} \rtimes \operatorname{Gal}\left(\mathbf{F}_{p^{n}}: \mathbf{F}_{p}\right)$.)

We now give some elementary facts about the action of $\left(\mathbf{F}_{p^{z}}\right)^{*}$ on $\mathbf{F}_{p^{z}}$. Let ζ be a primitive ($p^{z}-1$)-st root of unity in $\mathbf{F}_{p^{z}}$ and take $\left\{1, \zeta, \ldots, \zeta^{z-1}\right\}$ as a basis for the vector space $\mathbf{F}_{p^{z}}$ over \mathbf{F}_{p}. Consider the z-dimensional \mathbf{F}_{p}-representation of the group $\left(\mathbf{F}_{p^{z}}\right)^{*}$ on the vector space $\mathbf{F}_{p^{z}}$ (given by left multiplication). We call this representation B_{z}.

Lemma 3.1. Let μ be any element in $\mathbf{F}_{p^{z}}$ with $\mathbf{F}_{p^{z}}=\mathbf{F}_{p}(\mu)$. Then the representation B_{z} restricted to the cyclic group $\langle\mu\rangle$ is irreducible.

Proof. If v_{1} and v_{2} are non-zero vectors in $\mathbf{F}_{p^{2}}$, then $\zeta^{j} \cdot v_{1}=v_{2}$ for some j. Since the set $\left\{1, \mu, \ldots, \mu^{z-1}\right\}$ is a basis for $\mathbf{F}_{p^{z}}$ over \mathbf{F}_{p}, there exist a_{k} in \mathbf{F}_{p} such that $\zeta^{j}=$ $\sum_{k=0}^{z-1} a_{k} \mu^{k}$. The element $\sum a_{k} \mu^{k}$ in the group ring $\mathbf{F}_{p}[\langle\mu\rangle]$ takes v_{1} to v_{2}. Since the group ring acts transitively on the non-zero vectors in $\mathbf{F}_{p^{z}}$, there are no non-trivial invariant subspaces.

LEMMA 3.2. The eigenvalues of the endomorphism $B_{z}\left(\zeta^{j}\right)$ acting on the vector space $\mathbf{F}_{p^{2}}$ are $\left\{\zeta^{j}, \zeta^{j p}, \ldots, \zeta^{j p^{z-1}}\right\}$.

Proof. Let $p(x)=a_{0}+a_{1} x+\cdots+a_{z-1} x^{z-1}+x^{2}$ be the minimum polynomial for ζ (so its roots are $\left\{\zeta, \zeta^{p}, \ldots, \zeta^{p^{z-1}}\right\}$). In the basis $\left\{1, \zeta, \ldots, \zeta^{z-1}\right\}$ the endomorphism given by left multiplication by ζ has the matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \tag{3.3}\\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -a_{z-1}
\end{array}\right)
$$

whose characteristic polynomial is $p(x)$.
We now describe the mod- p representation theory of C and give the (unique) primitive orthogonal idempotents in $\mathbf{F}_{p}[C]$.

Since C is abelian and p does not divide the order of C, there are $p^{n}-1$ distinct one dimensional representations of C defined over $\mathbf{F}_{p^{n}}$. Label them by R_{j}, for $j \in \mathbf{Z} /\left(p^{n}-1\right)$, with $R_{j}(c)=\omega^{j}$. Explicit idempotents in $\mathbf{F}_{p^{n}}[C]$ associated to these are $e_{j}=$ $\frac{1}{p^{n}-1} \sum_{k=0}^{p^{n}-2} R_{j}\left(c^{-k}\right) c^{k}=-1 \sum_{k=0}^{p^{n}-2} \omega^{-k j} c^{k}$ ([CR1], 33.8). Again consider the sets J_{i} and I from Section 2. The action of $\mathbf{Z} / n=\langle\phi\rangle$ on $\mathbf{F}_{p^{n}}$ sends R_{j} to $R_{j p}$ and e_{j} to $e_{j p}$.

Definition 3.4. For $i \in I$, let $f_{i}=\sum_{j \in J_{i}} e_{j}$.
Proposition 3.5. (i) $f_{i} \in \mathbf{F}_{p}[C]$, (ii) $\mathbf{F}_{p}[C] f_{i}$ is an irreducible $\mathbf{F}_{p}[C]$-module, and (iii) the idempotents f_{i} are primitive in $\mathbf{F}_{p}[C]$.

Proof. (i) The f_{i} are invariant under ϕ.
(ii) The representation $R_{i}: C \rightarrow\left(\mathbf{F}_{p^{n}}\right)^{*}$ takes c to ω^{i}. Since $z_{i}=\min \left\{k>0 \mid \omega^{i}=\right.$ $\left.\left(\omega^{i}\right)^{p^{k}}=\phi^{k}\left(\omega^{i}\right)\right\}$, we have $\mathbf{F}_{p}\left(\omega^{i}\right)=\mathbf{F}_{p^{i}}$. Consider the $\mathbf{F}_{p}[C]$-representation Γ_{i} given by

$$
\Gamma_{i}: C \xrightarrow{R_{i}}\left(\mathbf{F}_{p^{z_{i}}}\right)^{*} \xrightarrow{\mathbf{B}_{z_{i}}} \operatorname{Hom}_{\mathbf{F}_{p}}\left(\mathbf{F}_{p^{z_{i}}}, \mathbf{F}_{p^{z_{i}}}\right) .
$$

For each j, the eigenvalues of the endomorphism $\Gamma_{i}\left(c^{j}\right)$ are $\left\{\omega^{i j}, \omega^{i j p}, \ldots, \omega^{i j p_{i}-1}\right\}$ by Lemma 3.2. These are the same as the eigenvalues of c^{j} acting on $\mathbf{F}_{p}\left[C \backslash f_{i}\right.$. Hence these two representations have the same composition factors ([CR1], 30.16).

Since the image of R_{i} is the group $\left\langle\omega^{i}\right\rangle$, Lemma 3.1 implies that Γ_{i} is irreducible, so $\mathbf{F}_{p}[C] f_{i}$ is also.
(iii) Follows from (ii).

Remarks 3.7. (i) Since $\mathbf{F}_{p}[C]$ is semisimple and commutative, it must be equal to a direct sum of fields. $\mathbf{F}_{p}[C] \cong \oplus \mathbf{F}_{p}[C] f_{i}$ realizes this decomposition.
(ii) The above ideas can be used to describe the \mathbf{F}_{p} representations of any cyclic group whose order is prime to p.

Now we relate the irreducible $\mathbf{F}_{p}[C]$-representations to the irreducible $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ representations. This relationship will be used in the next section to give complete decompositions for the weight summands. Let $S_{(\lambda)}^{\prime}$ be the irreducibles for $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$
as in Section 1, and let $P_{(\lambda)}^{\prime}$ be their projective covers. To simplify notation, let $R=$ $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ and let $S=\mathbf{F}_{p}[C]$.

THEOREM 3.8. $\quad R f_{i} \cong \oplus_{(\lambda)} z_{i} a_{(\lambda)}^{\prime} P_{(\lambda)}^{\prime}$, where $a_{(\lambda)}^{\prime}$ is the number of times the irreducible $S f_{i}$ occurs in a composition series for $\operatorname{Res}_{S}^{R}\left(S_{(\lambda)}^{\prime}\right)$, the restriction of $S_{(\lambda)}^{\prime}$ from R to S.

This follows from the following four lemmas.
Lemma 3.9. The number of times $P_{(\lambda)}^{\prime}$ occurs as a direct summand in $R f_{i}$ equals the \mathbf{F}_{p}-dimension of $\operatorname{Hom}_{R}\left(R f_{i}, S_{(\lambda)}^{\prime}\right)$.

Proof. Write f_{i} as an orthogonal sum of primitive idempotents $\left\{\epsilon_{j}\right\}$ in R. Then $R \epsilon_{j}$ has a unique maximal submodule and maps to $S_{(\lambda)}^{\prime}$ if and only if $R \epsilon_{j} \cong P_{(\lambda)}^{\prime}([\mathrm{CR} 1], 54.11$, 54.14). Also $\operatorname{dim}_{\mathbf{F}_{p}} \operatorname{Hom}_{R}\left(S_{(\lambda)}^{\prime}, S_{(\lambda)}^{\prime}\right)=1$, since \mathbf{F}_{p} is a splitting field for $\mathrm{GL}_{n}(\mathbf{Z} / p)$.

Lemma 3.10. $\operatorname{Hom}_{R}\left(R f_{i}, S_{(\lambda)}^{\prime}\right) \cong \operatorname{Hom}_{S}\left(S f_{i}, \operatorname{Res}_{S}^{R}\left(S_{(\lambda)}^{\prime}\right)\right)$
Proof. Since $R f_{i} \cong R \otimes_{S} S f_{i}$, this is standard ([CR2], 2.19, 2.6).
LEmmA 3.11. The \mathbf{F}_{p}-dimension of $\operatorname{Hom}_{S}\left(S f_{i}, \operatorname{Res}_{S}^{R}\left(S_{(\lambda)}^{\prime}\right)\right)$ equals the multiplicity of $S f_{i}$ as a composition factor in $\operatorname{Res}_{S}^{R}\left(S_{(\lambda)}^{\prime}\right)$ times the \mathbf{F}_{p}-dimension of $\operatorname{Hom}_{S}\left(S f_{i}, S f_{i}\right)$.

Proof. Since the radical of S is zero and $S f_{i}$ is irreducible (3.5), this follows from ([CR1], 54.15, 54.19).

Lemma 3.12. $\operatorname{Hom}_{S}\left(S f_{i}, S f_{i}\right) \cong S f_{i}$, so has \mathbf{F}_{p}-dimension z_{i}.
Proof. $\operatorname{Hom}_{S}\left(S f_{i}, S f_{i}\right) \cong \operatorname{Hom}_{S f_{i}}\left(S f_{i}, S f_{i}\right) \cong S f_{i}$ since f_{i} is a primitive central idempotent in S.

We now describe the \mathbf{F}_{p}-representation theory of G and construct the idempotents for Theorem A. The argument goes as follows. First the absolutely irreducible representations over a field of characteristic zero are described. These are then used to define the irreducible representations in characteristic p. (This step is non-trivial only if p divides n.) We then observe that these representations are in fact defined over \mathbf{F}_{p}. Finally, we give a decomposition of f_{i} into z_{i} orthogonal idempotents in $\mathbf{F}_{p}[G]$.

Let \tilde{K} be an algebraic number field which is a splitting field for G (ie. every irreducible $\tilde{K}[G]$-representation remains irreducible over any field extension); $\mathbf{Q}(\sqrt[\mid C i]{1})$ is such a field. Let R be the algebraic integers in \tilde{K}, and let P be a prime ideal in R with p the unique rational prime in P. The residue field $K=R / P$ is a finite field which is also a splitting field for G. Let $\tilde{\omega}$ be a primitive ($p^{n}-1$)-st root of unity in \tilde{K} chosen so that the reduction $R \rightarrow R / P$ takes $\tilde{\omega}$ to ω. Also let $\tilde{\theta}$ be a primitive n-th root of unity in \tilde{K}. Define \tilde{f}_{i} by the formula in Definition 3.4 with ω replaced by $\tilde{\omega}$. Define $\tilde{K}[G]$ representations $\tilde{\Gamma}_{i k}$, for $i \in I$, and $k=1, \ldots, r_{i}=\frac{n}{z_{i}}$, by the matrices

$$
c \mapsto\left(\begin{array}{cccc}
\tilde{\omega}^{i} & 0 & \ldots & 0 \tag{3.13}\\
0 & \tilde{\omega}^{i p} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \tilde{\omega}^{i p_{i}-1}
\end{array}\right) \quad d \mapsto\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & \tilde{\theta}^{k z_{i}} \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right)
$$

LEMMA 3.14. The $\tilde{\Gamma}_{i k}$ are irreducible, distinct, and give a full set of irreducible representations of G over \tilde{K}.

Proof. Since G is a semidirect product of cyclic groups, its irreducible characters are all induced from one dimensional characters of normal subgroups containing C ([CR2], 11.8, [T]). The matrix representations can be found using the methods in ([CR1], Section 47).

LEMMA 3.15. The projective representation $\tilde{K}[G] \tilde{f}_{i}$ is isomorphic to $\oplus_{k=1}^{r_{i}} z_{i} \tilde{\Gamma}_{i k}$.
PROOF. $\quad \tilde{f}_{i}$ is the central idempotent to which all of the $\tilde{\Gamma}_{i k}$ belong.
Now let $\Gamma_{i k}$ be the K-representation of G given by applying the map $R \rightarrow R / P=K$ to the matrices in (3.13) defining $\tilde{\Gamma}_{i k}$. Note that θ, the reduction of $\tilde{\theta}$ will be a primitive s-th root of unity, where $n=s p^{l}$ with $(s, p)=1$. Let $r_{i}=\frac{n}{z_{i}}=s_{i} p^{l}$, with $\left(s_{i}, p\right)=1$.

THEOREM 3.16. (i) The $\Gamma_{i k}$ are irreducible, and (ii) $\left\{\Gamma_{i k} \mid i \in I\right.$ and $\left.k=1, \ldots, s_{i}\right\}$ is a complete set of distinct irreducibles for G over K.

Proof. (i) Let $\left\{v_{j}\right\}_{j \in J_{i}}$ be a basis for $\Gamma_{i k}$ having the given matrix representation. Suppose $w=\sum_{j \in J_{i}} a_{j} v_{j}$ is a non-zero vector in an invariant subspace W. If $\Gamma_{i k}$ is restricted to C, then v_{j} is an eigenvector with eigenvalue ω^{j}, so $e_{j} \cdot w=a_{j} v_{j}$ (Here we assume $\mathbf{F}_{p^{n}} \subseteq K$, so $\left.e_{j} \in K[C]\right)$. If $a_{j_{0}} \neq 0$, then $\left(a_{j_{0}}\right)^{-1} e_{j_{0}} \cdot w=v_{j_{0}}$, so $v_{j_{0}}$ is in W. The action of d permutes the v_{j} 's (with multiplication by $\theta^{k z_{i}}$ in one case), so all of the v_{j} 's are in W.
(ii) Two irreducible matrix representations over K are isomorphic if and only if they have the same characteristic roots ([CR1], 30.16). The result then follows from Lemma 3.14 and the fact that $s_{i}=\min \left\{l>0 \mid \theta^{l z_{i}}=1\right\}$.

COROLLARY 3.17. The projective representation $K[G] f_{i}$ has a composition series with n quotients: each $\Gamma_{i k}$, for $k=1, \ldots, s_{i}$, occurs $\frac{n}{s_{i}}$ times.

Proof. This follows from Lemma 3.15. (Since these representations are modular, they may not be completely reducible, so we cannot conclude as in 3.15 that this is a direct sum decomposition.)

The representations $\Gamma_{i k}$ have characters in \mathbf{F}_{p}, so they are defined over \mathbf{F}_{p} ([HB], 1.17). Hence \mathbf{F}_{p} is a splitting field for G. It follows from (3.16) and the fact that $\operatorname{dim}_{F_{p}}\left(\Gamma_{i k}\right)=$ $\left|J_{i}\right|$, that there are primitive orthogonal idempotents $\left\{\epsilon_{i j k} \mid i \in I, j \in J_{i}\right.$, and $k=$ $\left.1, \ldots, s_{i}\right\}$ in $\mathbf{F}_{p}[G]$, with $\mathbf{F}_{p}[G] \epsilon_{i j k}$ a projective indecomposable associated to $\Gamma_{i k}$ for each $j \in J_{i}$, and with $f_{i}=\sum_{j, k} \epsilon_{i j k}$ for each $i \in I$. (Note that when $s_{i}<r_{i}, \tilde{f}_{i}$ has a finer decomposition than f_{i}.

DEFINITION 3.18. For $j \in J_{i}$, let $d_{j}=\sum_{k} \epsilon_{i j k}$.
PROPOSITION 3.19 ([W], TheOrem 4.1). The summand $d_{j} B(\mathbf{Z} / p)_{+}^{n}$ has rank $1 K$ theory for $i \neq 0$ and rank $2 K$-theory for $i=0$. (Note that $d_{0} B(\mathbf{Z} / p)_{+}^{n} \simeq d_{0} B(\mathbf{Z} / p)^{n} \vee S^{0}$; each of these summands has rank $1 K$-theory.)

REMARK 3.20. Witten doesn't construct the idempotents d_{j} as above. Instead she uses the $K[G]$-representation $\Gamma_{i 0}$ above and standard facts about lifting idempotents to
show that the f_{i} can be written as a sum of z_{i} orthogonal idempotents projecting to the primitive idempotents in $\mathbf{F}_{p}[G] f_{i} / \operatorname{Ann}\left(\Gamma_{i 0}\right)$. She then shows that any such idempotent decomposition of f_{i} gives the K-theory result.

The specific idempotents $\left\{d_{j}\right\}$ allow us to prove the following.
Corollary 3.21. The modules $\mathbf{F}_{p}[G] d_{j}$, for $j \in J_{i}$ are isomorphic.
Proof. For fixed i and k, the idempotents $\epsilon_{i j, k}$ and $\epsilon_{i j_{2} k}$ are conjugate in $\mathbf{F}_{p}[G]$.
REmark 3.22. It is easy to see that the idempotents f_{i} in Definition 3.4 are in the center of $\mathbf{F}_{p}[G]$, thus $\mathbf{F}_{p}[G]$ is isomorphic to $\oplus_{i \in I} \mathbf{F}_{p}[G] f_{i}$ as rings (compare [W], p. 42). In general, some of the f_{i} are not centrally primitive and can be further decomposed into the block idempotents. These can be determined from the complex character table (see [CR1], Section 85) and could be used to give a finer decomposition than the f_{i} give. We do not pursue this here.
4. Main Results. To begin this section, we recall the $\mathrm{GL}_{n}(\mathbf{Z} / p)$ actions on the polynomial rings in the Campbell and Selick composition (2.4):

$$
\begin{align*}
& \Psi: \mathbf{F}_{p}\left[x_{0}, \ldots, x_{n-1}\right] \hookrightarrow \\
& \stackrel{\mathbf{F}_{p^{n}}\left[x_{0}, \ldots, x_{n-1}\right]}{ } \tag{4.1}\\
& \mathbf{F}_{p^{n}}\left[t_{0}, \ldots, t_{n-1}\right] \xrightarrow{\lambda} \mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right] .
\end{align*}
$$

$\mathrm{GL}_{n}(\mathbf{Z} / p)$ acts in the usual way on the vector space $\mathbf{F}_{p}\left\langle t_{0}, \ldots, t_{n-1}\right\rangle$. Extending multiplicatively to polynomial rings gives actions of $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ on $\mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right]$ and of $\mathbf{F}_{p^{n}}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ on $\mathbf{F}_{p^{n}}\left[t_{0}, \ldots, t_{n-1}\right]$. Let $\mathrm{GL}_{n}\left(\mathbf{F}_{p^{n}}\right)$ act in the usual way on the vector space $\mathbf{F}_{p^{n}}\left\langle x_{0}, \ldots, x_{n-1}\right\rangle$. Include $\mathrm{GL}_{n}(\mathbf{Z} / p)$ in $\mathrm{GL}_{n}\left(\mathbf{F}_{p^{n}}\right)$ by $\left(a_{i j}\right) \mapsto B\left(a_{i j}\right) B^{-1}$, where B is the matrix in (2.2). Then $\mathbf{F}_{p^{n}}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ acts on $\mathbf{F}_{p^{n}}\left[x_{0}, \ldots, x_{n-1}\right]$. Note that this action does not restrict to an action of $\mathrm{GL}_{n}(\mathbf{Z} / p)$ on $\mathbf{F}_{p}\left[x_{0}, \ldots, x_{n-1}\right]$ (e.g. $\left.T\left(x_{0}\right)=\omega x_{0}\right)$.

Lemma 4.2. The map B^{-1} is $\mathbf{F}_{p^{n}}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$-linear, and the map λ is $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ linear.

Proof. The linearity of B^{-1} follows from the definitions, and the linearity of λ is easy to check.

Recall the definition of $\widehat{M}_{n}(i)$ given after (2.5).
THEOREM 4.3. $\widehat{M}_{n}(i) \cong f_{i} \mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right]$ as \mathcal{A}-modules.
Proof. The first two rings in the composition for Ψ decompose into ($p^{n}-1$) weight summands. As an $\mathbf{F}_{p^{n}}[C]$-module, the weight j summand in $\mathbf{F}_{p^{n}}\left[x_{0}, \ldots, x_{n-1}\right]$ is a direct sum of infinitely many copies of the representation R_{j}. Hence the idempotents e_{j} decompose the ring $\mathbf{F}_{p^{n}}\left[x_{0}, \ldots, x_{n-1}\right]$ into its weight summands. Unfortunately, the e_{j} 's do not act on the ring $\mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right]$, so we cannot use them to decompose it. However, the idempotents $f_{i} d o$ act, the f_{i} are in $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$, and B^{-1} and λ are $\mathbf{F}_{p}\left[\mathrm{GL}_{n}(\mathbf{Z} / p)\right]$ module maps. The result follows.

Recall that $M E_{n}=\mathbf{F}_{p}\left[x_{0}, \ldots, x_{n-1}\right] \otimes \mathrm{E}\left[y_{0}, \ldots, y_{n-1}\right]$ when p is odd. The above theorem extends in the obvious way to $\widehat{M E}_{n}(i)$. In terms of summands of $B(\mathbf{Z} / p)_{+}^{n}$ we have the following.

Theorem 4.4.

$$
\tilde{H}^{*}\left(f_{i} B(\mathbf{Z} / p)_{+}^{n}\right) \cong \begin{cases}\widehat{M E}_{n}(i), & \text { if } p \text { is odd } ; \\ \widehat{M}_{n}(i), & \text { if } p=2 .\end{cases}
$$

Corollary 4.5 .

$$
\tilde{H}^{*}\left(d_{j} B(\mathbf{Z} / p)_{+}^{n}\right) \cong \begin{cases}M E_{n}(j), & \text { if } p \text { is odd } ; \\ M_{n}(j), & \text { if } p=2\end{cases}
$$

We let $Y_{n}(j)=d_{j} B(\mathbf{Z} / p)_{+}^{n}$ and $\hat{Y}_{n}(i)=f_{i} B(\mathbf{Z} / p)_{+}^{n} \simeq \bigvee_{j \in J_{i}} Y_{n}(j)$.
Now we give some applications of these results. Since the f_{i} are in the group ring (as opposed to the semigroup ring), the complete decompositions of the $\hat{Y}_{n}(i) \simeq f_{i} B(\mathbf{Z} / p)_{+}^{n}$ can be given in terms of the $X_{(\lambda)}^{\prime}$ described in Section 1. The next result follows from Theorems 3.8 and 4.4.

THEOREM 4.6. $\quad \hat{Y}_{n}(i) \simeq \bigvee_{(\lambda)} z_{i} a_{(\lambda)}^{\prime} X_{(\lambda)}^{\prime}$, where $a_{(\lambda)}^{\prime}$ is the number of times the representation $\mathbf{F}_{p}\left[C \backslash f_{i}\right.$ occurs in a composition series for $\operatorname{Res}_{C}{ }^{\mathrm{GL}_{n}(\mathbf{Z} / p)}\left(S_{(\lambda)}^{\prime}\right)$.

To apply this theorem, one calculates the eigenvalues of the action of the element c on the representation space $S_{(\lambda)}^{\prime}$, then compares to the eigenvalues of c on $\mathbf{F}_{p}\left[C \mid f_{i}\right.$, which are $\left\{\omega^{i}, \ldots, \omega^{i p^{i-1}}\right\}$. The case $i=0$ is particularly simple:

COROLLARY 4.7. $\quad Y_{n}(0) \simeq \mathrm{V}_{(\lambda)} a_{(\lambda)}^{\prime} X_{(\lambda)}^{\prime}$, where $a_{(\lambda)}^{\prime}=\operatorname{dim}\left(S_{(\lambda)}^{\prime}\right)^{C}$.
This corollary is a special case of ([HK], 5.1). We mention that Campbell and Selick show that $\tilde{H}^{*}\left(Y_{n}(0)\right) \cong\left(\tilde{H}^{*}\left(B(\mathbf{Z} / p)_{+}^{n}\right)\right)^{C}$, so $Y_{n}(0)$ is equivalent to $B\left((\mathbf{Z} / p)^{n} \rtimes C\right)_{+}$ and to $B\left(\mathrm{GL}_{2}\left(\mathbf{F}_{p^{n}}\right)\right)_{+}([\mathrm{A}])$. For p odd (resp. $\left.p=2\right)$ this cohomology is isomorphic to $M E_{n}(0)\left(\right.$ resp. $\left.M_{n}(0)\right)$ as A-modules, but not as rings. However, if we tensor with $\mathbf{F}_{p^{n}}$ we do get that the rings $M E_{n}(0) \otimes \mathbf{F}_{p^{n}}\left(\right.$ resp. $\left.M_{n}(0) \otimes \mathbf{F}_{2^{n}}\right)$ and $\tilde{H}^{*}\left(Y_{n}(0) ; \mathbf{F}_{p^{n}}\right)$ are isomorphic. (Compare with Aguadé [A$]$).

From Propositions 2.6, 2.7, 2.8, and Theorem 4.4, we have
Theorem 4.8. For $0 \leq j \leq\left(p^{n}-2\right)$, the bottom cell of $Y_{n}(j)$ is in dimension $2 \sigma(j)-$ $\alpha(j)$. The second cell in $Y_{n}(0)$ is in dimension $2 p n-3 n$.

From Proposition 3.19, we have
Theorem 4.9. $\quad Y_{n}(j)$ has rank $1 K$-theory if $j \neq 0$, and rank $2 K$-theory if $j=0$.
The K-theory of the indecomposable summands of $B(\mathbf{Z} / p)_{+}^{n}$ are given by Kuhn and Carlisle.

Proposition 4.10 ([K], 1.5; [CK], 6.1). The indecomposable summands $X_{i, 0 \ldots, 0, \text {, for }}$
 other indecomposables have zero K-theory.

We now restrict to $p=2$. For $1 \leq k \leq n$, let $S(k)$ denote the irreducible $\mathbf{F}_{2}\left[\mathrm{M}_{n, n}\left(\mathbf{Z}_{2}\right)\right]$ representation $S_{0, \ldots, 0,1, \ldots, \ldots, 0}$, where the 1 is in the k-th position. Let $S(0)=S_{0, \ldots, 0}$. For $0 \leq$ $k \leq n$, let $X(k)$ denote the indecomposable wedge summand of $B(Z / 2)_{+}^{n}$ corresponding to $S(k)$.

Theorem 4.11. Let $p=2$. For $0 \leq j \leq\left(2^{n}-2\right), Y_{n}(j)$ contains exactly one copy of the summand $X(k)$ if and only if $k=\alpha(j)$. Also, $Y_{n}(0)$ contains the copy of $X(n)$.

Proof. The irreducible $S(k)$ has dimension $\binom{n}{k}$ ([JK], 8.3.9), so $X(k)$ has multiplicity $\binom{n}{k}$ in $B(Z / 2)_{+}^{n}$. The number of $Y_{n}(j)$'s with $\alpha(j)=k$ is also $\binom{n}{k}$.

The bottom cell of $X(k)$ is in dimension k ([CK], 1.1). and the bottom cell of $Y_{n}(j)$ is in dimension $\alpha(j)$. Therefore, the $X(k)$ must be distributed among the $Y_{n}(j)$ as stated to avoid contradicting Theorem 4.9.
5. Poincaré Series. It is easy to determine the beginning coefficients in the Poincaré series for the $M_{n}(j)$ or the $M E_{n}(j)$ since these modules are generated by monomials. One just writes down all of the monomials and calculates their weights. Here we obtain a closed form for these series using invariant theory.

Let K be any field, and let W be an irreducible $K[Q]$-module, where Q is a finite group. For N a graded $K[Q]$-module of finite type, define $F(N, Q, W ; t)=\sum_{k=0}^{\infty} a_{k} t^{k}$, where a_{k} is the multiplicity of W as a composition factor in N_{k}. In this notation, if N is $\mathbf{F}_{p^{n}}\left[x_{0}, \ldots, x_{n-1}\right]$ (or $\left.\mathbf{F}_{p^{n}}\left[x_{0}, \ldots, x_{n-1}\right] \otimes \mathrm{E}\left[y_{0}, \ldots, y_{n-1}\right]\right)$, then $F\left(N, C, R_{j} ; t\right)$ is the Poincaré series of the weight j summand in N. A classical theorem of Molien gives a formula for $F(N, Q, W ; t)$ when $K=\mathbf{C}, N=\mathbf{C}\left[x_{0}, \ldots, x_{n-1}\right]$, and $Q \subseteq \mathrm{GL}_{n}(\mathbf{C})$ ([S], 2.1). In our case, we have the following.

Theorem 5.1. Let $[\bar{X}]$ and $[\bar{Y}]$ denote $\left[x_{0}, \ldots, x_{n-1}\right]$ and $\left[y_{0}, \ldots, y_{n-1}\right]$, respectively, then

$$
\begin{aligned}
F\left(\mathbf{F}_{p^{n}}[\bar{X}], C, R_{j} ; t\right) & =\frac{1}{\left(p^{n}-1\right)} \sum_{l=0}^{p^{n}-2}\left(\frac{\tilde{\omega}^{-l j}}{\prod_{k=0}^{n-1}\left(1-\tilde{\omega}^{l p^{k}} t\right)}\right), \text { and } \\
F\left(\mathbf{F}_{p^{n}}[\bar{X}] \otimes \mathrm{E}[\bar{Y}], C, R_{j} ; t\right) & =\frac{1}{\left(p^{n}-1\right)} \sum_{l=0}^{p^{n}-2}\left(\frac{\tilde{\omega}^{-l j} \prod_{k=0}^{n-1}\left(1+\tilde{\omega}^{l p^{k}} t\right)}{\prod_{k=0}^{n-1}\left(1-\tilde{\omega}^{l p^{k}} t^{2}\right)}\right),
\end{aligned}
$$

where $\tilde{\omega}$ is a primitive $\left(p^{n}-1\right)$-st root of unity in \mathbf{C}.
Proof. These follow exactly as in the classical case since $(p,|C|)=1$ and $\mathbf{F}_{p^{n}}$ is a splitting field for C. (Recall that in $\mathbf{F}_{p^{n}}[\bar{X}] \otimes \mathrm{E}[\bar{Y}]$ we take $\operatorname{deg}\left(x_{k}\right)=2$ and $\operatorname{deg}\left(y_{k}\right)=1$.)

The above formulas also give the Poincaré series for the $Y_{n}(j)$'s since the series for the weight summands in $\mathbf{F}_{p}[\bar{X}] \otimes \mathrm{E}[\bar{Y}]$ (resp. $\mathbf{F}_{2}[\bar{X}]$, if $p=2$) and $\mathbf{F}_{p^{n}}[\bar{X}] \otimes \mathbf{F}_{p^{n}}[\bar{Y}]$ (resp. $\mathbf{F}_{2^{n}}[\bar{X}]$) are the same.

Remark 5.2. The Poincaré series for the indecomposable summands $X_{(\lambda)}^{\prime}$ are given by $F\left(N, \mathrm{GL}_{n}(\mathbf{Z} / p), S_{(\lambda)}^{\prime} ; t\right)$, for N either $\mathbf{F}_{2}\left[t_{0}, \ldots, t_{n-1}\right]$ or $\mathbf{F}_{p}\left[t_{0}, \ldots, t_{n-1}\right] \otimes$ $\mathrm{E}\left[u_{0}, \ldots, u_{n-1}\right]$ ([Mi1], 1.6). These are known for only a few cases: $n=2, p=2$ ([MP]); $n=2, p$ odd ([H] or $[\mathrm{C}]) ; n=3, p=2([\mathrm{Mil}]$ or $[\mathrm{C}]) ; n=3, p$ odd $([\mathrm{C}]) ; n=4, p=2$ ([C]); for $S_{(\lambda)}^{\prime}$ a twisted Steinberg representation ([Mi2], [MP]); and for $S_{(\lambda)}^{\prime}$ close to the Steinberg representation ([CW]).
6. Examples. Recall from Section 1, that a complete decomposition of the space $B(\mathbf{Z} / p)_{+}^{n}$ is given by $V_{(\lambda)} a_{(\lambda)} X_{(\lambda)}$, where $(\lambda)=\left(\lambda_{1}, \ldots, \lambda_{n}\right), 0 \leq \lambda_{i} \leq(p-1)$, and a partial decomposition is given by $V_{(\lambda)} a_{(\lambda)} X_{(\lambda)}^{\prime}$, where $(\lambda)=\left(\lambda_{1}, \ldots, \lambda_{n}\right), 0 \leq \lambda_{i} \leq$ $(p-1), \lambda_{n} \leq p-2$. (The $X_{(\lambda)}^{\prime}$ decompose as in Proposition 1.7.) The Selick and Campbell decompositions are given here in terms of the $X_{(\lambda)}^{\prime}$ for some small cases. These can be determined either from Theorem 4.6 or by comparing Poincaré series.

Example 6.1. For $p=2$:

$$
\begin{aligned}
& Y_{1}(0) \simeq X_{0}^{\prime}, \\
& Y_{2}(0) \simeq X_{0,0}^{\prime}, \\
& Y_{2}(1) \simeq Y_{2}(2) \\
& \simeq X_{1,0}^{\prime}, \\
& Y_{3}(0) \simeq X_{0,0,0}^{\prime} \vee 2 X_{1,1,0}^{\prime}, \\
& Y_{3}(1) \simeq Y_{3}(2) \simeq Y_{3}(4) \simeq X_{1,0,0}^{\prime} \vee X_{1,1,0}^{\prime} \\
& Y_{3}(3) \simeq Y_{3}(5) \simeq Y_{3}(6) \simeq X_{0,1,0}^{\prime} \vee X_{1,1,0}^{\prime}, \\
& Y_{4}(0) \simeq X_{0,0,0,0}^{\prime} \vee 2 X_{1,0,1,0}^{\prime} \vee 4 X_{1,1,1,0}^{\prime}, \\
& Y_{4}(1) \simeq Y_{4}(2) \simeq Y_{4}(4) \simeq Y_{4}(8) \\
& \simeq X_{1,0,0,0}^{\prime} \vee X_{1,1,0,0}^{\prime} \vee X_{1,0,1,0}^{\prime} \vee 2 X_{0,1,1,0}^{\prime} \vee 4 X_{1,1,1,0}^{\prime}, \\
& Y_{4}(3) \simeq Y_{4}(6) \simeq Y_{4}(9) \simeq Y_{4}(12) \\
& \simeq X_{0,1,0,0}^{\prime} \vee X_{1,1,0,0}^{\prime} \vee X_{1,0,1,0}^{\prime} \vee X_{0,1,1,0}^{\prime} \vee 5 X_{1,1,1,0}^{\prime}, \\
& Y_{4}(5) \simeq Y_{4}(10) \simeq X_{0,1,0,0}^{\prime} \vee 2 X_{1,1,0,0}^{\prime} \vee 2 X_{0,1,1,0}^{\prime} \vee 4 X_{1,1,1,0}^{\prime} \\
& Y_{4}(7) \simeq Y_{4}(11) \simeq Y_{4}(13) \simeq Y_{4}(14) \\
& \simeq X_{0,0,1,0}^{\prime} \vee 2 X_{1,1,0,0}^{\prime} \vee X_{1,0,1,0}^{\prime} \vee X_{0,1,1,0}^{\prime} \vee 4 X_{1,1,1,0}^{\prime} .
\end{aligned}
$$

The indecomposable summands with rank $1 K$-theory are: $X_{0}, X_{1}, X_{0,1}, X_{0,0,1}$, and $X_{0,0,0,1}$.

Example 6.2. For $p=3$:

$$
\begin{aligned}
& Y_{1}(0) \simeq X_{0}^{\prime}, \\
& Y_{1}(1) \simeq X_{1}^{\prime}, \\
& Y_{2}(0) \simeq X_{0,0}^{\prime} \vee X_{2,1}^{\prime}, \\
& Y_{2}(1) \simeq Y_{2}(3) \\
& \simeq X_{1,0}^{\prime}, \\
& Y_{2}(2) \simeq Y_{2}(6) \\
& \simeq X_{2,0}^{\prime} \vee X_{2,1}^{\prime}, \\
& Y_{2}(4) \simeq X_{0,1}^{\prime} \vee X_{2,0}^{\prime}, \\
& Y_{2}(5) \simeq Y_{2}(7) \\
& \simeq X_{1,1}^{\prime}, \\
& Y_{3}(0) \simeq X_{0,0,0}^{\prime} \vee X_{1,1,1}^{\prime} \vee 3 X_{2,2,0}^{\prime}, \\
& Y_{3}(1) \simeq Y_{3}(3) \simeq Y_{3}(9) \simeq X_{1,0,0}^{\prime} \vee X_{1,2,0}^{\prime} \vee 2 X_{2,1,1}^{\prime} \vee X_{0,2,1}^{\prime} \vee 2 X_{2,2,1}^{\prime}, \\
& Y_{3}(2) \simeq Y_{3}(6) \simeq Y_{3}(18) \simeq X_{2,0,0}^{\prime} \vee X_{2,1,0}^{\prime} \vee X_{1,1,1}^{\prime} \vee 2 X_{2,2,0}^{\prime} \vee X_{1,2,1}^{\prime}, \\
& Y_{3}(4) \simeq Y_{3}(10) \simeq Y_{3}(12) \simeq X_{2}^{\prime}, X_{2,0,}^{\prime} \vee X_{0,1,0}^{\prime} \vee X_{2,1,0}^{\prime} \vee 2 X_{2,2,0}^{\prime} \vee 2 X_{1,2,1}^{\prime}, \\
& Y_{3}(5) \simeq Y_{3}(15) \simeq Y_{3}(19) \simeq X_{1,1,0}^{\prime} \vee X_{1,2,0}^{\prime} \vee X_{2,1,1}^{\prime} \vee X_{2,0,1}^{\prime} \vee 2 X_{2,2,1}^{\prime}, \\
& Y_{3}(7) \simeq Y_{3}(11) \simeq Y_{3}(21) \simeq X_{1,1,0}^{\prime} \vee X_{1,2,0}^{\prime} \vee X_{2,1,1}^{\prime} \vee X_{0,2,1}^{\prime} \vee 2 X_{2,2,1}^{\prime},
\end{aligned}
$$

$$
\begin{aligned}
Y_{3}(8) \simeq Y_{3}(20) \simeq & Y_{3}(24) \simeq X_{0,2,0}^{\prime} \vee X_{2,1,0}^{\prime} \vee X_{1,1,1}^{\prime} \vee 2 X_{2,2,0}^{\prime} \vee X_{1,2,1}^{\prime}, \\
& Y_{3}(13) \simeq X_{1,1,0}^{\prime} \vee X_{0,0,1}^{\prime} \vee 3 X_{2,2,1}^{\prime}, \\
Y_{3}(14) \simeq Y_{3}(16) \simeq & Y_{3}(22) \simeq X_{0,2,0}^{\prime} \vee 2 X_{2,1,0}^{\prime} \vee 2 X_{2,2,0}^{\prime} \vee X_{1,0,1}^{\prime} \vee X_{1,2,1}^{\prime}, \\
Y_{3}(17) \simeq Y_{3}(23) \simeq & Y_{3}(25) \simeq X_{0,1,1}^{\prime} \vee 2 X_{1,2,0}^{\prime} \vee X_{2,1,1}^{\prime} \vee X_{2,0,1}^{\prime} \vee 2 X_{2,2,1}^{\prime},
\end{aligned}
$$

The indecomposable summands with rank $1 K$-theory are: $X_{0}, X_{1}, X_{2}, X_{0,2}, X_{1,1}, X_{0,0,2}$, and $X_{0,1,1}$.

Example 6.3. For $p=5$:

$$
\begin{aligned}
& Y_{1}(0) \simeq X_{0}^{\prime}, \\
& Y_{1}(1) \simeq X_{1}^{\prime}, \\
& Y_{1}(2) \simeq X_{2}^{\prime}, \\
& Y_{1}(3) \simeq X_{3}^{\prime}, \\
& Y_{2}(0) \simeq X_{0,0}^{\prime} \vee X_{2,3}^{\prime} \vee X_{4,2}^{\prime}, \\
& Y_{2}(1) \simeq Y_{2}(5) \simeq X_{1,0}^{\prime} \vee X_{3,3}^{\prime}, \\
& Y_{2}(2) \simeq Y_{2}(10) \simeq X_{2,0}^{\prime} \vee X_{4,1}^{\prime} \vee X_{4,3}^{\prime}, \\
& Y_{2}(3) \simeq Y_{2}(15) \simeq X_{3,0}^{\prime} \vee X_{3,2}^{\prime}, \\
& Y_{2}(4) \simeq Y_{2}(20) \simeq X_{2,3}^{\prime} \vee X_{4,0}^{\prime} \vee X_{4,2}^{\prime}, \\
& Y_{2}(6) \simeq X_{0,1}^{\prime} \vee X_{2,0}^{\prime} \vee X_{4,3}^{\prime}, \\
& Y_{2}(7) \simeq Y_{2}(11) \simeq X_{1,1}^{\prime} \vee X_{3,0}^{\prime}, \\
& Y_{2}(8) \simeq Y_{2}(16) \simeq X_{2,1}^{\prime} \vee X_{4,0}^{\prime} \vee X_{4,2}^{\prime}, \\
& Y_{2}(9) \simeq Y_{2}(21) \simeq X_{3,1}^{\prime} \vee X_{3,3}^{\prime}, \\
& Y_{2}(12) \simeq X_{0,2}^{\prime} \vee X_{2,1}^{\prime} \vee X_{4,0}^{\prime}, \\
& Y_{2}(13) \simeq Y_{2}(17) \\
& \simeq X_{1,2}^{\prime} \vee X_{3,1}^{\prime}, \\
& Y_{2}(14) \simeq Y_{2(22)} \simeq X_{2,2}^{\prime} \vee X_{4,1}^{\prime} \vee X_{4,3}^{\prime}, \\
& Y_{2}(18) \simeq X_{0,3}^{\prime} \vee X_{2,2}^{\prime} \vee X_{4,1}^{\prime}, \\
& Y_{2}(19) \simeq Y_{2}(23) \simeq X_{1,3}^{\prime} \vee X_{3,2}^{\prime} .
\end{aligned}
$$

The indecomposable summands with rank $1 K$-theory are: $X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{0,4}$, $X_{1,3}, X_{2,2}$, and $X_{3,1}$.

References

[AGM] J. F. Adams, J. H. Gunawardena, and H. R. Miller, The Segal conjecture for elementary abelian pgroups, Topology 24(1985), 435-460.
[A] J. Aguadé, The cohomology of $G L_{2}$ of a finite field, Arch. Math. 34(1980), 509-516.
[CS] H. E. A. Campbell and P. S. Selick, Polynomial algebras over the Steenrod algebra, Comment. Math. Helv., 65(1990) 171-180.
[C] D. Carlisle, The modular representation theory of $\mathrm{GL}(n, p)$, and applications to topology. Ph.D. thesis, University of Manchester, 1985.
[CK] D. Carlisle and N. J. Kuhn, Subalgebras of the Steenrod algebra and the action of matrices on truncated polynomial algebras, J. Algebra 121(1989), 370-387.
[CW] D. P. Carlisle and G. Walker, Poincaré series for the occurrence of certain modular representations of GL(n, p) in the symmetric algebra, preprint (1989).
[Ca] G. Carlsson, Equivariant stable homotopy and Segal's Burnside ring conjecture, Ann. of Math. (2)120 (1984), 189-224.
[Co] F. Cohen, Splitting certain suspensions via self-maps, Ill. J. Math. 20(1976), 336-347.
[CR1] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras. Wiley, 1962.
[CR2] \qquad Methods of Representation Theory, vol. 1, Wiley, 1981.
[D] H. Davenport, Bases for finite fields, J. London Math. Soc. 43(1968), 21-39.
[H] J. C. Harris, Stable splittings of classifying spaces. Ph.D. thesis, University of Chicago, 1985.
[HK] J. C. Harris and N. J. Kuhn, Stable decompositions of classifying spaces of finite abelian p-groups, Math. Proc. Camb. Phil. Soc. 103(1988), 427-449.
[HB] B. Huppert and N. Blackburn, Finite Groups, II. Springer-Verlag, 1982.
[JK] G. James and A. Kerber, The Representation Theory of the Symmetric group. Encyclopedia of Math. and its Applications, 16, Addison-Wesley, 1981.
[K] N. J. Kuhn, The Morava K-theory of some classifying spaces, Trans. Amer. Math. Soc. 304(1987), 193205.
[LS] J. Lannes and L. Schwartz, Sur la structure des \mathcal{A}-modules instable injectifs, Topology 28(1989), 153169.
[LZ1] J. Lannes and S. Zarati, Sur les Ul-injectives, Ann. Scient. Ec. Norm. Sup. 19(1986), 303-333.
[LZ2]_, Sur les foncteurs dérivés de la déstabilisation, Math. Z. 194(1987), 25-59.
[M] J. P. May, Stable maps between classifying spaces, Amer. Math. Soc. Cont. Math. 37(1985), 121-129.
[Mi] H. R. Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. 120(1984), 39-87.
[Mi1] S. A. Mitchell, Splitting $B(\mathbf{Z} / p)^{n}$ and $B T_{n}$ via modular representation theory, Math. Z. 189(1985), 1-9.
[Mi2] , Finite complexes with A(n)-free cohomology, Topology 24(1985), 227-248.
[MP] S. A. Mitchell and S. B. Priddy, Stable splittings derived from the Steinberg module, Topology 22(1983), 285-298.
[N] G. Nishida, Stable homotopytype of classifying spaces of finite groups, Algebraic and Topological Theories (1985), 391-404.
[S] R. P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (1)3(1979), 475-511.
[T] P. A. Tucker, On the reduction of induced representations of finite groups, Amer. J. Math. 84(1962), 400420.
[W] C. M. Witten, Self-maps of classifying spaces of finite groups and classification of low-dimensional Poincaré duality spaces. Ph.D. Thesis, Stanford University, 1978.
[Wo] R. M. W. Wood, Splitting $\Sigma\left(\mathbf{C} P^{\infty} \times \cdots \times \mathbf{C} P^{\infty}\right)$ and the action of Steenrod squares Sq q^{i} on the polynomial ring $\mathbf{F}_{2}\left[x_{1}, \ldots, x_{n}\right]$, in Algebraic Topology Barcelona 1986, Lecture Notes in Math. 1298 Springer 1987, 237-255.

Department of Mathematics

University of Toronto
Toronto, Ontario M5S 1A1
(harris@math.toronto.edu)

